RELATÓRIO – ATIVIDADE #4C

Autor: Eduardo Germer

Objetivos:

Simulações em bocal de perfil parabólico

Análise dos resultados com programa Richardson3p2

Data: 29.Dez.2012

Para a realização desta atividade foi definida uma tubeira parabólica cujas características são:

• Razão de áreas (RA): 4

• Raio da garganta (Rg): 4.10⁻² m

• Comprimento da tubeira $(L): 5.10^{-1}$ m

• Raio de entrada = raio de saída

• Entrada da tubeira em x=0

• Saída da tubeira em x=L

• Posição da garganta em x=L/2

Para análise da ordem aparente obtida com CDS foi selecionado o caso 4 que tem como pressão e temperatura de estagnação:

• Caso 4: $p_0 = 5d6$ $T_0 = 1d3$

As simulações foram feitas com a malha inicial de 4x4 sendo posteriormente refinada com razão de refino constante e igual a 2, em ambas as direções, desta forma as malhas seguintes foram 8x8, 16x16 e assim por diante.

A geração da malha foi feita de forma uniforme na direção "x" e uniforme (por seção) na direção "r". A Fig.1 mostra um exemplo de malha, no caso a de 32x32.

A função de interpolação considerada para todas as simulações foi a CDS, o solver o MSI, e a condição inicial é a solução analítica 1D.

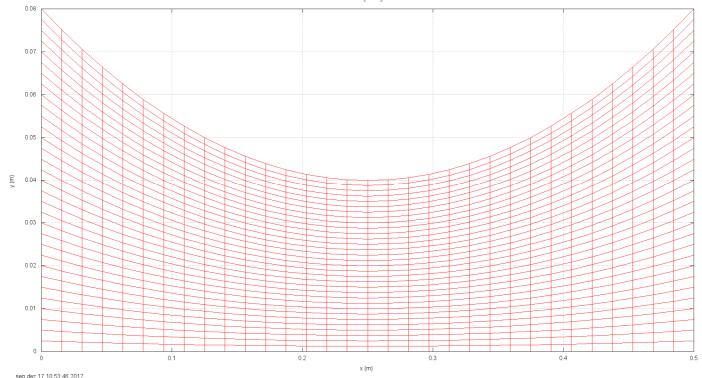


Figura 1 – Tubeira parabólica – malha 32 x 32

Hardware e Software das simulações:

Computador (H1): HP Pavilion dv5-1260, 4GB RAM, 64bit, AMD Turion X-2 Dual Core RM-74, 2.2 GHz

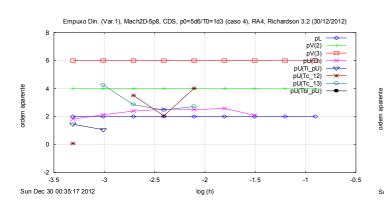
Sistema operacional: Windows 7

Compilador: Intel Visual Fortran 11.1.065 [Intel 64].

Programa: Mach2D-5p8 (versão GB DM 2012 10 11)

<u>Dados constantes nas simulações</u>: kg=4; a1=1d-6; coord=1; Rg=2.869E+02; gamma=1.4d0; pr=101325.d0; g0=9.80665d0; modvis=0; modtur=0; ccTw=0; reload=0; tolerance=-1d-10; wbkp=1000; wlf=1; sem_a=1; sem_g=1; w_g=1; w_cam=0; vertela=1; num=1; Eu=3. d0; Ev=-3.d0; Ep=-350.d0; Et=-350.d0.

Para avaliar a ordem aparente foram analisadas duas variáveis, o coeficiente de descarga (adimensional) e o empuxo dinâmico (adimensional). Ao longo do texto referiu-se algumas vezes ao empuxo dinâmico como variável 1 e o coeficiente de descarga como variável 2.


A expectativa é que a ordem aparente (p_U) da incerteza tenda à ordem assintótica (p_L) à medida que a malha é refinada $(h\longrightarrow 0)$, para o caso do CDS-2 o valor esperado é p_L =2.

A tabela 1 mostra os valores de ordem aparente para cada caso e cada malha, da variável empuxo dinâmico (adimensional) e coeficiente de descarga (adimensional). O solver utilizado neste caso foi o MSI.

Tabela 1 – Ordem aparente das variáveis 1 (empuxo dinâmico) e 2 (coeficiente de descarga) com CDS

Malha	h	Variável 1	Variável 2			
4x4	1.25E-01					
8x8	6.25E-02					
16x16	3.13E-02	2.08941317539223E+00	1.87539803004303E+00			
32x32	1.56E-02	2.57741664991006E+00	3.91161091553414E+00			
64x64	7.81E-03	2.48633905545782E+00				
128x128	3.91E-03	2.52269924042764E+00	5.28639154363276E-01			
256x256	1.95E-03	2.39172102823888E+00	1.38162695211846E+00			
512x512	9.77E-04	2.12333259061805E+00	1.61099487219026E+00			
1024x1024	4.88E-04	1.81397486823777E+00	1.69067094973583E+00			

As Figs. 2 e 3 mostram os resultados da tabela 1 em representação gráfica.

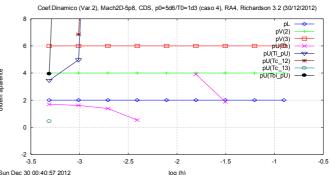


Figura 2 - Ordem aparente: caso 4 / variável 1 / CDS

Figura 3 – Ordem aparente: caso 4 / variável 21 / CDS

Conclusões:

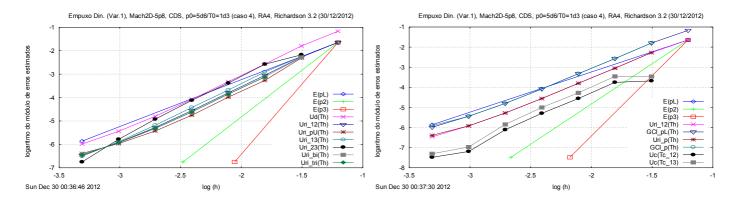
Apesar da variável 2 apresentar ordem aparente de 1,69 \pm 0,001 na malha mais fina, ainda longe da ordem assintótica (P_L =2), a ordem aparente parece convergir à ordem assintótica como o refino da malha. No entanto, seriam necessários dados de malhas mais finas para confirmar esta tendência.

Para a variável 1 ocorre o mesmo. Pode-se verificar que a ordem aparente do erro tende á ordem assintótica por um intervalo super convergente até a malha 512x512, porém na malha 1024x1024 há uma inversão e a ordem aparente torna-se menor que a ordem assintótica, e não se pode afirmar o que ocorrerá na malha 2048x2048.

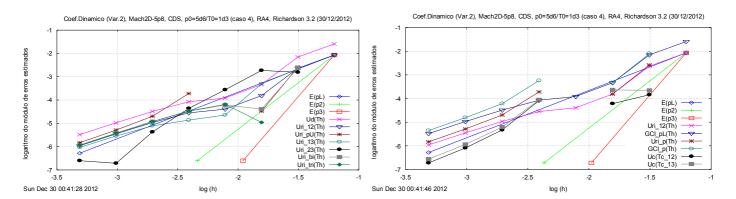
Os valores dos parâmetros para solução como o "dt" não foram otimizados, ou seja, não houve preocupação em obter os melhores valores para cada simulação, e o critério de parada das simulações foi a estabilização do termo dFd*. Sendo a estabilização definida por um contador de "zeros" para o valor de dFd*, e no momento de surgimento do décimo quinto zero o programa é finalizado.

Pôde-se verificar que o valor máximo possível para "dt" vai reduzindo à medida que a malha é refinada, tendo variado de 5d-5 (malha mais grossa) até 1d-6 (malha mais fina).

No anexo I encontram-se os demais dados das simulações e no anexo II alguns outros gráficos resultantes do Richardson 3p2.


ANEXO I

Simulação	Malha	рO	TO	beta1	beta2	itb1	itb2	it1	it2	dt1	dt2
EG 4 142 4x4 5d6 1d3 0 1 1000 3000 3 10 5.35d-6										اء جا د	
EG_4_142	4x4	5U6	143	0	1	1000	3000	3	10	5,350-6	3.DU-6
EG_4_143	8x8	5d6	1d3	0	1	1000	3000	3	10	5.35d-6	3.5d-6
EG_4_144	16x16	5d6	1d3	0	1	1000	3000	3	10	5.35d-6	3.5d-6
EG_4_145	32x32	5d6	1d3	0	1	1000	3000	3	10	5.35d-6	3.5d-6
EG_4_146	64x64	5d6	1d3	0	1	1000	3000	3	10	5.35d-6	3.5d-6
EG_4_147	128x128	5d6	1d3	1	1	1000	3000	100	100	3d-5	1d-5
EG_4_148	256x256	5d6	1d3	1	1	1000	3000	40	40	2d-5	8d-6
EG_4_149	512x512	5d6	1d3	0	1	1000	1000	40	40	7d-6	5d-6
EG_4_150	1024x1024	5d6	1d3	0	1	1000	1000	40	40	1d-6	1d-6


Simulação	Cd	Fd*	it	t CPU	Memória	Solver	itmax	imax	nitm_u	nitm_p
EG_4_142	1.03273496723321E+00	1.06306507266348E+00	34455	5.14E+01	1.3	MSI	200000	6	2	4
EG_4_143	1.00709094107559E+00	9.95123685793689E-01	9735	1.55E+01	1.3	MSI	200000	6	2	4
EG_4_144	1.00010161744450E+00	9.79159073770963E-01	9337	2.10E+00	1.3	MSI	200000	6	2	4
EG_4_145	9.99637184591310E-01	9.76484351796628E-01	8628	4.52E+01	2.6	MSI	200000	6	2	4
EG_4_146	9.99759061355641E-01	9.76007024785991E+00	7513	1.86E+02	5.67	MSI	200000	6	2	4
EG_4_147	9.99843547340960E-01	9.75923961736903E-01	1975	2.12E+02	18.6	MSI	200000	6	2	4
EG_4_148	9.99875971858148E-01	9.75908133661940E-01	7420	3.32E+03	70	MSI	200000	6	2	4
EG_4_149	9.99886586754028E-01	9.75904500863538E-01	7668	1.98E+04	270	MSI	200000	6	2	2
EG_4_150	9.99889875066426E-01	9.75903467672926E-01	29440	3.73E+05	1,050	MSI	200000	6	2	2

ANEXO II

Variável 1 - CDS:

Variável 2 - CDS:

