Section 8.2 Similarity and
Diagonalizability

Definition 8.2.1 If A and C are square matrices with the same size, then we say that C is
similar to A if there is an invertible matrix P such that C = P7'AP.

REMARK If C is similar to A, then it is also true that A is similar to C. You can see this by
letting Q = P! and rewriting the equation C = P7'AP as

A=PEP~" = (PTYC(P~)=0""CD

When we want to emphasize that similarity goes both ways, we will say thatA and C are similar.

Theorem 8.2.2 Twe square matrices are similar if and only if there exist bases with respect
to which the matrices represent the same linear operator.



FProof We will show first that if A and C are sitmilar n x n matrices, then there exist bases with
respect to which they represent the same hinear operator on R . For this purpose, let T: R" — R”
denote multuphcation by A; that 1s,

A=[T] (1)

Since A and C are similar, there exists an invertible matrix P such that C = P~'AP, so it fol-
lows from (1) that

C=P TP (2)
If we assume that the column=vector form of P 15
P=[vy|va]|--]|¥al S If P can be inverted, its column vectors are LI.

then the invertibility of P and Theorem 7.4.4 imply that B = {vy., va, . ... ¥, } 15 a basis for R".
It now follows from Formula (2) above and Formula (20) of Section 8.1 that

C=P TP =[T];s

Thus we have shown that A 15 the matnx for T with respect to the standard basis, and C 15 the
matrix for T with respect to the basis B, so this part of the proof 15 complete.



Conversely, assume that C represents the linear operator 7: R™ — R" with respect to some
basis B, and A represents the same operator with respect to a basis B'; that is,

C=|[T]g and A =|[T]s
If we let P = Pg_. g, then it follows from Formula (12) in Theorem 8.1.2 that
[T]g = P[T]gP~" or equivalently, A= PCP™"

Rewriting the last equation as C = P~'AP shows that A and C are similar. o



SIMILARITY INVARIANTS

There are a number of basic properties of matrices that are shared by similar matrices. For
example, if C = P~'AP, then

det(C) = det(P~'AP) = det(P~ ") det(A) det(P) = det(A)det(P) = det(A)

det(P)

which shows that similar matrices have the same determinant.

In general, any property that 1s
shared by similar matrices is said to be a similarity invariant. The following theorem lists some
of the most important similarity invariants.

Theorem 8.2.3
(@) Similar matrices have the same determinant.
(B) Similar matrices have the same rank.
(c) Similar matrices have the same nullity.
(d) Similar matrices have the same trace.

() Stmilar matrices have the same characteristic polvnomial and hence have the same
eigenvalues with the same algebraic multiplicities.



We have already proved part (a). We will prove part (¢) and leave the proofs of the other three
parts as exercises.

Proof (e) We want to prove that if A and C are similar matrices, then
det(A] — C) =det(A] — A) (3)

As a first step we will show that if A and C are similar matrices, thensoare A/ — Aand A/ — C
for any scalar A. To see this, suppose that C = P~'AP and write

M—-C=MM—-P AP = AP 'P - P AP =P '(LP — AP)
= P~'(MP — AP) = P~'(A\] — A)P

This shows that A/ — A and A/ — C are similar, so (3) now follows from part (a). g



EXAMPLE 1

Similarity

Show that there do not exist bases for R* with respect to which the matrices

L el

represent the same linear operator.

Solution For A and C to represent the same linear operator, the two matrices would have to be
similar by Theorem 8.2.2. But this cannot be, since tr(A) = 7 and tr(C) = 5, contradicting the
fact that the trace is a similarity invariant. i



EIGENVECTORS AND EIGENVALUES OF
SIMILAR MATRICES

Recall that the solution space of
(}.ﬂf — A)K =10
is called the eigenspace of A corresponding to Ay. We call the dimension of this solution space

the geometric multiplicity of A.

Do not confuse this with the algebraic multiplicity of Ay, which,
as you may recall, is the number of repetitions of the factor A — A¢ in the complete factorization
of the characteristic polynomial of A.



EXAMPLE 2 Algebraic and Geometric Multiplicities

Find the algebraic and geometric multiplicities of the eigenvalues of

5 0 0
A= 1 5 O
-3 5 3]

Solution Since A is triangular its characteristic polynomial is
pA) =R =2 =3)(h—3)=(A—2)(A—3)* < det(hi-A)
This implies that the distinct eigenvalues are A = 2 and A = 3 and that
A = 2 has algebraic multiplicity 1
A = 3 has algebraic multiplicity 2

One way to find the geometric multiplicities of the eigenvalues is to find bases for the
eigenspaces and then determine the dimensions of those spaces from the number of basis vectors.



Let us do this. By definition, the eigenspace corresponding to an eigenvalue A is the solution
space of (A/ — A)x = 0, which in this case is

Rk B 0 |[x| [o
] 2=8 3 xnl|l=1]0 (4)
3 =5 A-3]|xm] |0

If A = 2, this system becomes

0 0 0] [x 0
-1 =1 0| |x (5)
3 a8l | 0

|
o

We leave it for you to show that a general solution of this system is

= e s N . |
X EI 8
=r s 1 — e |
X=|xX|=|—3|=t]|—3 (6)

which shows that the eigenspace corresponding to A = 2 has dimension 1 and that the column
vector on the right side of (6) is a basis for this eigenspace.



Similarly, it follows from (4) that
the cigenspace corresponding to A = 3 is the solution space of

l 0 0 Xy 0
-1 0 Of|lxx]l=1]0 (7
3 =5 0 X3 0
We leave 1t for you to show that a general solution of this system 1s
B (0| [0
X=Ix2]= Ol =110 (3)
X3 '} 1

which shows that the eigenspace corresponding to A = 3 has dimension 1 and that the column
vector on the right side of (8) is a basis for this eigenspace. Since both eigenspaces have
dimension 1, we have shown that

A = 2 has geometric multiplicity 1
A = 3 has geometric multiplicity 1 o



EXAMPLE 3 Algebraic and Geometric Multiplicities

Find the algebraic and geometric multiplicities of the eigenvalues of

Solution We leave it for you to confirm that the characteristic polynomial of A is
p(A) =detA] —A) =23 =52 48 —4=(0. - 1)(A —2)?

This implies that the eigenvalues of A are A = 1 and A = 2 and that

0
I

|

0
2
0

-2
1
3

A = 1 has algebraic multiplicity 1
» = 2 has algebraic multiplicity 2

By definition, the eigenspace corresponding to an eigenvalue A is the solution space of the system
(Al — A)x = 0, which in this case is

A
-1
-]

0

A—2

0

2
-]
A-3

=

X1

—

X2

X3

—

0
0
0

9)



We leave it for you to show that a general solution of this system for A = 1 is

X1 -2t -2
x=|x | = | =1 | (10)
_.1'3_ € 'S | 2 ]_

_.1'1 l = (=i 0 =N K3
X=|x|= | = Ol+|2]l=s] O]|+412]1 (11)
X3 5 § 10 1 0

This shows that the eigenspace corresponding to A = 1 has dimension 1 and that the column
vector on the right side of (10) is a basis for this eigenspace, and it shows that the eigenspace
corresponding to A = 2 has dimension 2 and that the column vectors on the right side of (11)
are a basis for this eigenspace. Thus,

A = 1 has geometric multiplicity 1
A = 2 has geometric multiplicity 2 5]



$

REMARK It is not essential to find bases for the eigenspaces to determine the geometric multi-
plicities of the eigenvalues.

For example, to find the dimensions of the eigenspaces in Example

2 we could have calculated the ranks of the coefficient matrices in (5) and (7) by row reduction
and then used the relationship rank + nullity = 3 to determine the nullities.

The next theorem shows that eigenvalues and their multiplicities are similarity invariants.



Theorem 8.2.4 Similar matrices have the same eigenvalues and those eigenvalues have
the same algebraic and geometric multiplicities for both matrices.

Proof Let us assume first that A and C are similar matrices. Since similar matrices have the
same characteristic polynomial, it follows that A and C have the same eigenvalues with the same
algebraic multiplicities. To show that an eigenvalue A has the same geometric multiplicity for
both matrices, we must show that the solution spaces of

(Al—A)x=0 and (AT-C)x=0
have the same dimension, or equivalently, that the matrices
M —A and A -C (12)

have the same nullity. But we showed in the proof of Theorem 8.2.3 that the similarity of A and
C implies the similarity of the matrices in (12). Thus, these matrices have the same nullity by
part (¢) of Theorem 8.2.3. ]

Do not read more into Theorem 8.2.4 than 1t actually says; the theorem states that similar
matrices have the same eigenvalues with the same algebraic and geometric multiplicities, but it
does not say that similar matrices have the same eigenspaces.

The following theorem establishes
the relationship between the eigenspaces of similar matrices.



Theorem 8.2.5 Suppose that C = P'AP and that ) is an eigenvalue of A and C.

(a) If x i5s an eigenvector of C corresponding to A, then PX is an eigenvecior aof A
COrresponding to A.

(b) If x is an eigenvector of A corresponding to i, then P~'X is an eigenvector aof C
corresponding fo A.

We will prove part () and leave the proof of part (b) as an exercise.

Proof (a) Assume that X 15 an eigenvector of C comesponding to A, soX #F0and OCx = Ax. If
we substitute P~IAP for C, we obtain

P7lAPXx = Ax
which we can rewrite as
APx = Pix oreguvalently, A(Px)= A(FPX) (13)

since P isinvertible and x 2 0, 1t follows that Px # 0. Thus, the second equation in (13) imphes
that Px 15 an eigenvector of A cormesponding to AL B

Recall that since P is invertible, its column vectors are LI.



DIAGONALIZATION

Diagonal matrices play an important role in many applications because, in many respects, they
represent the simplest kinds of linear operators. For example, suppose that 7: R" — R" is a

linear operator whose matrix with respect to a basis B = {v;, va, ..., V) is
Fay D s @
0O d --- 0
e e & = i
B8 S NS N
If wis a vector in R”, and if x = [w]p is the coordinate matrix for w with respect to B, then
dy 0 s 07 T Cdyx;]
0 d --- 0 X2 drx»
D=l .- .« & E = )
| O 0 e dy] | e X!

Thus, multiplying x by D has the effect of “scaling” each coordinate of w (with a sign reversal
for negative d’s).



In particular, the effect of 7" on a vector that is parallel to one of the basis
vectors vy, vz, ..., V¥, 18 to contract or dilate that vector (with a possible reversal of direction)

(Figure 8.2.1).

If T is represented by a
diagonal matrix with respect
to the basis B = {v,, va}.
then T contracts or dilates
vectors that are parallel to v,
or ¥- (with possible reversals
of direction).

Figure 8.2.1

We will now consider the problem of determining conditions under which a linear operator
can be represented by a diagonal matrix with respect to some basis. Since we will generally know
the standard matrix for a linear operator, we will consider the following form of this problem.

4

The Diagonalization Problem Given a square matrix A, does there exist an invertible
matrix P for which P~'AP isa diagonal matnx, and if so, how does one find such a P7 If

such a matrix P exists, then A is said to be diagonalizable, and P is said to diagonalize A.



Theorem 8.2.6 Ann x n matrix A is diagonalizable if and only if A has n linearly inde-
pendent eigenvectors.

Proof We will show first that if the matrix A is diagonalizable, then it has n linearly independent
eigenvectors. The diagonalizability of A implies that there is an invertible matrix P and a

diagonal matrix D, say

_Pn Piz =% Pln_ L L
| BT B g G| E WY (14)
P 2 Bl REE RS
such that P~'AP = D. If we rewrite this as AP = PD and substitute (14), we obtain
AP = PD
Cpn Pz o pw | [M 0 - 071 [hipn X2piz oo+ Awpin |
- Plzl Pﬂzz P?n 0 }‘_1 0 = 11{921 12{!?22 An{'—’!n (15)

Pni Pn2 ' P LO O -+« Ap _J‘-IPHI AaPn2 - JhJrﬁ':’a-nr:_



Thus, if we denote the column vectors of P by py, pa, ..., Px, then the left side of (15) can be
expressed as

AP=Alpr ;2 - ml=I[Ap1 Ap2 -+ Ap,] (16)
and the right side of (15) as

[AMip1 A2p2 c++ AnPal (17)
It follows from (16) and (17) that

Apy = A1p1,  Ap2 = A2p2, ..., APy = AnPn
and it follows from the invertibility of P that p;, p2, ..., p, are nonzero, so we have shown that
P1-P2y---» P, are eigenvectors of A corresponding to Ay, Az, ..., Ay, respectively.
Moreover,

the invertibility of P also implies that py, p2, ..., P, are linearly independent (Theorem 7.4.4
applied to P), so the column vectors of P form a set of n linearly independent eigenvectors of A.



Conversely, assume that A has n linearly independent eigenvectors, pi, p2, - - -

, Pr, and that

the corresponding eigenvalues are Ay, Az, ..., Ay, SO
Apr =Aip1, Ap2=A2P2, .., APn = APn & tis Ap,=A.p,, and not Ap,.
If we now form the matrices
P P2 Pin A O 07
P=[pi pr - pal=| > % P21 and D= ? A-z ?
_P;:l P;a P;m L0 O l',,_
then we obtain
AP =Alpr p2 -+ Pal=[Ap1 Ap: Apn)
= [AMip1 A2p2 AnPn]



AP =A[p1 p2 - pal=[Ap1 Ap2 -+ Ap.]

= [MP1 A2p2 +++ AnPal
[ Lipn 22pi2z oo AaPin |
_ | MPa A2p2 -c+ Anp
L_-}Ll.;?nl lz;'?nz ln}:’nn“
‘pu P2 v pw| [P O o 07
= P:.?.l P?z P:'en 0 ‘:":2 U — PD
Pt P2 = Pl L0 O <o A

However, the matrix P is invertible, since its column vectors are linearly independent, so it
follows from this computation that D = P~'AP, which shows that A is diagonalizable. o]

REMARK Keeping in mind that a set of n linearly independent vectors in R” must be a basis
for R", Theorem 8.2.6 is equivalent to saying that an n x n matrix A is diagonalizable if and

only if there is a basis for R" consisting of eigenvectors of A.

L]



A METHOD FOR

DIAGONALIZING A
MATRIX

Theorem 8.2.6 guarantees that an n x n matnx A with n linearly independent eigenvectors 1s
diagonalizable, and 1ts proof provides the following method for diagonalizing A in that case.

Diagonalizing an n = n Matrix with n Linearly Independent Eigenvectors

Step 1. Find n linearly independent eigenvectors of A, say py. p2. ... . Pa-
Step 2. Form the matrix P =[p; p2 --- pal

Step 3. The matrix P~'AP will be diagonal and will have the eigenvalues corresponding to
Pi. P2, - - - . Pr. respectively, as its successive diagonal entnies.



EXAMPLE 4 Diagonalizing a Matrix

We showed in Example 3 that the matrix

0O 0 =2
A=) 2 1
_1 0 3_

has eigenvalues A = 1 and A = 2 and that basis vectors for these eigenspaces are

Pi

= 1

-2

]
A =1

and p; =

v P3 =

A=2

0]
I
0

It is a straightforward matter to show that these three vectors are linearly independent, so A is
diagonalizable and is diagonalized by

B . 0
Pp=|1 0 1
A




As a check, we leave it for you to verify that

P~'AP =

0
1
1

V=22 <t ol 100
2 ] 1 0 11=1|0 2 0O o
0 3|LY 1 0] |[002

REMARK There is no preferred order for the columns of a diagonalizing matrix P—the only

effect of changing the order of the columns is to change the order in which the eigenvalues appear
along the main diagonal of D = P~'AP.

in Example 4 in the order

P = [ps

P p2l=

0
I
0

e

-2

1
1

1

For example, had we written the column vectors of P

then the resulting diagonal matrix would have been

P=IAP =

™ 0 0]
0 I 0

_002_



EXAMPLE 5 A Matrix That Is Not Diagonalizable

We showed in Example 2 that the matrix

20 0]
a=| 13 0
-3 5 3

has eigenvalues A = 2 and A = 3 and that bases for the corresponding eigenspaces are

Pr=|— and p,=10

izi A=3

These eigenvectors are linearly independent, since they are not scalar multiples of one another,
but it is impossible to produce a third linearly independent eigenvector since all other eigenvec-
tors must be scalar multiples of one of these two. Thus, A is not diagonalizable. B



LINEAR INDEPENDENCE OF EIGENVECTORS

Theorem 8.2.7 Ifwvy, va, ..., vi are eigenveciors of a matrix A that correspond to distinct
eigenvalues Ay, Aa, ..., AL, then the set {vy, ¥2, ..., ¥} is linearly independent.

Proof We will assume that vy, va, ..., v; are linearly dependent and obtain a contradiction.
If vy, va, ..., v; are linearly dependent, then some vector in this sequence must be a linear
combination of predecessors (Theorem 7.1.2).

Cr If we let v, be the first vector in the sequence
that is a linear cnmbinatiun\gf predecessors, then vy, v,, ..., v, are linearly independent, and
there exist scalars ¢, ¢3, ..., ¢; such that

Vrgl =C1Vp +HC2Va+ oo+ 6 Yy (18)
Multiplying both sides of (18) by A and using the fact that Av; = A;v; for each j yields

Ars1Vrgl = CLAIV] + C2AaV2 + - -+ Cr ALV, (19)



Now multiplying (18) by A, and subtracting from (19) yields
O=ci(A) = A1+ c2(Aa — Ars))Va+ -+ (Ar — Ars)) Vs (20)

Since vy, va, ..., v, are linearly independent, it follows that all of the coefficients on the right
side of (20) are zero. However, the eigenvalues are all distinct, so it must be that

steEp )

o
|
o
|

But this and (18) imply that v,.; = 0, which is impossible since eigenvectors are nonzero.
Thus, vi, v2, ..., v, must be linearly independent. [



REMARK If A, A,, ..., A; are distinct eigenvalues of a matrix A, then Theorem 8.2.7 tells us
that a linearly independent set is produced by choosing one eigenvector from each of the corre-
sponding eigenspaces.

# More generally, it can be proved that if one chooses linearly independent
sets of eigenvectors from distinct eigenspaces and combines them into a single set, then that
combined set will be linearly independent.

For example, for the matrix A in Example 4 we
had an eigenvector p; from the eigenspace corresponding to A = 1 and two linearly indepen-
dent eigenvectors p» and p; from the eigenspace corresponding to A = 2, so we are guaranteed
without any computations that {p;, p2, p3} is a linearly independent set,



It follows from Theorems 8.2.6 and 8.2.7 that an n x n matrix with n distinct real eigenvalues
must be diagonalizable, since we can produce a set of n linearly independent eigenvectors by
choosing one eigenvector from each eigenspace.

Theorem 8.2.8 Ann x n matrix with n distinct real eigenvalues is diagonalizable.

EXAMPLE 6 Diagonalizable Matrix with Distinct Eigenvalues

The 3 x 3 matrix

200
A= L B0
| =3 Ol'%)
1s diagonalizable, since i1t has three distinct eigenvalues, A =2, A =3, and A = 4. u

The converse of Theorem 8.2.8 is false; that is, it is possible for an n x n matrix to be
diagonalizable without having n distinct eigenvalues. For example, the matrix A in Example

4 was seen to be diagonalizable, even though it had only two distinct eigenvalues, A = 1 and
A =12



The diagonalizability was a consequence of the fact that the eigenspaces had dimensions
1 and 2, respectively, thereby allowing us to produce three linearly independent eigenvectors.

=) Thus, we see that the key to diagonalizability rests with the dimensions of the eigenspaces.

Theorem 8.2.9 Ann x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

Proof Let Ay, Ay, ..., A; be the distinct eigenvalues of A, let E,, E;, ..., E; denote the corre-
sponding eigenspaces, let By, B,, ..., By be any bases for these eigenspaces, and let B be the

linearly independent set that results when the bases are merged into a single set (i.e., B is the
union of the bases).

If the sum of the geometric multiplicities i1s n, then B is a set of n linearly
independent eigenvectors, so A is diagonalizable by Theorem 8.2.6.

The proof of the converse is left for more advanced courses. ]



EXAMPLE 7 Diagonalizability and Geometric Multiplicity

We showed 1n Example 2 that the matnx

720 0]
—3 5 3

has eigenvalues A = 2 and A = 3, both with geometric multupheity 1. Since the sum of the
geometne multiplicities 15 less than 3, the matnx 15 not diagonalizable. Also, we showed in
Example 3 that the matrix

0 0 =2
A=1|1 2 1
1 0 3

has e1genvalues A = | and 4 = 2 with geomeine multiphicities 1 and 2, respectively. Since the

sum of the geometric multiplicities 15 3, the matnx 15 diagonalizable (see Example 4). |



RELATIONSHIP BETWEEN ALGEBRAIC AND GEOMETRIC MULTIPLICITY

A full excursion into the study of diagonalizability will be left for more advanced courses, but
we will mention one result that is important for a full understanding of the diagonalizability
question:

# It can be proved that the geometric multiplicity of an eigenvalue cannot exceed its
algebraic multiplicity.

For example, if the characteristic polynomial of some 6 x 6 matrix A is
p(r) = (A =3)(A —5)*(» — 6)°
then, depending on the particular matrix A, the eigenspace corresponding to A = 6 might have

dimension 1, 2, or 3, the eigenspace corresponding to A = 5 might have dimension 1 or 2, and the
eigenspace corresponding to A = 3 must have dimension 1.



For the matrix A to be diagonalizable
there would have to be six linearly independent eigenvectors, and this will only occur if the
geometric and algebraic multiplicities are the same;

that is, if the eigenspace corresponding
to A = 6 has dimension 3, the eigenspace corresponding to A = 5 has dimension 2, and the
eigenspace corresponding to A = 3 has dimension 1. The following theorem, whose proof is
outlined in the exercises, summarizes these ideas.

Theorem 8.2.10 If A is a square matrix, then:

(a) The geometric multiplicity of an eigenvalue of A is less than or equal 1o its
algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity of each eigenvalue of A
is the same as its algebraic multiplicity.



