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Abstract

Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called

osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and

osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the

titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the

first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue

healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the

lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day

from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to

produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone

trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host

bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to

the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a

biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface.

Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical

success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary

stability, biological fixation and final osseointegration.

An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or

immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes

the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a

biological turnover occurs in the peri-implant bone up to 1 mm from the implant surface, with both osteogenesis and bone reabsorption processes.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Endosseous dental implants are widely inserted in

maxillae and mandibles as substitutes for teeth

in prosthodontic therapy to restore or replace function in

partially or completely edentulous patients. Osseointegra-

tion has been claimed to be the clinical condition allowing

the functional loading of dental implants (Adell et al., 1981;

Nevins and Langer, 1993) and consists in direct histological

bone-implant contact (Branemark et al., 1977; 1985).

The tissue responses giving rise to implant osseointe-

gration depend on various factors such as implant surface,

anatomical site, surgical trauma, time of specimen

observation, and the animal species. Consequently a

reliable literature evaluation in is not always possible

(Listgarten, 1996; Masuda et al., 1998; Lu et al., 1998).

Nevertheless, a description of the biological events

occurring at the implant-bone interface may help to

shed light on peri-implant osteogenesis. When inserting a

medical device into a bone cavity a sequence of different

biological events takes place at the bone-implant interface

until the implant surface appears finally covered with a

newly formed bone. The final goal of surgical procedures

is controlled, guided, and rapid healing which leads to the

integration of an implant into bone (Puleo and Nanci,

1999). Osseointegration has been considered the most

appropriate bone-implant interface.

In implant dentistry the biomechanical, biochemical,

functional, and aesthetic demands of the implanted material

are fundamental to ensure long-term clinical success

(Elligsen and Lyngstadaas, 2003). The different materials,

shape, length, diameter, implant surface treatment and

coatings have been proposed to enhance clinical perform-

ances so that dentists can now choose from more than 1300

different types of implants (Binon, 2000).

Cell types, tissues, growth factors and cytokines are

involved in a coordinated manner during the inflammatory,

formation and remodelling phases of bone healing. This

means that osseointegration should be regarded not as an

exclusive reaction to a specific implant material but as the

expression on the endogenous basic regenerative potential

of bone (Linder et al., 1989). Moreover, the mechanical and

biological factors involved in the healing process of bone

are certainly affected by senile and post-menopausal

osteoporosis (Augat et al., 2005). Whether fracture repair

is impaired in aged and osteoporotic patients remains an

open question, but osteoporosis just influences fracture

healing (Kubo et al., 1999; Meyer et al., 2001; Wang et al.,

2005; Xu et al., 2003).

Nowadays, senile and post-menopausal osteoporosis are

widespread and could have important consequences on

the success of the osteosynthesis device, prostheses for total

joint replacement and dental implant surgery. Many

clinicians and researchers have observed that biomaterial

osseointegration is slower in osteoporotic subjects, with an

increased rate of prosthetic device failures both in dental
and orthopaedic reconstructive surgery (Hayashi et al.,

1989; 1994; Fini et al., 1997; 2001; 2004; Pan et al., 2000;

Rocca et al., 2001; Nicoli Aldini et al., 2002; Duarte et al.,

2003; Qi et al., 2004; Zhang et al., 2004).
2. Implant surface

The design, chemical composition and topography of the

implant surface can influence peri-implant tissue healing

(Pilliar, 2003). Commercially pure titanium (Ti) is widely

used as a dental and orthopaedic metallic implant material

as it is highly biocompatible material (Breme et al., 1988;

Browne et al., 2000) with good resistance to corrosion, no

toxicity on macrophages or fibroblasts, and lack of

inflammatory response in peri-implant tissues (Rae, 1975;

1981; Brune et al., 1982; Breme et al., 1988). However,

other materials like tantalum (Alberius, 1983), nionium

(Johansson and Albrektsson, 1991), zirconium (Thomsen et

al., 1997) and hafnium (Mohammadi et al., 2001) have been

proposed as substitutes of titanium. The smooth or

machined implant surfaces, largely used in the past, have

today been replaced by modified rough surfaces obtained

with different techniques like spark erosion grit blasting

with different materials, etching, titanium plasma spraying,

chemical coatings and physical vapour deposition (Wisbey

et al., 1987; Aspenberg et al., 1996; Hendry et al., 2001;

Giavaresi et al., 2003a; 2004). The methods used to modify

surface topography may affect the implant’s chemistry and

vice versa, altering adhering cell shape and cytoskeletal

organisation through the modulation of fibronectin

expression (Chou et al., 1995).

Among the different variables influencing peri-implant

osteogenesis, the morphology of the implant surface is

particularly important (Thomas and Cook, 1985). Rough

surfaces have been proposed to enlarge the implant area in

contact with host bone favouring primary stability

(Vercaigne et al., 1998; Hansson et al., 1999) and enhancing

peri-implant bone formation compared to smooth surfaces

(Buser et al., 1991; Cochran et al., 1996; 1998; Mustafa

et al., 2000; 2001; Weng et al., 2003). Surface topography

and roughness positively affect the osseointegration process,

encouraging favourable cellular response by means of

protein-surface and cell-surface interactions (Anselme et al.,

2002; Borsari et al., 2005). Surface roughness in particular

seems to have a direct effect on osteoblast attachment and

subsequent proliferation and differentiation (Martin et al.,

1995; Wen et al., 1996; Boyan et al., 1998; Lohmann et al.,

2000; Korovessis et al., 2002; Fini et al., 2003). Osteoblast-

like cells adhere more readily to rough surfaces and appear

more differentiated on rougher surfaces, with regards to

morphology, extracellular matrix production, alkaline

phosphatase activity and osteocalcine production, and

response to systemic hormones such as 1,25-(OH)2D3

(Batzer et al., 1998; Lohmann et al., 1999; Schwartz et al.,

2001). Roughness also influences the synthesis of two local



Fig. 1. Scanning electron microscopy of a hydroxyapatite-coated titanium

dental implant. The HA surface looks irregular and shows a microporosity

which increases the implant surface and plays an important role in

favouring early peri-implant osteogenesis. BarZ100 mm.

Fig. 2. HA-coated titanium dental implant from human. The newly formed

mature lamellar bone is in close contact with the HA-coating surface (HA):

no gap or soft tissue are present at the interface. Young osteocytes

recognizable in wide lacunae are aligned parellel and next to the implant

surface (arrows). BarZ100 mm.
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factors, TGFb1 and PGE2, which can act on the osteoblastic

cells as autocrine regulators, and modulate the activity of

bone resorbing cells via paracrine mechanisms (Orsini et al.,

2000; Schwartz et al., 2001; Boyan et al., 2002). The

observations by Schwartz et al. (2001) suggested that the

roughness-dependent regulation of osteoblast proliferation,

differentiation and local factor production is related to the

activation of integrin receptors by substrate, thus regulating

phosphokinase C (PKC) and A (PKA) through phospho-

lipase C (PLC) and A2 (PLA2) pathways (Boyan et al.,

1999). The rough surfaces also favour both platelets (Park

and Davies, 2000; Park et al., 2001) and the monocytes

adhesion (Soskolne et al., 2002) better than machined

surfaces. Generally, at the micrometer level of evaluation,

moderately rough surfaces favour peri-implant bone growth

better than smoother or rougher surfaces (Albrektsson and

Wennerberg, 2004a).

Rough surfaces can be divided into surfaces roughened

with a coating [titanium plasma-sprayed (TPS) or hydro-

xyapatite (HA)], or without a coating [sandblasted or/and acid-

etched (SLA)] (Zechner et al., 2003). Even if implant surface

topography plays a more important role in promoting early

peri-implant healing than variations in surface chemistry

(Davies, 2003), coating the metallic implant surface with

calcium phosphate, such as hydroxyapatite (HA), may

accelerate peri-implant osteogenesis (Cook et al., 1988;

Shirakura et al., 2003) and provide a mechanical barrier to

metal ion release (Ducheyne et al., 1988) or titanium particles

detachment (Martini et al., 2003). In addition to the plasma

spray technique, other methods have been applied for

depositing dense HA, including electrophoretic deposition,

laser deposition and radio frequency magnetron sputtering

(Jones, 2001). Calcium phosphate materials may increase the

protein adsorption on the implant surface favouring both the

platelet adhesion-activation and fibrin binding by accelerating

implant healing (Davies, 2003). Calcium phosphate ceramics

coatings increase the implant surface (Dhert et al., 1991;

Caulier et al., 1995; Wheeler, 1996) and some of them are

considered to bind to bone as biomimetic materials (Hench

et al., 1972; Osborn, 1979; Yan et al., 1997; Geesink et al.,

1988; Chang et al., 1999), where bone-bonding is generally

considered a chemical interaction between the newly formed

collagen and the chemically active surface (Figs. 1 and 2).

Bone formation is higher in beta-tricalcium phosphate (TCP)

cylinders implanted in rabbit femur compared to HA ceramics

with the same pore size. Among different pore sizes, a pore

size above 80 mm improves bone ingrowth in both HA and

TCP materials (Galois and Mainard, 2004). HA-coated

implants show an early formation of bone vs. grit-blasted

titanium implants by removal torque tests, histomorphometric

and morphometric analyses (Park et al., 2005). However, the

implant-bone interface, consisting in a thin calcified afibrillar

layer, is similar in both metal rough surfaces and hydro-

xyapatite-coated implants, suggesting that bonding is

achieved by micro-mechanical interdigitation of the cement

line with the material surface (Davies, 2003).
Even though literature is critical on the long-term

performance of HA coating, a human study reported that,

despite a 22.75% loss of the HA coating after 10 years,

implants appeared well osseointegrated, with an adaptation of

the bone to the exposed titanium surface (Trisi et al., 2005).

Certain calcium phosphate materials with a specific

porous structure have been reported to be osteoinductive,

i.e. able to induce bone formation at extra-skeletal sites

where normally no bone is deposited (Chang et al., 1999).

However, it was clearly demonstrated for the first time that a

porous titanium block can be osteoinductive if implanted in

dorsal muscles of beagle dogs, suggesting that the porous

structures of a material are useful for tissue regeneration

acting as a scaffold for growth factors and/or osteogenic

cells (Fujibayashi et al., 2004).

Electrochemical modification of implant surfaces like

anodic oxidation (Kurze et al., 1986; Becker et al., 1991;

Larsson et al., 1996; Hall and Lausmaa, 2000) or titanium



F. Marco et al. / Micron 36 (2005) 630–644 633
treated with NaOH (De Andrade et al., 2000; Jonasova et al.,

2004) have recently proposed to boot apatite formation as

biomimetic surfaces. The evolution of anodic spark

deposition (ASD) techniques led to the development of

inorganic glass-ceramic-like coating structures on metal

surfaces with adhesive strength up to 25 MPa (Ishizawa et

al., 1995; Schreckenbach et al., 1999; Zhu et al., 2002;

Chiesa et al., 2003). By shear loading tests and histological

analysis it was suggested that a micro rough surface treated

by sandblasting and anodic oxidation on a macro rough

surface structure favours bone formation and fixation of the

implant (Yamagami et al., 2005). However, surfaces

modified by anodic oxidation have shown a bone-to-implant

contact similar to that reported in HA-coated implants

(Zechner et al., 2003), while calcium-incorporated oxidized

implants probably allowing a chemical bonding with the

newly formed bone better favour osseointegration than

machined implants (Sul et al., 2004). The secondary

application of a biomimetic process (BSP) to ASD surfaces

improved the physico-chemical properties of the Titanium

surface generating a tiny fibrillar morphology at nanoscale

level and changing also the chemical nature of the surface

(BioSparke), achieving a higher Ca/P ratio (2.9) (Sandrini

et al., 2003; Sandrini et al., 2005). The BioSparke process

improved titanium biocompatibility by enhancing its

bioactivity and osseointegrative properties, without intro-

ducing any detrimental effects on the mechanical properties

of the material (Sandrini et al., 2005). In general implant

industries often introduce new implant surfaces that

clinicians adopt in clinical practice. However, clinical

follow-up studies of anodized or sandblasted and acid-

etched implant surfaces limited to a few years, and long-

term clinical reports are required (Albrektsson and

Wennerberg, 2004b).
Fig. 3. Screw implant inserted in sheep femur 14 days after implantation.

Ground section observed at light microscope. A thread of implant screw

interlocking with the host bone (B) ensures a mechanical anchorage of the

implant clinically called ‘primary implant stability’. Where the thread is in

close contact with the host bone no newly formed bone is seen, whereas in

the gap between the implant body and the host bone new bone trabeculae

support the biological fixation of the implant.
3. Primary implant stability

The first clinical outcome of surgical procedures is the

primary stability of the medical device, which consists in a

rigid fixation of the implant within the host bone cavity

together with a lack of micro-motion of the implant

(Branemark et al., 1977; Adell et al., 1981; Futami et al.,

2000; Meyer et al., 2004). In fact, an excessive mobility of the

device may improve a fibrous membrane formation around

the implant (Pilliar et al., 1986; Soballe et al., 1992) and

cause displacement at the bone-implant interface inhibiting

osseointegration. Primary stability depends on surgical

techniques, implant design and implant site (Sennerby,

1991; Butcher et al., 2003; Saadoun et al., 2004; O’Sullivan

et al., 2004; Sevimay et al., 2005) and is related to the

biomechanical properties of the adjacent host bone; cortical

bone allows a higher mechanical anchorage to the implant

than cancellous bone (Sennerby, 1991). Implants inserted in

the posterior maxilla undergo failure more often than

implants positioned in the anterior mandible due to a higher
ratio of compact to cancellous bone (Adell et al., 1981;

Lazzara et al., 1996). For this reason, it would be reasonable

to engage the cortical bone at the implant site even with a few

threads using a screw implant (Sennerby et al., 1992). In

human cadaver tapered implants showed a higher primary

stability than cylindrical ones when both were placed in soft

bone (O’Sullivan et al., 2000). Mechanical interlocking of

the threads with cavity bone ensures secure fixation of the

implant (primary stability) (Meyer et al., 2004). However, in

some areas evident gaps are present between the implant and

bone of some hundreds of micron and filled by blood cell and

tissue remnants are present (Berglundh et al., 2003; Franchi

et al., 2004a,b). A close contact between implant and host

bone may not serve to enhance osteogenesis because in these

areas no early bone formation has been described (Futami et

al., 2000; Berglundh et al., 2003; Shirakura et al., 2003;

Franchi et al., 2004a,b) (Fig. 3). On the other hand,

excessively wide gaps of more than 500 mm are predict a

reduction in the quality or quantity of the newly-formed bone

and delay the rate of gap filling (Cameron et al., 1976;

Sandborn et al., 1989; Futami et al., 2000). As mentioned

above, good implant stability tends to minimize distortional

strains in the regenerating tissue facilitating osteogenesis and

bone ingrowth. On the contrary, motion or poor implant

stability which result in tensile and shear motions stimulate

fibrous tissue formation (Carter and Giori, 1991). A high-

quality bone seems to be important for the initial stability of
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implant devices (Wittenberg et al., 1991) as bone changes in

structural and mechanical properties due to bone rarefaction

and micro architectural alterations are responsible of reduced

mechanical stability of implants. For this reason, osteoporo-

tic tissue might not provide the firm primary stabilization

required for long-term clinical success.
4. Early bone response to implant

The integration of an implant into bone, namely

‘osseointegration’, has been widely studied in literature

and has long been considered the pre-requisite for implant

loading (Puleo and Nanci, 1999). However, to better

understand the complex biological processes of new bone

formation around the implant until its final osseointegration,

it is useful to point out what happens in the peri-implant

space when an implant is inserted into a pre-drilled bone

cavity. The principle mechanisms underlying the osseointe-

gration process around implants are very similar to those

occurring during bone fracture repair and involve a cascade

of various cellular and extracellular events (Fini et al.,

2004). The initial host response after implantation is

characterized by an inflammatory reaction elicited mainly

by the inevitable surgical trauma and modified by the

presence of the implant. The implant bone cavity must be

considered as a common bone wound where injuries to pre-

existing bone, presumably the consequence of heating, are

located within 100 mm (Futami et al., 2000) or even beyond

500 mm (Listgarten, 1996). The host tissue response to the

implant is a physiological consequence of the local surgical

trauma, macroscopic transport processes, and molecular

reactions at the material-tissue interface (Kasemo and

Lausmaa, 1991). Immediately after the surgical damage

the walls of bone are rapidly covered with blood, so that this

is the first tissue coming into contact with the implant

surface after the implant is positioned in the bone cavity

(Davies, 1996; Park and Davies, 2000). Inflammatory cells,

initially polymorphonuclear granulocytes, and later mono-

cytes, emigrate from post-capillary venules and migrate into

the tissue surrounding the implant. After the blood comes

into contact with the implant surface, proteins are adsorbed

from blood and tissue fluids. From the implant side an

oxidation of metallic implants has been described both

in vitro and in vivo (Sundgren et al., 1986; Ask et al., 1989).

Different methods of sterilization can determine an

oxidation thickness of titanium implant surfaces (Lausmaa

et al., 1988) but the surface of any material can also change

over time when implanted in the living body (Nanci et al.,

1998). Several of the inflammatory cells detected at the

interface respond after stimulation by a secretion of proteins

with effects on inflammation, bone healing and immune

reactions (Thomsen and Ericson, 1991). These products

may also alter the structure and physiochemical properties

of the implant surface (Thomsen and Ericson, 1991).

Continuous electrochemical events at the tissue-implant
interface are related to a release of metal ions into tissue

(Williams, 1982; Puleo and Nanci, 1999). These ions may

be localized in the peri-implant tissues or other organs

(Bianco et al., 1997; Woodman et al., 1984; Urban et al.,

2000), in the patient’s serum (Jacobs et al., 1998) and urine

(Woodman et al., 1984). Moreover, clinical investigations

reported hypersensitivity and allergic reactions to Ti in

some patients (Peters et al., 1984; Lalor et al., 1991). An

excessive metal ion release has been shown ‘in vitro’ to

inhibit cell function and apatite formation (Blumenthal and

Postner,1984; Blumenthal and Cosma, 1989). Small

titanium particles of unloaded implants have also been

found inside the peri-implant medullary spaces or in newly

formed bone trabeculae of animals 3 months after surgery

and may increase Ti dispersion in blood vessels, on account

of the high vascularisation of medullary tissues (Martini et

al., 2003). Franchi et al. (2004a) demonstrated that some Ti

particles detached from the implant surface as a conse-

quence of the friction between the implant surface and host

bone cavity during implant insertion.

The early host tissue response involves the deposition

from osteogenic cells of a non-collagenous matrix layer on

the implant surface, similar to the bone cement lines and

laminae limitans (Linder, 1985; Albrektsson and Hansson,

1986; Davies et al., 1990; Nanci et al., 1994; Murai et al.,

1996; Davies, 1996; Meyer, 2004). Morphological studies

reported a heterogeneity of the implant-bone interface but

the early calcified afibrillar layer looks similar in all

implants despite the different type of materials implanted

(Puleo and Nanci, 1999). It appears as individual globular

accretions that fuse to form a continuous layer 0,5 mm thick,

rich in calcium, phosphorus, osteopontin and bone

sialoprotein (Shen et al., 1993; Peel, 1995). These proteins

regulate cell adhesion and binding of minerals (Butler and

Ritchie, 1995; Gorsky, 1998). Davies (1996) suggested that

less differentiated cells in the osteogenic lineage, or perhaps

mesenchymal cells, migrating to colonize the implant

surface as the earliest events leading to new bone formation

on the implant surface. The interaction of red blood cells,

fibrin and platelets with the implant surface may modulate

the migration, differentiation and activity of osteogenic cells

during peri-implant healing (Park and Davies, 2000; Davies,

2003). These events are very early biological processes as

in vivo study (Meyer, 2004) demonstrated that, osteoblasts

attach on the implant surface from day one of

implant insertion. Murai et al. (1996) showed a thin layer

(20–50 nm) of flat cells and slight mineralized area at the

bone-implant interface. This cellular adhesion was con-

firmed by the presence of fibronectin and fibronectin

receptor at the cell surface (Rosengren et al., 1996).

As just mentioned, the bone implant cavity surgically

created is compared to a bone wound, with heating injuries,

including death of osteocytes, extending 100–500 mm into

the host bone (Listgarten, 1996; Futami et al., 2000). In bone

physiology the newly formed bone is laid down on the

reabsorbed surface of the old bone after osteoclastic activity



Fig. 4. Scanning electron microscopy of an HA-coated titanium dental

implant from human. On the bottom right side, around an osteocyte (O)

next to the implant surface, collagen fibrils of a newly formed bone (see

enlargement of this picture in Fig. 5) in close contact with the HA surface

(HA) are seen. BarZ10 mm.
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(Davies, 1996) and cement lines are morphological

structures which demarcate the area where bone reabsorp-

tion was completed and bone formation initiated (Pritchard,

1972; Parfitt, 1983). The width of cement lines has been

variously reported as ranging from 0,2 to 5 mm (Philipson,

1965; Villanueva et al., 1986). Cement lines contain

‘ground substance’ like sulphated polysaccharide

complexes (Frasca, 1981) and osteopontin (McKee and

Nanci, 1993) which is implicated in osteoblasts attachment

(Butler, 1989). Davies (1996) observed that the interfacial

structure achieved in vitro between bone and implant is

equivalent to the cement line structure observed at the

remodelling sites in natural bone tissue. When the implant is

positioned firmly fixed into the host bone cavity (primary

stability) the early deposition of a cement line from the

damaged host bone and a similar mineralized layer on the

implant surface can be seen. These double similar events

suggest that the implant surface may be positively

recognizable from the osteogenic cells as a biomimetic

scaffold which may favour early peri-implant osteogenesis.
Fig. 5. Enlargement of picture 4. An afibrillar layer of calcified material is

present (\) between the newly formed peri-implant bone including calcified

collagen fibrils in the lower right side of the picture and the HA implant

surface (HA). BarZ1 mm.
5. Biological implant fixation

A few days after implantation osteoblasts begin to

deposit collagen matrix directly on the early formed cement

line/lamina limitans layer described on the implant surface

(Linder, 1985; Albrektsson and Hansson, 1986; Davies et

al., 1990; Nanci et al., 1994; Murai et al., 1996; Davies,

1996; Puleo and Nanci, 1999) (Fig. 4). Recently Meyer et al.

(2004) indicated that even osteoblasts in direct contact with

the implant surface of both loaded and unloaded implants

inserted in mandible of minipigs are able to produce

fibronectin, fibronectin receptor and osteonectin on the

implant surface.

Early bone formation in the peri-implant environment is

the result of an appositional process on the cement

line/lamina limitans holding onto the solid surface of the

implant. The osteoblasts cannot always migrate so rapidly to

avoid being completely enveloped by the mineralizing front

of calicifying matrix and thus they become clustered as

osteocytes in bone lacunae (Fig. 5). This type of

mineralization may be compared to the so called ‘static

osteogenesis’ described in the building of the first trabecular

bony framework (Ferretti et al., 2002). In this study the

osteoblasts may be considered ‘stationary osteoblasts’

which transform into osteocytes, clustered within confluent

lacunae, in the same place where they differentiate.

The early deposition of new calcified matrix on the

implant surface is followed by the arrangement of the

woven bone and bone trabeculae developing in tridimen-

sional directions and delimiting marrow spaces (Franchi et

al., 2004b). This tissue consists of woven bone, cancellous

bone or trabecular bone and is particularly suitable for the

implant healing process as it shows a very active wide

surface area, contiguous with marrow spaces including
many vessels and mesenchymal cells (Franchi et al.,

2004a,b) (Fig. 3). Marrow tissue of this bone containing a

rich vasculature supports mononuclear precursors of

osteoclasts so bone trabeculae remodels faster than

cortical bone (Davies, 2003). Firstly, rapid woven bone

formation occurs on implants to restore continuity, even

though its mechanical competence is lower than that of

lamellar bone on account of the random orientation of its

collagen fibers (Probst and Spiegel, 1997). There is

evidence of woven bone during embryonal skeleton

development and rapid growth stages when it is then

replaced with the lamellar bone in the normal skeleton on

completion of bone growth. Woven bone is, in fact,

composed of coarse loosely-packed collagen fibers of

varying size, distributed without any ordered spatial

arrangement, and containing more sulphated glycosami-

noglycans, thus contrasting with the regularity and

mineralization of lamellar bone (Chappard et al., 1999).



Fig. 6. Titanium dental implant inserted in sheep femur 14 days after

surgery. Ground section observed at light microscope. (a) The gap between

the implant surface and the host bone (B) is filled by newly formed

trabeculae developing from the host bone towards the implant surface

(distance osteogenesis). The newly formed network of bone trabeculae

ensures the biological fixation of the implant and surrounds marrow spaces

containing many mesenchymal cells and wide blood vessels. (b) The

sandblasted surface of the implant is widely covered by a thin layer of

calcified and osteoid tissue deposited by osteoblats directly on the implant

surface (contact osteogenesis) (arrows). On the right, newly formed bone

with rounded osteocytes in large lacunae is present. Many blood vessels and

mesenchymal cells fill the spaces where no calcified tissue is present.
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Secondly, woven bone is progressively remodeled and

substituted by lamellar bone and may reach a high degree

of mineralization (Chappard et al., 1999). Three-months

post-implantation, a mixed bone texture (woven and

lamellar matrix) has been found around different types

of Ti implants (Chappard et al., 1999; Giavaresi et al.,

2003b).

The early peri-implant trabecular bone ensures tissue

anchorage that corresponds to biological fixation of the

implant. This is quite different from the mechanical implant

stability easily obtained during the implant insertion. In the

presence of newly formed peri-implant trabecular bone on

the implant surface the removal torque values of implants

with different surfaces are much higher than the insertion

torques recorded during insertion of the same implants

(Buser et al., 1998). The trabecular bone is the healing

calcified tissue which can fill the gap between implant and

bone more rapidly, and offer a mechanical resistance to

loading thanks to its three-dimensional structure (a network

of bone trabeculae arranged in arches). Peri-implant

osteogenesis consists in woven bone and trabecular bone

formation which proceeds in two different directions: from

the host bone towards the implant surface (distance

osteogenesis) and from the implant toward the healing

bone (contact osteogenesis) (Davies, 1998; 2003) (Fig. 6).

This last bone formation is 30% faster than the former and is

prevalently observed in rough implant surfaces (Puleo and

Nanci, 1999). Contact osteogenesis may better contribute to

the development of biological implant fixation as new bone

directly forms on the implant surface. As on his surface no

bone was present when the implant was inserted, this

osteogenic process is also called de novo bone formation

(Davies, 2003).

Host bone chips, produced by the burr action, have been

observed just enveloped in woven and trabecular bone

suggesting that they may improve and guide peri-implant

osteogenesis acting as osteoconductive and osteoinductive

biological material (Franchi et al., 2004a, 2005-in press).

A decreased number and/or activity of cells of the

osteogenic lineage (mesenchymal staminal cells, osteo-

blasts) an increase in osteoclast activity, an imbalance

between anabolic and catabolic local factors acting on bone

formation and remodelling, an abnormal bone cell reactivity

in proliferation rate and systemic activity to systemic and

local stimuli and mechanical stress and an impaired

vascularization (Fini et al., 2004; Augat et al., 2005) have

been implicated as major determinants of an increased

failure risk of implantation surgery in aged and osteoporotic

patients (Augat et al., 2005).

Vascularization is of critical importance for the

osteogenetic process (Augat et al., 1999; Carano and

Filfaroff, 2003). The process of tissue differentiation is

strictly dependent on tissue vascularity and ossification is

closely related to the revascularization of the differentiating

tissue (Carter and Giori, 1991). Angiogenesis, the formation

of new vessels from pre-existing vasculature, is impaired
with aging (Augat et al., 1999; Martinez et al., 2002;

Shimada et al., 2004; Bach et al., 2005). It is now

universally recognised that osteoporosis and aging are

associated with a spontaneous increase in pro-inflammatory

cytokines including TNFa, Fas ligand, IL-6, IL-1, PGE2

(Garcia-Moreno et al., 2004; Raisz and Rodan, 1998;

Villareal and Morley, 1994), whereas levels of bone-

forming factors (IGF-1, TGF-b1) are decreased in osteo-

porotic patients (Raisz and Rodan, 1998). A decreased

capacity of osteoblasts isolated from osteoporotic bone to

proliferate in response to systemic or locally released

osteotropic factors has been observed (parathyroid hor-

mone, growth hormone, calcitonin, TGF-b1, IGF-1, PDGF

(Pfeilschifter et al., 1993; Wong et al., 1994). These changes

have been observed in different in vivo studies performed on

pathological animal models by the decrease of trabecular

bone volume and other static and dynamic histomorpho-

metric parameters as well as of bone-to-implant contact

around implants (Fini et al., 1997; 2001; 2004; Rocca et al.,

2001; Giavaresi et al., 2001; Nicoli Aldini et al., 2002,

2004) (Fig. 7).
6. Influence of loading on peri-implant osteogenesis

Primary stability and postponement loading (3–6

months after surgery) have long been considered necessary

for the osseointegration of endosseous dental implants

(Chiapasco, 2004; Nedir et al., 2004). Implant stability at



Fig. 7. Transversal section of a titanium implant 1 month after implantation

in distal femur of ovariectomized osteoporotic rats. Trabecular bone

rarefaction and interposition of fibrous tissue at the bone-implant interface.

Staining with acid fuchsin and fast green.
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the time of insertion and during peri-implant healing is

critical to clinical success (Horwitz et al., 2003; Romanos,

2004; Degidi and Piattelli, 2005) as biomechanics are

strictly related to osteogenesis at the implant-bone inter-

face. An excessive loading of the implant may determine a

high interfacial micromotion during bone healing which

damages the fibrin network and new vasculature of early

bone healing (Szmukler et al., 1998; Puleo and Nanci,

1999; Degidi and Piattelli, 2005). This implies implant

mobility with a progressive marginal bone loss and final

implant failure. The weak points may be located at the

afibrillar layer on the implant surface which lacks

substantial tensile or shear strength (Puleo and Nanci,

1999) probably due to the absence of collagen, the elastic

component of bone.

For a long time it was assumed that premature loading

limited peri-implant osteogenesis inducing a peri-implant

fibrous tissue formation, and osseointegration was the

necessary condition for applying a prosthesis with

functional loading to the implants (Branemark et al.,

1977; 1985). However, physiological loading using low

forces can promote early peri-implant osteogenesis (Carter,

1987; Piattelli et al., 1993; Simmons et al., 1999; 2001a;

Meyer et al., 2004; Romanos, 2004) and peri-implant tissue

formation is related to the local mechanical environment at

the interface bone-implant (Szmuckler-Moncher et al.,

1998; Pilliar, 1991). As immediate implant loading can

shorten treatment time to the satisfaction of patients,

clinicians have studied guidelines for immediate and early

implant loading (Mish, 2004). A 1-year follow-up study on

the outcome of immediate and early loaded implants (from 0

to 11 days after surgery) in selected patients showed results

comparable to those achieved with a delayed implant

loading (Luogo et al., 2005). A survival rate of 96.7% of

immediately loaded transmucosal single implants in

mandible was reported after a 1-year study (Cornelini et
al., 2004). Early loading (2 weeks after implantation) of

sandblasted and acid-etched implants in posterior mandible

showed a survival of 100% (Salvi et al., 2004). A long-term

clinical survival study (7-year follow-up) of 93 immediately

loaded dental implants demonstrated a clinical success of

93.5%, primary stability and quality of bone being

fundamental to allow immediate loading (Degidi and

Piattelli, 2005). Payne et al. (2003) suggest that functional

loading of endosseous dental implants with mandibular

overdentures is possible as early as 2 weeks after surgery. In

immediate loading implants Horwitz et al. (2003), suggest

that insertion torque is correlated to primary implant

stability measured by resonance frequency analysis, and

suggest that primary stability may be influenced mainly by

implant diameter and not by implant length, location or

bone level.

Simmons et al. (2001b) suggest that the undisturbed

osseointegration process is the result of a proper implant

macro-design which prevents peak strains at the interfacial

layer, as physiological bone loading (500–3000 micro-

strains) develops mature bone formation whereas higher

peaks strains produce immature bone mineral formation and

fibroblastic cell pattern (Meyer et al., 2004).
7. Bone remodelling after osseointegration

Like normal and physiological bone adaptation in the

skeleton, wound maturation around implants via model-

ling and remodelling mechanisms, expected to be the two

primary mechanisms by which bone at the interface can

adapt to mechanical loading, are thought to be responsible

for reshaping or consolidation of bone at the implant site

(Brunski, 1991). Mature adult bone is continuously being

turned over, so that the net activity of bone resorbing cells

equals the net activity of bone forming cells. Remodeling

comprises the process of bone resorption followed by

bone formation and provides a mechanism for self repair

and adaptation to stress. Generally, the remodelling

process starts as a consequence of a fatigue damage to

bone and involves four different processes: osteoclasts

activation, bone resorption, osteoblasts activation, and

finally mineralization of new bony tissue (Kanis, 1997).

The first three processes represent the modelling phase

which is mainly influenced by biomechanical stability of

an implant in its healing site (Brunski, 1991). The peri-

implant healing may be compared to a wound tissue repair

process: the gap between implant and host bone cavity is

immediately filled by a blood clot early substituted by a

trabecular bone which then remodels into a mature

lamellar bone. This final condition shows the mature

bone in direct contact with most of the implant surface,

and is called implant osseointegration (Branemark et al.,

1977; 1985; Adell et al., 1981; Nevins and Langer, 1993).

Mature bone with bone lamellae arranged in osteons is a

vital tissue with the physiological turnover of bone tissue.



Fig. 9. Titanium plasma-sprayed (TPS) implant inserted in sheep femur

90 days after implantation. (a) In some areas at the implant-bone interface

the newly formed bone indicates that a bone remodelling of the peri-

implant mature bone has just occurred (the recently new formed bone is

more stained), while osteoid tissue produced by osteoblasts (arrows) shows

that a new osteogenesis is underway. (b) In the lower part of the picture a

marrow space at the implant surface contains an osteoclast (arrow)

presumably involved in resorption of peri-implant lamellar bone.
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For this reason, and considering the occlusal loading

forces applied to endosseous dental implants it is

reasonable that bone in contact with the implant surface

may undergo morphological remodelling. In fact, during

the remodelling of the peri-implant bone, new osteons

circled around the implant with their long axes parallel to

the implant surface and perpendicular to the long axis of

the implants. The remodelled bone can extend up to 1 mm

from the implant surface (Roberts, 1988) and for this

reason this calcified tissue belongs to the bone/implant

interface (Brunski, 1991) (Fig. 8). The turnover of peri-

implant mature bone in osseointegrated implants is

confirmed by the presence of medullary or marrow spaces

containing osteoclasts, osteoblasts, mesenchymal cells and

lymphatic/blood vessels next to the implant surface

(Fig. 9). It is likely that the small areas of marrow tissue

still detectable 90 days after implantation around unloaded

implants may support and favour the biological turnover

of the bone at the interface with the implant (Franchi et

al., 2004a,b).

Bone remodelling is a complex process involving not

only interactions between cells of the osteoblastic lineage

and bone matrix proteins, but also a variety of systemic and
Fig. 8. Sandblasted titanium dental implant inserted in sheep femur and

observed at light microscopy 90 days after surgery. The negative effect of

the picture (the implantZI is on the left) was obtained using an image-

processing programme. The imaging-effect better shows the newly formed

osteons which circle around the implant with their long axes parallel to the

implant surface and perpendicular to the long axis of the implant, and

extend far from the implant surface demonstrating that a remodelling of the

host bone has just occurred.
local regulatory factors (Dempster, 1995). The cells of bone

coordinate their proliferation and activities by the

expression and response to hormones (PTH), and cytokines

(IGFs, TGF-b1, FGF, BMP, EGF, PDGF, etc.) (Dempster,

1995; Augat et al., 2005). Moreover, bone cells and, in

particular osteocytes, are sensitive to mechanical loading

and respond to it by proliferation, matrix synthesis and

modulation of cytokine, NO, PGE2 and other growth factor

expression (Rubin et al., 1992; Klein-Nulend et al., 2002).

The capacity not only to express bone stimulating factors,

but also the cell capacity to react to these factors, may alter

with increasing age and hormonal changes (Augat et al.,

2005). The capacity of osteoblasts to proliferate in response

to systemic or locally released osteotropic factors was

decreased when stimulating osteoblasts from 61- to 70 year-

old donors with parathyroid hormone, growth hormone and

calcitonin, TGF-b1, IGF-I, PDGF (Pfeilschifter et al.,

1993). A decreased response to PTH in osteoporotic and

older patients compared to younger subjects was also found

for the cAMP response (Wong et al., 1994). All these

aspects may lead to the imbalance between bone resorption

and bone formation and a consequent decrease in implant

osseointegration and thus mechanical stability.
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