Estudos complementares sobre o efeito-dt em aerodinâmica

Guilherme Bertoldo

25 de Outubro de 2012

Conteúdo

1	Introdução	1
2	Parâmetros numéricos	1
3	Variação de Cdfi com o número de iterações	2
4	O Fator-E e o desvio da pressão	3
5	Conclusões	4

1 Introdução

Na Seç. 4.1 do relatório

Bertoldo, G. Efeito do dt sobre o coeficiente de arrasto em cones. 13 de Outubro de 2012.

observou-se que efeito de dt sobre o coeficiente de arrasto em cones deixou de existir para os valores maiores de dt, porém persistia para os menores. Este estudo complementar tem o objetivo de avaliar quais são as causas deste efeito. Para isso, as seguintes hipóteses serão testadas:

- 1. O número de iterações foi insuficiente para que a variável em estudo (Cdfi) convergisse até o erro de máquina.
- 2. Ao se reduzir dt, o erro de arredondamento aumenta prejudicando a precisão de Cdfi.
- 3. Ao se reduzir d
t, a correção da pressão p^\prime per
de eficácia.

Para avaliar estas hipóteses criou-se a revisão Mach2D-5.8.2.1-SVN-r111 (Branch: transient) a partir do código original Mach2D-5.8.2.1-SVN-r108 (Branch: transient).

2 Parâmetros numéricos

Os parâmetros numéricos de entrada do código Mach2D-5.8.2.1-SVN-r111 (Branch: transient) são dados na Tab. 1. Na terceira coluna desta tabela são indicados os parâmetros comuns a todas as simulações.

Simulation identification (up to 100 characters)								
Number of real volumes in the csi direction	nx2	30						
Number of real volumes in the eta direction	ny2	30						
length of the elliptical x semi-axis (m)	la	$2.8356409098089\mathrm{E}{+00}$						
length of the elliptical y semi-axis (m)	l lb	2.000000000000000000000000000000000000						
length of the body (m)	l lr	$2.8356409098089\mathrm{E}{+00}$						
base radius/semi-height of the body (m)	rb	5.000000000000E-01						
Kind of grid (1=uniform, 2=geometric progression, 3=power law)	kg	1						
Kind of centroid mean $(1=$ simple mean, $2=$ weighted mean $)$	kcm	1						
Kind of coord. system $(1=cylindrical, 0 = cartesian)$	coord							
width of the volume closer to the wall (m)	a1	1.0000000000000E-03						
Exponent of the power law for the north boundary	akn	2.000000000000000000000000000000000000						
Exponent of the power law for the south boundary	aks	1.000000000000000000000000000000000000						
Maximum number of iteractions for time cycle	itmax	500000						
"Maximum number of iterations for the correction cycle"	itimax	1						
Maximum number of iteractions for mass cycle	imax	1						
Number of iteractions up to which $dt = dt1$	it1							
Number of iteractions from which $\mathrm{dt}=\mathrm{dt}2$	it 2							
Initial time step (s)	dt1							
Final time step (s)	dt2							
Maximum number of iteractions for solving the linear systems for u, v and T	nitm_u	5						
Maximum number of iteractions for solving the linear system for p	nitm_p	5						
Number of iteractions to calculate the mean of the residuals	nit_res	1						
Tolerance in the MSI for solving the linear systems for u, v and T	tol_u	1.0000000000000E-02						
Tolerance in the MSI for solving the linear system for p	tol_p	1.0000000000000E-02						
Tolerance for the sum of residuals	tol_res	1.000000000000000E-20						
Frequency of printing in the listing file	wlf	1						
1 = do not open result files, 0 = open	sem_a	1						
0 = visualize the plot, $1 = do$ not visualize	sem_g	1						
Frequency of writing data for graphics	w_g	1						
1 = write the fields, $0 = $ do not	w_cam	0						
Number of iteractions up to which beta $=$ beta1	itb1	300						
Number of iteractions from which beta = $beta2$	itb2	1000						
Initial beta $(UDS/CDS mixing constant (0=UDS, 1=CDS))$	beta1	0.00000000000000000000000000000000000						
Final beta (UDS/CDS mixing constant $(0=UDS, 1=CDS)$)	beta2	0.00000000000000000000000000000000000						
GF = gamma = Cp / Cv (for the free stream)	GF	1.400000000000E+00						
Perfect gas constant (J/kg.K)	Rg	2.8700000000000E+02						
Free stream pressure (Pa)		1.0000000000000E+05						
Free stream temperature (K)	TF	3.0000000000000E+02						
Free stream Mach number	MF	4.0000000000000E+00						

Tabela 1: Parâmetros numéricos de entrada

3 Variação de Cdfi com o número de iterações

A Fig. 1 mostra a razão

$$\frac{|\mathrm{Cdfi}\text{-}\mathrm{Cdfi}^*|}{\mathrm{Cdfi}^*}$$

(1)

como função do número de iterações. Cdfi é o coeficiente de arrasto invíscido frontal em cada iteração e Cdfi* é o valor de Cdfi na última iteração. São apresentados os gráficos para três valores de dt representativos do intervalo em estudo $[10^{-7}, 5 \times 10^{-2}]$. Todas as simulações foram feitas com 500000 iterações. Observa-se, para os três valores de dt, que a iteração foi realizada até se atingir o erro de máquina. No gráfico da Fig. 1 (c), Cdfi se mantém constante nas últimas iterações, o que faz com que a diferença relativa da Eq. (1) seja zero e, consequentemente, não apresentada no gráfico que está em escala logarítmica. Deste modo a hipótese (1) está descartada.

Figura 1: Variação relativa de Cdfi com o número de iterações para três valores de dt. O valor de referência Cfdi* é o da última iteração para cada dt. Conjunto de simulações S0099.

4 O Fator-E e o desvio da pressão

Manter Δt fixo para todos os volumes de controle é equivalente a fazer o fator-E variável. De acordo com van Doormaal e Raithby[1], o termo A_P do sistema linear, resultante da discretização de uma equação de transporte de um escoamento transiente,

$$A_P \phi_P + \sum_{nb} A_{nb} \phi_{nb} = b_P, \tag{2}$$

pode ser escrito como

$$A_P = (A_\infty)_P \left[1 + \frac{1}{E} \right],\tag{3}$$

onde E é a razão entre o incremento de tempo Δt e um incremento de tempo característico Δt^* . Quando $E \to \infty$, isto é, $\Delta t \to \infty$, a Eq. (2) se reduz à equação de transporte do escoamento estacionário. Por outro lado, quando $E \ll 1$, $\Delta t \ll 1$ e, consequentemente, o número de iterações necessárias para se atingir o escoamento transiente aumenta. Além disso, surge outro problema. Como pode ser observado das Eqs. (2) e (3), quando $E \ll 1$, $A_P \phi_P$ pode se tornar algumas ordens de grandeza maior que

$$\sum_{nb} A_{nb} \phi_{nb}$$

favorecendo o surgimento dos erros de arredondamento.

Para avaliar a consistência destas considerações, um conjunto de simulações (S0106) com os mesmos parâmetros da Tab. 1 foi realizado. Considerou-se itmax=500000 e dt1=dt2=dt. Os resultados são apresentados na Tab. 2. Nesta tabela Cdfi representa o coeficiente de arrasto frontal invíscido, res a soma dos resíduos dos sistemas lineares na última iteração (resíduo normalizado pelo termo fonte de cada sistema linear, exceto o da pressão) e ε é a diferença relativa entre Cdfi de duas simulações, tomando como referência a solução da simulação S09, isto é,

$$\varepsilon = \frac{\text{Sxx-S09}}{\text{S09}}.$$
(4)

A tabela também mostra os valores mínimo e máximo do fator-E dos sistemas lineares para $u, v, T \in p'$, bem como o maior desvio da pressão |p'| nos volumes reais e nos fictícios.

Da Tab. 2 observa-se que a precisão de Cdfi não é afetada entre as simulações S04 e S11. Para estas simulações a ordem média do fator-E é superior a 10^{0} . Para as demais simulações a ordem média do fator-E é inferior a 10^{0} e a precisão de Cdfi é deteriorada. Também se observa que quanto menor for o fator-E, mais deteriorada é a precisão de Cdfi. Deste modo, a segunda hipótese listada na Introdução é provavelmente verdadeira.

Além do fator-E, deseja-se saber se o máximo desvio da pressão varia com Δt a ponto de prejudicar a precisão de Cdfi. De acordo com a Tab. 2, o máximo valor de |p'|, tanto nos volumes reais quanto nos fictícios, se mantém aproximadamente constante ao se variar Δt . Por outro lado, chama a atenção o fato de max |p'| ser da ordem de 10^{-11} e não 10^{-16} que é a precisão das variáveis. Isto ocorre porque a pressão característica deste escoamento é da ordem de 10^5 Pa. Logo, diferenças de precisão desta ordem de grandeza são calculadas com apenas 11 algarismos após a vírgula em variáveis de precisão dupla, o que explica o fato.

Tabela 2: Resultados principais do conjunto de simulações S0106.

						$u, v \in T$		u, v e T p'		$\max(p')$	
Sim.	tcpu	dt	Cdfi	res	ε	$\min(E)$	$\max(E)$	$\min(E)$	$\max(E)$	reais	fict.
S04	607.766	5.0 E - 0.2	7.860652506878710 E-02	4.42 E - 13	$-4.77 ext{E} - 15$	4.10E + 02	$4.50E \pm 04$	9.60E + 04	$1.89E \pm 08$	1.0911E-11	1.0911E-11
S05	629.971	1.0 E - 02	7.860652506878750 E-02	1.80 E - 13	0.00 E + 00	8.20 E + 01	8.99 E + 03	3.92E + 03	$7.58E \pm 06$	1.0857 E - 11	1.0378 E - 11
S06	638.724	5.0 E - 03	7.860652506878750E-02	$1.27 \mathrm{E}{ ext{-}} 13$	0.00 E + 00	4.10 E + 01	4.50 E + 03	1.00 E + 03	1.89 E + 06	2.4170 E - 11	2.3649 E - 11
S07	646.772	1.0 E - 0.3	7.860652506878750E-02	2.44E-14	0.00 E + 00	8.20E + 00	8.99 E + 02	4.68 E + 01	7.59 E + 04	5.3207 E - 11	4.8263 E - 11
S08	645.784	5.0 E - 04	7.860652506878750E-02	5.48 ± 15	0.00 E + 00	4.10E + 00	4.50 E + 02	1.37 E + 01	1.90 E + 04	4.4559 E - 11	3.9060 E - 11
S09	636.196	1.0 E - 0.4	7.860652506878740 E-02	1.48 ± 15	0.00 E + 00	8.20 E - 01	8.99 E + 01	1.21E + 00	7.68 E + 02	6.2918 E - 11	4.9304E-11
S10	619.023	5.0 E - 05	7.860652506878750E-02	1.34E-15	0.00 E + 00	4.10 E - 01	4.50 E + 01	5.07 E - 01	2.07 E + 02	5.1611E-11	4.4750 E - 11
S11	609.626	1.0 E - 05	7.860652506878720E-02	1.59 E - 16	0.00 E + 00	8.20 E - 02	8.99 E + 00	8.59E-02	1.53E + 01	4.0650 E-11	$3.4282 \text{E}{-}11$
S12	588.209	5.0 E - 06	7.860652506878550E-02	1.16 E - 15	$-2.47 ext{E} - 14$	4.10 E - 0.2	4.50 E + 00	4.20 E - 02	6.00 E + 00	3.8236E-11	3.8236 E - 11
S13	584.981	1.0 E - 06	7.860652506876450 E-02	7.16 E - 17	-2.93 E - 13	8.20E-03	8.99E-01	8.24E-03	9.40 E - 01	1.4552 E - 11	1.4419 E - 11
S14	579.896	5.0 E - 07	7.860652506873920E-02	6.54E-17	-6.14E-13	4.10 E - 0.3	4.50 E - 01	4.11E-03	4.58 E - 01	1.4509E-11	$1.4458 \text{E}{-11}$
S15	549.314	1.0 E - 07	7.860652506851340 E-02	5.79 E - 17	$-3.49 \mathrm{E} - 12$	8.20 E - 0.4	8.99 E - 02	8.21E-04	9.02 E - 02	1.4552 E-11	1.4552 E - 11

5 Conclusões

Das três hipóteses levantadas na Introdução, conclui-se que a primeira e a terceira são falsas e que a segunda é provavelmente verdadeira.

Referências

 J P Van Doormaal and G D Raithby. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7:147–163, 1984.