Relatório 4c: Otimização do Código Mach2D - Verificação

Jonas Joacir Radtke

9 de dezembro de 2012

1 Objetivo Geral

Verificação da solução numérica obtida pelo código Mach2D com esquema CDS-2. Para tanto, foi utilizado o código sem efeito Δt e otimizado pelo Diego na etapa 3. Como critério de parada foi estabalecido que o resíduo deve permanecer abaixo da tolerância (10⁻¹⁵) por no mínimo 100 iterações consecutivas.

2 Caracterização do Computador e do Compilador

1	,
Processador	Intel(R) Core(TM) i5-2310
Frequência [GHz]	2,90
Arquitetura [bits]	64
Memória RAM [GB]	8,0
Sistema operacional	Linux
Descrição	Ubuntu 12.04 LTS
Kernel	3.2.0-23-generic
Compilador	GFortran
Versão	4.6.3
	Processador Frequência [GHz] Arquitetura [bits] Memória RAM [GB] Sistema operacional Descrição Kernel Compilador Versão

Tabela 1: Configuração dos computadores utilizados nas simulações numéricas.

3 Dados de Entrada Fixos no Mach2D

Descrição	Variável	Valor
Kind of grid (1=uniform; 2=Geometric Progression, 3=power law)	kg	1
Coordinate system (1=cylindrical; else cartesian)	coord	1
Perfect gas constant $[J/(kg \cdot K)]$	Rg	286.9
Specific heat ratio (Cpo/Cvo in the chamber)	gamma	1.4
Stagnation pressure in the chamber $[Pa]$	po	$1.0E{+}06$
Stagnation temperature in the chamber $[K]$	T0	300
Atmospheric pressure at the sea level $[Pa]$	pr	101325
Gravitational acceleration at the sea level $[m/s^2]$	go	9.80665
Viscosity model (0=Euler; 1=Navier-Stokes)	modvis	0
Constant of the UDS/CDS mixing scheme	β	1
Turbulence model option (0=laminar; 1=Baldwin-Lomax)	modtur	0
Boundary condiction (0=adiabatic; 1=prescribed temperature)	ccTw	0
Parada com base no valor do resíduo	tolerance	1.0E-15
Maximum number of iteractions for the pressure correction	imax	5
Maximum number of iteractions for the solver method for u, v and T	$nitm_u$	2
Maximum number of iteractions for the solver method for p	$nitm_p$	2
Upload backup data and continue computation $(0=no; 1=yes)$	reload	0
Frequency of saving backup data	wbkp	50000
Frequency of printing in the listing file	wlf	1
Open result files $(1=no; 0=yes)$	$sem_{-}a$	1
Visualize the plot $(0=yes; 1=no)$	$sem_{-}g$	1
Frequency of writing data for graphics	w_g	1
Write the fields $(1=yes; 0=no)$	w_cam	1

Tabela 2: Parâmetros utilizados no arquivo de entrada de dados do Mach2D.

4 Resultados com RA = 4

Tabela 3: Tempo de CPU para as diferentes malhas consideradas para a tubeira de razão de expansão igual a 4.

Simulation	n_x	n_y	Δt	it	t_{cpu}
CdsR040004	6	6	5.0E-05	5097	2.480000E-01
CdsR040008	10	10	5.0E-05	2111	2.140000E-01
CdsR040016	18	18	5.0E-05	1988	6.060000E-01
CdsR040032	34	34	5.0E-05	1717	$1.795000E{+}00$
CdsR040064	66	66	5.0E-05	1530	6.009000E + 00
CdsR040128	130	130	5.0E-05	2118	$3.802700E{+}01$
CdsR040256	258	258	2.0E-05	2841	2.488930E + 02
CdsR040512	514	514	1.0E-05	4865	$2.175971E{+}03$
CdsR041024	1026	1026	5.0E-06	9178	$1.337961E{+}04$
CdsR042048	2050	2050	2.0E-06	44002	2.688630E + 05

<u>F</u>						
Simulation	n_x	n_y	h	C_d	F_d^*	
CdsR040004	6	6	2.5000000E-01	1.03514254334164E + 00	1.07630720373346E + 00	
CdsR040008	10	10	1.2500000E-01	1.00695975013039E + 00	1.00886327874877E + 00	
CdsR040016	18	18	6.2500000E-02	1.00009506643660E + 00	9.95589125859115E-01	
CdsR040032	34	34	3.1250000E-02	9.99717842264992E-01	9.93495645178052E-01	
CdsR040064	66	66	1.56250000E-02	9.99825857059741E-01	9.93179859745562E-01	
CdsR040128	130	130	7.81250000E-03	9.99897841250545E-01	9.93147283114157E-01	
CdsR040256	258	258	3.90625000E-03	9.99928737127040E-01	9.93151423605646E-01	
CdsR040512	514	514	1.95312500E-03	9.99940910751801E-01	9.93156579009530E-01	
CdsR041024	1026	1026	9.76562500 E-04	9.99945629836571E-01	9.93159430334606E-01	
CdsR042048	2050	2050	4.88281250E-04	9.99947458907774E-01	9.93160759852630E-01	

Tabela 4: Solução númerica do coeficiente de descarga (C_d) e do coeficiente de eficiência (F_d^*) para as diferentes malhas consideradas para a tubeira de razão de expansão igual a 4.

Tabela 5: Solução numérica, ordem aparente e estimativas para o coeficiente de descarga (C_d) .

n_x	n_y	h	ϕ	p_U	$U_{ri}(\phi, p_U)$	$U_{GCI}(\phi, p_U)$
4	4	0.25000000	1.03514254E + 00	não se aplica	não se aplica	não se aplica
8	8	0.12500000	1.00695975E + 00	não se aplica	não se aplica	não se aplica
16	16	0.06250000	1.00009507E + 00	2.03755	-2.21050943E - 03	6.63152830E - 03
32	32	0.03125000	9.99717842E - 01	4.18570	-2.19343296E - 05	6.58029889E - 05
64	64	0.01562500	9.99825857E - 01			
128	128	0.00781250	9.99897841E - 01	0.58548	1.43814512E - 04	4.31443536E - 04
256	256	0.00390625	9.99928737E - 01	1.22027	2.32317923E - 05	6.96953769E - 05
512	512	0.00195313	9.99940911E - 01	1.34366	7.91556176E - 06	2.37466853E - 05
1024	1024	0.00097656	9.99945630E - 01	1.36718	2.98740916E - 06	8.96222748E - 06
2048	2048	0.00048828	9.99947459E - 01	1.36740	1.15760753E - 06	3.47282259E - 06

Tabela 6: Solução numérica, ordem aparente e estimativas para a eficiência do empuxo dinâmico (F_d^*) .

(u)						
n_x	n_y	h	ϕ	p_U	$U_{ri}(\phi, p_U)$	$U_{GCI}(\phi, p_U)$
4	4	0.25000000	1.07630720E + 00	não se aplica	não se aplica	não se aplica
8	8	0.12500000	1.00886328E + 00	não se aplica	não se aplica	não se aplica
16	16	0.06250000	9.95589126E - 01	2.34507	-3.25279447E - 03	9.75838340E - 03
32	32	0.03125000	9.93495645E - 01	2.66464	-3.91985498E - 04	1.17595649E - 03
64	64	0.01562500	9.93179860E - 01	2.72889	-5.60953512E - 05	1.68286054E - 04
128	128	0.00781250	9.93147283E - 01	3.27704	-3.74718903E - 06	1.12415671E - 05
256	256	0.00390625	9.93151424E - 01			
512	512	0.00195313	9.93156579E - 01			
1024	1024	0.00097656	9.93159430E - 01	0.85445	3.52854887E - 06	1.05856466E - 05
2048	2048	0.00048828	9.93160760E - 01	1.10073	1.16152582E - 06	3.48457745E - 06

5 Geometrias e Malhas

A geometria da tubeira é definida pela seguinte equação:

$$y = 0, 16 x^2 + 0, 04$$
 (em metros) (1)

O perfil da parede norte da tubeira, definida pela equação acima, é transladado ao longo do eixo x para que a entrada da tubeira fique sobre o eixo y (x = 0). O comprimento da tubeira é 1 metro.

O perfil da tubeira é apresentado na figura (1). As figuras (2)-(6) apresentam as malhas geradas para a tubeira de razão de expansão igual a 4 para diferentes valores de NX e NY.

Figura 1: Geometria das tubeiras parabólicas com RA = 4.

Figura 2: Malha 4x4 da tubeira parabólica de RA = 4.

Figura 3: Malha 8x8 da tubeira parabólica de RA = 4.

Figura 4: Malha 16x16 da tubeira parabólica de RA = 4.

Figura 5: Malha 32x32 da tubeira parabólica de RA = 4.

Figura 6: Malha 64x64 da tubeira parabólica de RA = 4.