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FeNb magnetic properties correlated to microstructure features
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Abstract

We studied the effect of high-velocity oxy-fuel (HVOF) coating process parameters on magnetic properties of FeNb considering the role
of coating microstructure. The present study was conducted using artificial neural network methodology. A first artificial neural network
was optimized to relate process parameters to coating microstructure features. The effect of process parameters on magnetic properties was
quantified by a second network. Predicted magnetic properties correlated to microstructure features were obtained using these optimized
network structures. It was then possible to point out the role of microstructure for improvement coercivity, saturation magnetization and
remanent magnetization.
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. Introduction

Magnetic materials underwent a great development in the
0th century[1]. Practical progress of magnetism largely de-
ends on relevant advancement in coercivity control resulting

rom combined control of magnetocrystalline anisotropy and
icrostructure[1].
Amorphous materials can be used as alternative materials

or magnetic material applications. These are obtained by
rapid quenching of metal from liquid to solid state with
cooling speed of about 106 K s−1. They are characterized

y long distance order absence of atomic arrangement and
onsequently they exhibit interesting mechanical, chemical
nd magnetic properties[2].

However, industrial applications related to these amor-
hous alloys have been restricted because of difficulties re-

ated to bulk material production.
Thermal spray can resolve this problem by considering

apid solidification of powder particles under high feed rates.
n this study, we have used high-velocity oxy-fuel (HVOF)
hermal spray technique. This process is adequate for spray-

ing low and intermediate melting temperature materials (
polymers and metals). It permits to obtain high particle
locities needed for amorphization compared to other s
techniques.

In this study, FeNb alloy was chosen as feedstock ma
for its good aptitude to amorphization[3–5]. Literature is very
poor on the use of such material as a feedstock for the
spraying.

It is well known that microstructure, especially gr
size, determine the hysteresis loop of a ferromag
material. Accordingly, magnetic softening should oc
when structural correlation length or grain size beco
smaller than the ferromagnetic exchange length[6,7]. How-
ever, other factors can be associated to the mag
softening when using thermal spray technology. Th
are mainly related to anisotropy of the layered struc
porosity level and phase content modification by evap
tion.

In order to quantify the role of microstructure on Fe
magnetic properties, a model of data processing was co
ered based on artificial neural network methodology. S
∗ Corresponding author. Tel.: +33 3 84 58 31 29; fax: +33 3 84 58 32 86.
E-mail address:sofiane.guessasma@utbm.fr (S. Guessasma).

methodology is an adequate tool for the study of complex
processes with parameter interdependencies[8]. In addition,
this technique proved to be applicable in the domain of mate-
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rials science[9] and especially in the case of thermal spraying
[10].

In this study, two artificial neural networks (ANNs) were
implemented as a tool of data analysis and prediction. A
first ANN was built to correlate HVOF process parameters to
phase contents and porosity level of FeNb coatings. A second
ANN was considered to relate the same process parameters
to coercivity, saturation magnetization and remanent magne-
tization.

2. Experimental procedure

2.1. Coating manufacturing

Thermal spraying of Fe50Nb50 (+0−44) powders was
carried out using a commercial Sulzer Metco CDS
HVOF spray system on copper substrates. Two substrate
shapes were used: tubes (Ø 22 mm× 1 mm) and sheets
(70 mm× 25 mm× 1 mm). A gas mixture of oxygen and
methane was used to produce the flame. The subsequent com-
bustion of oxygen and methane produced a nominal flame
temperature of 2500 K with a hypersonic velocity of about
2000 m s−1. Experiments were carried out by varying two
process parameters, namely methane fuel flow rate,V and
s the
s cted
f third
v nce
c t-

image and EDS analysis of (b) dark grey zone�1 and (c) clear grey zone�2.

Table 1
HVOF spray parameters

Parameter Value

Spray gun CDS 89443 psi
Oxygen gas flow rate (SLPM) 420
Methane fuel flow rate,V (SLPM) 145, 200
Nitrogen carrier gas flow rate (SLPM) 20
Powder feed rate (g min−1) 35
Spray distance,Z (mm) 200, 300
Substrate type Cu sheet used with air cooling

system, Cu tube used with wa-
ter cooling system

Coating thickness (�m) 200
Cooling system,C water, air

Reference conditions are labelled with bold characters.

ment at 800◦C was carried out on samples in order to improve
their magnetic properties.

2.2. Coating characterization

After metallographic preparation, cross-sections of FeNb
coatings were analyzed using an optical microscope. The mi-
crostructure revealed tree features: porosity, dark grey and
clear grey phases (Fig. 1). The dark phase�1 was reach on
Nb element and the clear phase�2 on Fe element, as obtained
by EDS analysis (Fig. 1b and c).

The percentage of each feature in the microstructure was
calculated by image analysis using NIH image free software.
These were porosity level, dark gray�1 and clear gray�2
zone percentages. Six images were used to assess mean and
standard deviation associated to each feature. Magnetic mea-
pray distance,Z (distance separating the gun tip from
ubstrate plan). In addition, the cooling system was sele
rom either water or air system and thus represented the
ariable,C. The other parameters were kept to a refere
ondition as shown inTable 1. After spraying, annealing trea

Fig. 1. Morphology and structure of FeNb coatings: (a) SEM
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Fig. 1. (Continued).

surements were realized using a hysteresismeter Bull M2000
SIIS, which enabled to draw the hysteresis loop of the con-
sidered samples. It permitted also to calculate magnetic prop-
erties, namely coercivity HC, saturation magnetization MS
and remanent magnetization MR.

3. Simulation model

Artificial neural network (ANN) technique is a powerful
statistical methodology used to recognize the correlations be-
tween the parameters of a given problem and its responses
[8]. The correlations are recognized considering large but
simple mathematical operations processed in/and between
units called neurons,Fig. 3. For a detailed description of the
use of this methodology, see for example[11].

In this study, two ANN structures were considered. The
input pattern of these structures was the same and comprised
three neurons. These were the spray distance, the fuel flow

rate and the cooling system. This last variable is considered as
a classification category with state zero for air cooling system
and one for water cooling system. The output pattern of the
first structure comprised three neurons representing�1, �2
and porosity content. The output pattern of the second struc-
ture is described also by three neurons, namely coercivity,
saturation magnetization and remanent magnetization.

The input/output categories are related with a set of neu-
rons organized in hidden layers (Fig. 2). Each neuron is
connected with the other ones following well-established
scheme. The strength of each connection is measured with
a number called ‘weight’. The neuron receives the weighted
sum from the outputs of the other neurons and operates a
non-linear transformation with the aid of a transfer function.
It feeds the other neurons with the non-linear result until to
reach the output pattern. In this study, a feedforward connec-
tion scheme between neurons was adopted for both structures
[8]. In this scheme, each neuron of a given layer is connected
to all neurons of the forward layer.
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Fig. 2. Multilayer feedforward architectures considered in this study. (a) Optimized ANN structure relating process parameters to microstructurefeatures, (b)
optimized ANN structure relating process parameters to magnetic properties.

The optimization process consists in fixing the number of
neurons and weight population in order to predict a response
closer to experimental set result submitted to the ANN struc-
ture. Thus, the optimization requires a database and a training
process to obtain generalization of ANN predicted results.
The optimization steps are:

- Build the database considering mean variable values and
associated standard deviation. Each variable is formatted
between its admitted limits between 0 and 1. Each exper-
imental set is enlarged 10 times considering its standard
deviation[11].

- Divide the database into two categories: a training category
required to tune weight population and a test category to test
the validity of predicted results without modifying weight
values.

- Start with an assumed weight population and a net struc-
ture.

- Submit to the structure a given number (i.e., batch size) of
input/output examples from the database for training and
testing.

- Correct weight values with the aid of a quick-propagation
learning paradigm[12]. This paradigm backpropagates the
error between the required and the predicted response in
the net structure and modify the weight values to decrease

- Monitor training and test errors of the system output. Moni-
toring is associated to time limitation by considering a fixed
cycle number of 2000.

- Add or remove neurons to decrease training and test errors.

4. Results and discussion

Optimization process revealed two ANN structures con-
taining, for each one, two hidden layers as shown inFig. 2.
The overall error of training and test error was 0.005 and 0.05
for the first and second structures, respectively. The percent-
age of sample classification[13] was 100% for both struc-
tures, which means that all samples were learnt adequately by
ANN structures. The overall error associated with the worst
case was 0.0099 and 0.0868 for the first and second structures,
respectively.

It was possible to obtain predicted evolution of each of the
ANN responses as function of input categories. For example,
when varying the spray distance in the first ANN structure,
keeping the other parameters to a reference value, microstruc-
ture feature evolutions were obtained.

Fig. 3a shows an example of such evolutions in the case of
porosity content. It is noticed that coating porosity decreases
while spray distance increases from 150 to 270 mm. How-
e level
this difference.
 ver, when the distance is larger than 270 mm, porosity
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Fig. 3. (a) Porosity level predicted evolution vs. spray distance. (b) Predicted evolution of coercivity vs. spray distance. (c) Predicted evolution of coercivity
vs. porosity level, considering spray distance effect.V= 145 SLPM, C = 0.

exhibits a rapid increase. This parabolic relationship can be
explained considering particle temperature variation with re-
spect to spray distance. Short spray distances are associated
to short particle residence time in the flame. Consequently,
they are less heated when they strike the substrate and thus
cannot flatten adequately. This leads to a high porosity level
in the coating[14,15]. For large spray distances, particles
leave the flame and begin to solidify before they impinge the

Table 2
Measured microstructure features and magnetic properties associated to HVOF process parameters used in this study

Parameters Microstructure features Magnetic properties

Z V C P �1 �2 HC MS MR

200 145 air 4.2± 1.54 19.6± 2.57 76.2± 1.52 137± 21.02 75.5± 7.54 16± 2.28
300 145 air 4± 1.36 19.5± 2.61 76.5± 1.76 136± 20.3 76± 7.81 16± 2.64
300 200 air 4.5± 1.07 19.1± 2.49 76.4± 1.58 136± 20.62 75.5± 7.45 16± 2.51
200 145 water 4± 1.30 19.2± 2.96 76.8± 1.08 137± 20.51 75.5± 7.44 15± 2.46
300 145 water 5± 1.50 19± 2.66 76± 1.58 138± 19.77 75± 7.6 15± 2.33
300 200 water 4.3± 1.25 19.3± 2.58 76.4± 1.09 138± 19.99 75.5± 7.53 15.5± 2.51

Z: spray distance;V: fuel flow rate;C: cooling system;P: porosity level;�1: dark grey zone reach on Nb element;�2: clear grey zone rich on Fe element. HC:
coercivity; MS: saturation magnetization; MR: remanent magnetization.

substrate. Porosity level increases consequently for the same
considerations.

As in the case of the first ANN structure,Fig. 3b illustrates
an example of predicted curves when varying spray distance
at the input pattern of the second ANN. This curve shows
the variation of coating coercivity as function of spray dis-
tance. The same tendency as that of porosity level variation
is noticed when spray distance increases. To explain such
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Table 3
Predicted influence of microstructure features on magnetic properties associated to process parameter variations

Parameter P �2 �2

Z V C Z V C Z V C

HC −+ ↖ (17) +↘↖ (10) − ↖ (9) +↘↖ (11) − ↘↖ (9) +↘ (7) +− ↘ (13) − ↘↖ (6) + ↘ (6)
MS −+ ↘ (15) +↖↘ (2) − ↘ (8) +↖ (11) − ↖↘ (2) +↖ (6) +− ↖ (12) − ↖↘ (1) +↖ (5)
MR −+ ↖↘ (1) +↘ (2) − ↖ (5) +↘ (1) − ↖ (3) +↘ (5) +− ↘ (1) − ↖ (1) +↘ (3)

Z: spray distance;V: fuel flow rate;C: cooling system; P: porosity level;�1: dark grey zone reach on Nb element;�2: clear grey zone rich on Fe element.
HC: coercivity; MS: saturation magnetization; MR: remanent magnetization.↖ or ↘ means increase or decrease of magnetic property when microstructure
feature increases. + or− means increase or decrease of microstructure feature when process parameter increases. Number between brackets expresses relative
variation of magnetic properties with respect to microstructure features.

correlation, one has to consider the effect of microstructure
features as intermediate variables between process param-
eters and magnetic properties. Thus, for the same process
parameter variation, responses are collected from the opti-
mized ANN structures. In such a way,Fig. 3c shows coerciv-
ity response as a function of porosity level response. Linear
increase of coercivity noticed is explained by the fact that
porosity acts against the continuity of magnetic properties
through the coating structure. These are considered as de-
fects anchoring Bloch walls and involving consequently an
increase of coercivity[16]. One can conclude that improve-
ment of coercivity can be related to low porosity content
and this is obtained when spray distance is around 275 mm.
However, this improvement is not sufficiently significant to
state that magnetic softening is important. This requires for
example to take into account post-treatment conditions and
especially the annealing time variation[17].

Fig. 4a shows the predicted variation of saturation mag-
netization as a function of porosity level. A low decrease
of saturation magnetization is noticed. Generally, in mag-
netism studies, the decrease of this parameter is related to
coercivity increase[18]. This is confirmed by our results as
shown inTable 2. Fig. 4b shows the predicted evolution of
remanent magnetization as function of porosity level. This
last parameter exhibits weak variation compared to coerciv-
i s not
w ions
b

ures
o r vari
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These effects are associated to a high porosity level and low
phase contents.

However, porosity level controlled better magnetic prop-
erties compared to phase content parameters.

When changing cooling mode from air to water system,
magnetic properties exhibited linear variations. Such evolu-
tions are associated to the fact that this parameter was con-
sidered as a classification variable.

Fig. 4. Predicted evolutions of (a) saturation magnetization and (b) remanent
magnetization vs. porosity level, considering spray distance effect.V= 145
SLPM, C = 0.
ty and saturation magnetization. In fact, this parameter i
ell considered in studies dealing with magnetic applicat
ecause of its low sensitivity to process parameters.

Table 3summarizes the effects of microstructure feat
n magnetic properties associated to process paramete
tion.

Spray distance was the control factor of FeNb magn
roperties. It significantly modified coating microstruct

eatures, which in turn controlled coercivity, saturation m
etisation and remanent magnetization.

Magnetic properties exhibited parabolic relationships
espect to fuel flow rate whatever was the process para
ype. This could be related to particle velocity and temp
ure variations. For low fuel flow rate, particle velocity a
emperature could be associated to a low spray efficienc
onsequently to degradation of magnetic properties. For
uel flow rates, increase of particle velocity and evapora
ould be related to the lowering of magnetic property val
-
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5. Summary and conclusions

Control of FeNb magnetic properties was investigated
considering artificial neural networks. The role of microstruc-
ture was pointed out for explaining the effect of HVOF pro-
cess parameters. Predicted results showed that spray distance
was the most significant factor in modifying magnetic proper-
ties, especially coercivity and saturation magnetization. Vari-
ations larger than 10% on magnetic properties were predicted
when varying spray distance between 150 and 350 mm. This
parameter controlled also the microstructure including poros-
ity level and phase content. Coercivity was the most influ-
enced property compared to other magnetic properties when
varying either fuel flow rate or cooling system.

Porosity level decrease was associated to improvement of
coercivity, saturation magnetization and remanent magneti-
zation.
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