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Section 8.1 Matrix Representations of
Linear Transformations

MATRIX OF A LINEAR OPERATOR WITH RESPECT TO A BASIS

We know that every linear transformation 7' : R” — R™ has an associated standard matrix
[T]=I[T(e) | T(e2) |---|T(en)]

with the property that
T(X)=[T)x

for every vector x in R”. For the moment we will focus on the case where T is a linear operator
on R", so the standard matrix [7'] is a square matrix of size n x n.

Sometimes the form of the standard matrix fully reveals the geometric properties of a linear
operator and sometimes it does not. For example, we can tell by inspection of the matrix

cosF —sin§ O] [ -5 O
[Ti]=|sin§ cosf Of=|— 5 0 (1)
0 0 L L6 0 -4

that 7 is a rotation through an angle of /4 about the z-axis of an xyz-coordinate system.



In contrast, a casual inspection of the matrix

0 n 1
[75]=[1 0 O (2)
010

provides only partial geometric information about the operator 75: we can tell that 75 is a rotation
since the matrix [73] is orthogonal and has determinant 1, but, unlike (1), this matrix does not

explicitly reveal the axis and angle of rotation.

The difference between (1) and (2) has to do with the orientation of the standard basis. In
the case of the operator T}, the standard basis vector ez aligns with the axis of rotation, and the
basis vectors e; and e, rotate in a plane perpendicular to es, thereby making the axis and angle
of rotation recognizable from the standard matrix.

However, in the case of the operator 7>, none

of the standard basis vectors aligns with the axis of rotation (see Example 7 and Figure 6.2.9 of
Section 6.2), so the operator 7> does not transform e, e,, and e; in a way that provides useful
geometric information.

- Thus, although the standard basis is simple algebraically, it is not always
the best basis from a geometric point of view.



Our primary goal in this section is to develop a way of using bases other than the standard
basis to create matrices that describe the geometric behavior of a linear transformation better
than the standard matrix. The key to doing this is to work with coordinates of vectors rather
than with the vectors themselves, as we will now explain.

Suppose that

X .5 T(x)

is a linear operator on R” and B is a basis for R”. In the course of mapping x into 7' (x) this
operator creates a companion operator

[x]g — [T(x)]5 (3)

that maps the coordinate matrix [X]p into the coordinate matrix [7(x)]z. In the exercises we
will ask you to show that (3) is linear and hence must be a matrix transformation; that is, there
must be a matrix A such that

Alx]p = [T(X)]s

The following theorem shows how to find the matrix A.



Theorem 8.1.1 Let T: R" — R" be a linear operator, let B = {vy, ¥a, ..., ¥, } be a basis
for R", and let

A=[[Tvi)ls | [T(v2)lg | --- | [T(¥a)]s] (4)
Then
[T(x)]g = Alx]g (5)

forevery vector X in R®. Moreover, the matrix A given by Formula (4) 15 the only matrix with
property (3).



Proof Let x be any vector in R", and suppose that its coordinate matrix with respect to B is

)
€2
[xlzg=] .
-{:ﬂ_
That 1s,

X=C1Vi+CV2+ -+ ChVn
It now follows from the linearity of T that
rx)=cT(v))+c2T(v2)+---+cpl(vy)
and from the linearity of coordinate maps that

(T(X)]s =alT(vDls + c2lT(v2)lg + -+ + culT (Vi)

which we can write 1n matrix form as

[TxX)p = [TV | [TOW)]s |-~ | [T(v)la] | | = Alx]s




This proves that the matrix A in (4) has property (5). Moreover, A is the only matrix with this
property, for if there exists a matrix C such that

[T(x)]p = AlX]p = C[x]p
for all x in R”, then Theorem 7.11.6 implies that A = C. b

The matrix A in (4) is called the matrix for T with respect to the basis B and is denoted by

(T1s = [[T(v))s | [T(v2))p | -+« | [T(Va)]5] (6)
Using this notation we can write (5) as

[T(x)]z = [T]g[x]s l (7)

Recalling that the components of a vector in R" are the same as its coordinates with respect to
the standard basis S, it follows from (6) that

(Tls = [[TOVDIs | [TOFDIs |-+ L [TO)Is] = [T [ T(v2) |-+ | T(va)] = [T

That 1s, the matrix for a linear operator on R" with respect to the standard basis is the same as
the standard matrix for T.

The basis consisting of {v,v,, ...,v, }is then {e,, e,, ..., e }.



EXAMPLE 1 Matrix of a Linear Operator with Respect to a Basis B

Let 7: R? — R? be the linear operator whose standard matrix is

3 2
[T1=[2 3]

Find the matrix for 7" with respect to the basis B = {vy, v2}, where

V) =

7

1

and V=

Solution The images of the basis vectors under the operator T are

3 2
I'(v)=I[Tlv= [ ]

T
T'(v2) =[T])vy = [ :|

2 3

2 3

= v =V + 0vz

(8)



so the coordinate matrices of these vectors with respect to B are

l 0
[T(v)]p = [0] and [T(v2)]p = [5]

Thus, it follows from (6) that

0 5

This matrix reveals geometric information about the operator 7" that was not evident from the
standard matrix. It tells us that the effect of 7' is to stretch the v,-coordinate of a vector by
a factor of 5 and to leave the v;-coordinate unchanged.

1 0
(T8 = [[T(vD))s | [T(v2)]s] = |: ]

For example, Figure 8.1.1 shows the
stretching effect that this operator has on a

square of side 1 that i1s centered at the origin and
whose sides align with v; and v;. B

Figure 8.1.1



EXAMPLE 2 Uncovering Hidden Geometry

Let 7: R* — R* be the linear operator whose standard matrix is

[0 0 1
A=1|1 0 0 (9)
0 1 0

We showed in Example 7 of Section 6.2 that T is a rotation through an angle of 27r/3 about an
axis in the direction of the vectorn = (1, 1, 1).

Let us now consider how the matrix for 7 would
look with respect to an orthonormal basis B = {v}, v», v3} in which v3 = v; X v; is a positive
scalar multiple of n and [v,, v} is an orthonormal basis for the plane W through the origin that
1s perpendicular to the axis of rotation (Figure 8.1.2). The rotation leaves the vector v; fixed, so

T(vy) =vy=0v; 4+ 0vy + lvy

and hence

[T(v3)]g = | 0 Figure 8.1.2




Also, T'(vy) and T (v,) are linear combinations of v; and v,, since these vectors lie in W. This
implies that the third coordinate of both [T (v)]g and [T (v2)]z must be zero, and the matrix for
T with respect to the basis B must be of the form

[T1s = [[T(vDls | [T(v2)]s | [T(v3)]s] =

= X X
= X X

&
0
|

Since T behaves exactly like a rotation of R? in the plane W, the block of missing entries has
the form of a rotation matrix in R2. Thus,

_cus% — sin ET" 0
[T1p = [[TOvDIp [ [T(v2)]p | [T(v3)la] = | sinZE  cosZE 0
0 0 1

This matrix makes 1t clear that the angle of rotation is 27 /3 and the axis of rotation is in the
direction of vs, facts that are not directly evident from the standard matrix in (9). ]



CHANGING BASES

It is reasonable to conjecture that two matrices representing the same linear operator with respect
to different bases must be related algebraically. To uncover that relationship, suppose that
T:R" — R" is a linear operator and that B = {v|,v3,...,V,} and B" = {v|, v,,..., v, ] are
bases for R".

Also, let P = Pg_, g be the transition matrix from B to B’ (so P~! = Pg_,p is
the transition matrix from B’ to B). To find the relationship between [T']g and [T]p, consider
the diagram in Figure 8.1.3, which links together the following four relationships schematically:

[T]a[x]s = [T (X)]s, [T1s[x]s = [T (X)]s

PIT(x)]g = Pp.p[T(X)]p = [T(X)]p, P[x]p = Ppp[X]p = [X]p

[x]g: [T]g [T(x)]

T o §
} T
p-1] (1) 3| p
| T
Figure 8.1.3 Y —(2)—

et
[x]p (T1p [(T(x)]g



The diagram shows two different paths from [x]g' to [T (x)]g’, each of which corresponds to a
different relationship between these vectors:

1. The direct path from [x] 5 to [T (x)]p across the top of the diagram corresponds to the
relationship

[T]p(x]lp = [T(X)]p (10)

2. The path from [x]g to [T (x)] g that goes down the left side, across the bottom, and up
the right side corresponds to computing [T (x)]p from [x]z by three successive matrix
multiplications:

(i) Multiply [x]5 on the left by P~ to obtain P~ '[x]p = [X]5.
(11) Multiply [x]g on the left by [T']z to obtain [T]g[x]p = [T (X)]5.
(i11) Multiply [T (x)]z on the left by P to obtain [T (x)] 5.

[x]p [T ] [T(x)] g

T 2
} T
p-1] (1) )| p
| T
Figure 8.1.3 Y —(2)—

S
[x]g [T]g [T{x)]z



[x]g [T]p (1(x)] g
! o
T
p-1 (1) )| p
| T
Figure 8.1.3 Y —=(2)— |
[x]g [T]g [T(x)]g

This process produces the relationship
(P[T1gP 7 )xlp = [T(X)]s

Thus, (10) and (11) together imply that
(P[T1aP~)Ixlp = [Tlp[x]s

Since this holds for all x in R", it follows from Theorem 7.11.6 that

P[T1zP~' =[T]s

(11)

Thus, we have established the following theorem that provides the relationship between the
matrices for a fixed linear operator with respect to different bases.

[T]p[xX]p = [T(X)]p

(10)




Theorem 8.1.2 [fT:R" — R" is a linear operator, and if B = {v|, V1. ..., ¥,} and

B' = {v|.vs..... ¥ }are bases for R", then [T g and [T |z are related by the equation
[T]e = P[T]a P (12)
in which
P="Py.p=|Viler | [V2lw | -~ | [Vale] (13)

is the transition matrix from B to B'. In the special case where B and B' are orthonormal
bases the matrix P 15 orthogonal, se (12) 15 of the form

[Tls = P[T]sP" (14)
When convenient, Formula (12) can be rewritten as

[Tlg = P '[T]s P (13)
and in the case where the bases are orthonormal this equation can be expressed as

[T]s = P'[T]aP (16)



REMARK When applying all of these formulas 1t 15 easy to lose track of whether P 1s the
transition matrix from B to B, or vice versa, particularly if other notations are used for the bases.

A good way to keep everything straight 15 to draw Figure 5.1.3 with appropnate adjustments 1in
notation. When creating the diagram you can choose either direction for the transibbon matrix P
as long as you adhere to that direction when constructing the associated formula.

[x]p [T ] [T(x)] g
T o |
| |

p-1{ (1) Gl p
| ?

Figure 8.1.3 Y —(2)—
o n ]
[x]g [T]g [T(x)]g

Since many hinear operators are defined by their standard matrices, 1t 15 important to consider
the special case of Theorem 8.1.2 in which B' = § is the standard basis for B". In this case
[T]g =[T]s = [T]. and the transition matrix P from B to B’ has the simplified form

P=Pg . .p=PFPg.5s= [[1’11.*.: [ [vals |-+ | [‘f’nlz.'] =[vi | va| -] ¥l

Thus, we have the following result.



Theorem 8.1.3 IfT: R" — R" is a linear operator, and if B = {v|, ¥a, ..., ¥, } i5s a basis
for R®, then |T']| and [T] ; are related by the equation

[T]= P[T]zP ™ (17)
i which
P=[vi|va]|:---| ¥l (18)

is the transition mairix from B to the standard basis. In the special case where B is an
orthonormal basis the matrix P is orthogonal, 5o (17) is of the form

[T]= P[T]zP" (19)
When convenient, Formula (17) can be rewritten as

[T]ls = P [T]P (20)
and 1n the case where B 15 an orthonormal basis this equation can be expressed as

[T]s = P'[T]P (21}



Formula (17) [or (19) in the orthogonal case] tells us that the process of changing from the
standard basis for R to a basis B produces a factonzaton of the standard matnx for T as

[T]= P[T]g P (22)
in which P 15 the transition matnx from the basis B to the standard basis 5. To understand the
seometnc significance of this factonzation, let us use 1t to compute T (X) by wnting

T(x) =[Tlx = (P[T]gP ™ ")x = P[T]g(P 'x)

Reading from nght to left, this equation tells us that T (x) can be obtained by first mapping the
standard coordinates of X to B-coordinates using the matrix P~!, then performing the operation
on the B-coordinates using the matnx [T ] g, and then using the matrix P to map the resulting
vector back to standard coordinates.



EXAMPLE 3 Example | Revisited from the Viewpomnt of Factonzation

In Example 1 we considered the linear operator 7' : R* — R* whose standard matrix is

a=n=[} ]

and we showed that

1 0
[T]p = [0 5]

with respect to the orthonormal basis B = {v,, v} that is formed from the vectors

V) = and v, =

Sl S

Sl S




In this case the transition matrix from B to S is

- 1
P=[vi|v]=]| ¥ Y2
| V2 V2_
so it follows from (17) that [7T'] can be factored as
[3 2]=r = % [1 o]_:‘q -+
2 3 __ﬁ \_}5- 0 5 -% ﬁ_
T] = P [T P

Reading from right to left, this equation tells us that 7'(x) can be computed by first transform-
ing standard coordinates to B-coordinates, then stretching the v,-coordinate by a factor of 5
while leaving the v;-coordinate fixed, and then transforming B-coordinates back to standard
coordinates. H



EXAMPLE 4 Example 2 Revisited from the Viewpoint of Factorization

In Example 2 we considered the rotation 7 : R® — R* whose standard matrix is

0 @ 1]
A=[T]=]|1 0 0
010

and we showed that

Cos 5~ — sin 3 0

. i X 2
\T )z = | sin o cos =~ 0
0 0 1

with respect to any orthonormal basis B = {vy, v2, v3} in which v3 = v| X v, is a positive
multiple of the vector n = (1, 1, 1) along the axis of rotation and {v;, v2} 1s an orthonormal
basis for the plane W that passes through the origin and is perpendicular to the axis of rotation.



To find a specific basis of this form, recall from Example 7 of Section 6.2 that the equation of
the plane W is

x+y+z=0

and recall from Example 10 of Section 7.9 that the vectors

I k) &
~ 32 /6
V) = ﬁ and vy = —-:}a
2
, & L .
form an orthonormal basis for W. Since
i i k
o A 0 | 1 s I
VIi=VIXVa=|"74 72 =75|+7§J+75k
1 i 2
V6 Vo Ve




the transition matrix from B = {vy, v, v3} to the standard basis is

K
P=milvlvl=| 75 -Z% 7
why? 0 313 ﬁ
~ al
Since this matrix is orthogonal, it follows from (19) that [T'] can be factored as
o3 q—jig —jlg :IEH _cusl—; —sin% '[}_ ——?15 ﬁ 0
1 0 0|l=| 5 - #||snZE cosZE O||-% - =
210 | o & Hi[le o 1| & & %
7] = P [T]g pT

Reading from right to left, this tells us that T (x) can be computed by first transforming standard
coordinates to B-coordinates, then rotating through an angle of 2 /3 about an axis in the direction
of v3, and then transforming B-coordinates back to standard coordinates. ]



EXAMPLE 5 Factoring the Standard Matrix for a Reflection

Recall from Formula (2) of Section 6.2 that the standard matrix
for the reflection 7 of R* about the line L through the origin »
making an angle ¢ with the positive x-axis of a rectangular
xy-coordinate system is

cos 260 sin 26
7] = fas [sin 20 —cos 29]

> Figure 6.1.9

The fact that this matrix represents a reflection is not immediately evident because the standard
unit vectors along the positive x- and y-axes have no special relationship to the line L. Suppose,
however, that we rotate the coordinate axes through the angle 6 to align the new x"-axis with L,
and we let v; and v, be unit vectors along the x’- and y’-axes, respectively (Figure 8.1.4). Since

Tvi)=vi=v+0vy and T(vy) =-v,=0v, +(—=Dv;

it follows that the matrix for 7 with respect to the basis B = {v;, v3} is

]
[T1s = [(T(vDIs | [T(V2)]s] = [0 _?]

Figure 8.1.4




Also, it follows from Example 8 of Section 7.11 that the transition matrices between the standard
basis § and the basis B are
cosf —siné

P=Pg,s=|
By [smﬂ cos @

] fert PT=P5_.3=[ cos 6 sin&]

—sinf cos#
Thus, Formula (19) implies that
[cns 20 sin EH] [cﬂs 6 —sin H] [l U] [ cosf sin E:I
sin 260 —cos260 sin ¢ cos@ | |0 —1]]|—sinf cos#
(7] = P (T1s Bt

Reading from right to left, this equation tells us that T (x) can be computed by first rotating the
xy-axes through the angle € to convert standard coordinates to B-coordinates, then reflecting
about the x"-axis, and then rotating through the angle —@ to convert back to standard coordinates.

|



MATRIX OF A LINEAR TRANSFORMATION
WITH RESPECT TO A PAIR OF BASES

Up to now we have focused on matnx representations of hnear operators. We will now con-
sider the corresponding idea for linear transformations. Recall that every linear transformation
T:R" — R™ has an associated m x n standard matnx

[T]1=1[T(e)) | T(e2) | --- | Tle)]

with the property that
T{x)=[T]x

If B and B' are bases for R” and R™, respectively, then the transformation

X —> T(x)

creates an associated transformation
[X]g — [T (X}

that maps the coordinate matrix [x] g into the coordinate matnx [T (x)] 5. As in the operator case,
this associated transformation 1% linear and hence must be 2 matnx transformation; that 15, there
must be a matrix A such that

Alxle = [T (x)]e



The following generalization of Theorem 8.1.1 shows how to find A.

Theorem 8.1.4 Let T: R" — R™ be a linear transformation, let B = {vy, ¥2, ..., ¥, } and
B' = {uj. vy, ... u,} be bases for R™ and R™, respecrively, and let

A=[[TW)le [ [TW)]e |- | [T(¥a)ls] (23)
Then

[T(x)]s = AlX]& (24)

foar every vector X in R". Moreover, the matrix A given by Formula (23) is the only matrix

with property (24).

The matrix A in (23) is called the matrix for T with respect to the bases B and B' and is
denoted by the symbol [T ] g 5. With this notation Formulas (23) and (24) can be expressed as

[Tles = [[Tvi)e | [Tv2)lg |- | [T(Va)le] (25)

and

[T(x%)]s = [T]e 5lx]s (26)



REMARK Observe the order of the subscripts in the notation [T ] - g—the right subscript denotes
the basis for the domain and the left subscript denotes the basis for the codomain (Figure 8.1.5).
Also, note how the basis for the domain seems to “cancel” in Formula (26) (Figure 8.1.6).

(T]g, 5
4 A [T(I}]n-= [T]H; 5[1]5
Basis for the Basis for the T T
codomain domain Cancellation
Figure 8.1.5 Figure 8.1.6

Recalling that the components of a vector in R" or R™ are the same as its coordinates with
respect to the standard basis for that space, it follows from (25) that if S = {e,e;,...,e,} is
the standard basis for R™ and S’ is the standard basis for R™, then

[Tlg.s = [[T(e)]s | [T€)]s |-+ | [T(e)]s] =[T(e1) | T(e2) |-+ | T(en)l =[T]

That is, the matrix for a linear transformation from R" to R™ with respect to the standard bases
for those spaces 1s the same as the standard matrix for 7'

1



EXAMPLE 6 Matrix of a Linear Transformation

Let T: R* — R’ be the linear transformation defined by

X i *2 i
T ([ 'D o | =<5 b T3%s
& | =Tx1 + 16x2 |

Find the matrix for 7" with respect to the bases B = {v;, v;} for R? and B’ = (v}, v}, v}} for
R?. where

o
Il
—_— L
| IN—
-{
[ 3% ]
|
b2 Lh
| I |
_‘E
I
)
-
Bl ™=
I
I
g
=
el ™=
I
L [




Solution Using the given formula for 7 we obtain

1 2
IVp)=1—-2|; IT{v)= 1 by solving linear systems
._._5._. -—3 /

(verify), and expressing these vectors as linear combinations of v{, v;, and v} we obtain (verify)

= / 3 3 ] 3
I'(vi))=—-v,—3v3; and T(v2) =3V|+ 3V, — 3V

2"
Thus,

o

[(T1g.8 = [[T(v)]s | [T(V2)]p] =

—
alw pl=— |
n

|
L

|
(] [
|



EFFECT OF CHANGING BASES ON MATRICES OF
LINEAR TRANSFORMATIONS

Theorems 8.1.2 and 8.1.3 and the related factorizations all have analogs for linear transforma-
tions. For example, suppose that By and B; are bases for R", that B| and B, are bases for R™,
that U is the transition matrix from B; to By, and that V is the transition matrix from B to B;.

Then the diagram in Figure 8.1.7 suggests that

(7188, = VIT1s,5U" 27)

(x]p, (Tlg;,5, [T(X)]p;
! >3

v | t v

—

4 >é Figure 8.1.7
(x]g, [T]ai, B, [7{1}]3&




In particular, if By and Bj are the standard bases for R" and R™, respectively, and if B and B’
are any bases for R" and R™, respectively, then it follows from (27) that

[T]=VITlp U™ (28)

where U is the transition matrix from B to the standard basis for R™ and V is the transition
matrix from B’ to the standard basis for R™.

[3":],5-I (T ]3;_3I [HK)JB;

-
Regarding Figure 8.1.7, ’x
the above idea is vl | t v
B,>Sand B,/ > ¥
B, > BandB,’ > B’ Y — . Figure 8.1.7

[J'i],ﬁeZ [T],gi_,g;2 [T(x)]ﬂi



REPRESENTING LINEAR OPERATORS WITH TWO BASES

A linear operator 7' : R” — R" can be viewed as a linear transformation in which the domain and
codomain are the same. Thus, instead of choosing a single basis B and representing 7' by the
matrix [T ]z, we can choose two different bases for R”, say B and B’, and represent T by the
matrix [T ] g . Indeed, we will ask you to show in the exercises that

[T]s = [Tls.B

That is, the single-basis representation of 7 with respect to B can be viewed as the two-basis
representation in which both bases are B.



EXAMPLE 7 Matrices of Identity Operators

Recall from Example 5 of Section 6.1 that the operator 7;(x) = x that maps each vector in R"
into itself is called the identity operator on R".

(a) Find the standard matrix for 77.
(b) Find the matrix for 7; with respect to an arbitrary basis B.
(c) Find the matrix for T; with respect to a pair of arbitrary bases B and B'.

Solution (a) The standard matrix for 77 is the n x n identity matrix, since

. O soe O

0 3 w0

(T =I[Ti(e)) | Ti(e2) | --- | Ti(ex)l =[er | e |---]e]=]. . . .
10 0 s =)

In solution (a), vector e ; written in terms of the standard basis S is the same e ..



Solution (b) If B = {v,, v2, ..., v,]} is any basis for R", then
(T11s = [[Ti(vD)le | [Ty (v | - | [Ti(va)lg] = [[Vila | [V2ls | -+ | [Vulg]

But for each of these column vectors we have [v;]z = e; (why?), so

(TYlp=1[e1|e]|:-]|e,] \

That is, [77]p is the n x n identity matrix. In solution (b), vector v ; written in
terms of basis B is the same v i

Solution (¢) If B = {v, va,...,v,}and B" = {v|, v}, ..., v,} are any bases for R", then

LA |

(Tp.s = [[TivO)e | [Ti(v2))p |-+ | [Tr(v)ls] = [[vils | [vale | -+ | [Vals]

which 1s the transition matrix Pg_, g [see Formula (11) of Section 7.11].



