Section 8.4 Quadratic Forms

DEFINITION OF A QUADRATIC FORM

Expressions of the form
ap Xy - (asX> e +ﬂ..l.'.

occurred in our study of lincar equations and lincar systems. If a;. az. . ... a, are treated as fixed
constants, then this expression is a real-valued function of the n vanables x;, x2. ..., X and 1s
called a linear form on R*. All variables in a lincar form occur to the first power and there are
no products of vanables.

Here we will be concemed with quadratic forms on R*, which arc functions of the form
a,x; + az.tg + ---+a, x: + (all possible terms axx;x; in which x; and x; are distinct)

The terms of the form axx;x; arc called cross product terms.



It 1s common to combine the cross
product terms involving x;x; with those involving x;x; to avoid duplication. Thus, a genceral
quadratic form on R* would typically be expressed as

a,X; + a,x3 + 2a;x,x, (1)
and a general quadratic form on R? as
Ay X7 + AxX3 + Q305 + 20X, X5 + 20X 1 X5 + 2a,X5X5 (2)

If, as usual, we do not distinguish between the number a and the 1 x 1 matrix [a]. and if we let
x be the column vector of vanables, then (1) and (2) can be expressed in matnx form as

a; az| |t
a, X7 + a,x3 +2a.x,x, = [,r .r.,.] = x"Ax
1 242 2 1 2l ,
3 a1 X»
2 2 2 —
Ay X7 + ayX5 + a3x3 + 20,0, X5 + 244X X3 + 20, X,X5 =
ay dg ds Xy
= [.r, X, 13] ag a ag| | x; = x"Ax

| ds dg a3 | | X3




# Note that the matrix A in these formulas 1s symmetric and that its diagonal entries are

the coefficients of the squared terms and 1ts off-diagonal entries are half the coefficients of the
cross product terms.

In general, if A is a symmetric n X n matrix and x 1s an n X 1 column
vector of variables, then we call the function

Q4(x) = x'Ax (3)

the quadratic form associated with A. When convenient, (3) can be expressed in dot product
notation as

Q4(x) = X'Ax = X"(AX) = X - AX = AX - X 4)



In the case where A 15 a diagonal matrix, the quadrate form Q 4 has no cross product terms;
for example, 1f A 15 the n % n identity matnx, then

i

and if A has diagonal entries Ay, A2, ..., A,, then

a0 e 0[]

0 A -« 0 T
QA(I}=RTAK:[A’1 X3 - Xy : - . ‘1 =}“11%+}“11§+"'+1 x-

= mn




EXAMPLE 1 Expressing Quadratic Forms in Matrix Notation
In cach part, express the quadratic form in the matrix notation x”Ax, where A is symmetric.

Solution The diagonal entries of A are the coeflicients of the squared terms, and the off-diagonal
cntrics arc half the coctficients of the cross product terms, so we obtain

* 2 2 3
x*+o6xy—=5y" =[x y] [3 5] [x]

1 2 =1]|x
xj 4+ Tx3 = 3x3 +4x,x5 — 20,x5 + 8x,xy = [.w:I X5 .r,] 2 7 4] |x: -]
-1 4 =3||x;




CHANGE OF VARIABLE IN
A QUADRATIC FORM

There are three important kinds of problems that occur in applications of quadratic forms:

1. If x"Ax is a quadratic form on R? or R*, what kind of curve or surface is represented by
the equation x’Ax = k?
m) 2. If x’Ax is a quadratic form on R”, what conditions must A satisfy for x”Ax to have
positive values for x # 07
3. If x"Ax is a quadratic form on R”, what are its maximum and minimum values if X is
constrained to satisfy ||x|| = 1?

We will consider the first two problems in this section and the third problem in the next section.



Many of the techniques for solving these problems are based on simplifying the quadratic
form x’Ax by making a substitution

. P}" (5)

that expresses the variables x;, x2,...,x, In terms of new variables y;, y2, ..., y,. If P 18
invertible, then we call (5) achange of variable, and if P is orthogonal, we call (5) an erthogonal
change of variable.

IT we make the change of variable x = Py in the quadratic form x"Ax, then we obtain

X'Ax = (Py)'A(Py) = y'P'APy = y'(P'AP)y (6)



x'Ax = (Py)'A(Py) = y'P"APy = y'(P'AP)y (6)

The matrix B = P’AP is symmetric (verify), so the effect of the change of variable is to produce
a new quadratic form y’By in the variables yy, y2, ..., Vn.

In particular, if we choose P to
orthogonally diagonalize A, then the new quadratic form will be y’Dy, where D is a diagonal
matrix with the eigenvalues of A on the main diagonal; that is,

-l] 0O .-« 0 Y
O Az a6 O] 100

XAX=yDy=1[y y» -+ yil =M Ry A,

0 o -.. Au yn_




Thus, we have the following result, called the principal axes theorem, for reasons that we will

explain shortly.

Theorem 8.4.1 (The Principal Axes Theorem) If A is a symmetric n x n matrix, then there
is an orthogonal change of variable that transforms the quadratic form x"AX into a quadratic
form y Dy with no cross product terms. Specifically, if P orthogonally diagonalizes A, then
making the change of variable X = Py in the quadratic form x"Ax vields the quadratic form

XAX =y Dy = Ay yi + Ayi + -+ A yn
m which Ay, Aa, ..., A, are the eigenvalues of A corresponding to the eigenvectors that form

the successive columns of P.

\ Recall that according to theorem 8.3.4, a matrix s

orthogonally diagonalizable iif it is symmetric.



EXAMPLE 2 An Illustration of the Principal Axes Theorem

Find an orthogonal change of variable that eliminates the cross product terms in the quadratic
form Q = J:f — ,1'32 — 4x)x; + 4xpx3, and express Q in terms of the new variables.

Solution The quadratic form can be expressed in matrix notation as

1L =2 0] | x

Q=x"Ax=[x; x x3]|=-2 0 2|[x
0 2 —1]]=x3

The characteristic equation of the matrix A is

=l B 0
2 Ao =2 |=22=-90=01(0+3)(1r-3)=0
0 =2 ]

so the eigenvalues are A = 0, =3, 3.

\ Distinct eigenvalues.



We leave 1t for you to show that orthonormal bases for the three eigenspaces are

Thus, a substitution X = Py that eliminates the cross product terms 15

X

| x5

X3

LPEY [EFI LT P P |

LPEY [ESFIRR YT S P |

Lo | bt e btk | —

Lea = led|lsd ea |l

V1
Va

¥3

Ll [ R S T

Led | = | bk ek |l




This produces the new quadratic form

0 0 0][wm]
Q=y'(PAP)y=[y 2 »][0 =3 0| |w|=-3y+3y
0 0 3|y
in which there are no cross product terms. n

REMARK If A is a symmetric n x n matrix, then the quadratic form x’Ax is a real-valued
function whose range is the set of all possible values for x’Ax as x varies over R".

=) It can be

shown that a change of variable x = Py does not alter the range of a quadratic form; that is, the
set of all values for x’Ax as x varies over R" is the same as the set of all values for y/(P’AP)y

as y varies over R".

x"Ax = (Py)"A(Py) = y'P"APy = y"(PTAP)y (6)



Why principal axes? ‘duplo cone

QUADRATIC FORMS IN GEOMETRY / circular reto’

Recall that a conic section or conic 1s a curve that results by cutting a double-napped cone with a
plane (Figure 8.4.1). The most important conic sections are ellipses, hyperbolas, and parabolas,
which occur when the cutting plane does not pass through the vertex.

Circles are special cases
of ellipses that result when the cutting plane is perpendicular to the axis of symmetry of the
cone. If the cutting plane passes through the vertex, then the resulting intersection is called a
degenerate conic. The possibilities are a point, a pair of intersecting lines, or a single line.

o M
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Figure 8.4.1 | Circle | | Ellipse \ | Farabola \ Hyperbola
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Quadratic forms on R? arise naturally in the study of conic sections. For example, it is shown
in analytic geometry that an equation of the form

ax* 4+ 2bxy +cy* +dx+ey+ f =0 (7)

in which a, b, and ¢ are not all zero, represents a conic section.” Ifd = e =01in (7), then there
are no linear terms, and the equation becomes

ax* 4+ 2bxy +cy* + f=0 (8)

and 1is said to represent a central conic. These include circles, ellipses, and hyperbolas, but not
parabolas. Furthermore, if 5 = 0 in (8), then there is no cross product term, and the equation

ax*+cy*+ f=0 (9)

is said to represent a central conic in standard position.

*We must also allow for the possibility that there are no real values of x and y that satisfy the equation, as with
x4 vy 4+ 1 = 0. In such cases we say that the equation has ne graph or has an empty graph.



ax’* +cy*+ £ =0 (9)

If f % 0in (9), then we can divide through by — f and rewrite this equation in the form
ax*+by =1 (10)

Furthermore, if the coefficients @’ and b’ are both positive or if one is positive and one is negative,
then this equation represents a nondegenerate conic and can be rewritten in one of the four forms
shown in Table 8.4.1 by putting the coefficients in the denominator. These are called the standard
Jorms of the nondegenerate central conics. In the case where @ = B the ellipses shown in the
table are circles.
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We assume that you are familiar with the basic properties of conic sections, so we will not
discuss such matters in this text. However, you will need to understand the geometric significance
of the constants « and 8 that appear in the standard forms of the central conics, so let us review

their interpretations.

In the case of an ellipse, 2« is its length in the x-direction and 28 its length

in the y-direction (Table 8.4.1). For a noncircular ellipse, the larger of these numbers is the
length of the major axis and the smaller the length of the minor axis. In the case of a hyperbola,
the numbers 2« and 28 are the lengths of the sides of a box whose diagonals are along the
asymptotes of the hyperbola (Table 8.4.1).

Table 8.4.1
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Central conics in standard position are symmetric
about both coordinate axes and have no cross product terms. A central conic whose equation has
a cross product term results by rotating a conic in standard position about the origin and hence
is said to be rotated out of standard position (Figure 8.4.2).

AY
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Figure 8.4.2

Quadratic forms on R? arise in the study of geometric objects called quadric surfaces (or
quadrics). The most important surfaces of this type have equations of the form

ax® + by? + c¢z* +2dxy +2exz+2fyz+g=0

in which a, b, and ¢ are not all zero. These are called central quadrics. A problem involving
quadric surfaces appears in the exercises.



IDENTIFYING CONIC SECTIONS

We are now ready to consider the first of the three problems posed earlier, identifying the curve

or surface represented by an equation x’Ax = k in two or three variables. We will focus on the
two-variable case. We noted above that an equation of the form

ax* +2bxy+cy*+ f=0 (11)

represents a central conic. If b = 0, then the conic is in standard position, and if b # 0, it
is rotated. It is an easy matter to identify central conics in standard position by matching the
equation with one of the standard forms. For example, the equation

Ox* 4 16y* — 144 =0

can be rewritten as
Jz yz s yz /—'\
=M — ==

Tl 1679 4\—/
which, by comparison with Table 8.4.1,

is the ellipse shown in Figure 8.4.3.

> Figure 8.4.3

4




If a central conic is rotated out of standard position, then it can be identified by first rotating

the coordinate axes to put it in standard position and then matching the resulting equation with
one of the standard forms in Table 8.4.1.

To find a rotation that eliminates the cross product
term in the equation ax* + 2bxy + cy* + f = 0, it will be convenient to take the constant term
to the right side and express the equation in the form

ax® 4+ 2bxy +cy* =k

or in matrix notation as

xTAx = [x y] [“ ”] [“]:& (12)
b: e |y



To rotate the coordinate axes, we need to make an orthogonal change of variable

x = Px / See theorems 6.2.3 and 6.2.7.

in which det(P) = 1, and if we want this rotation to eliminate the cross product term, we
must choose P to orthogonally diagonalize A. If we make a change of variable with these two
properties, then in the rotated coordinate system Equation (12) will become

K T U][I’]_
oDy =% }]I:ﬂ wl |y =k (13)

where A, and A, are the eigenvalues of A. The conic can now be identified by writing (13) in
the form

Mx'? 4+ Ay? =k (14)

and performing the necessary algebra to match it with one of the standard forms in Table 8.4.1.



Mx24+0y% =k (14)

For example, if X, A5, and k are positive, then (14) represents an ellipse with an axis of length
2./k /X, in the x'-direction and 2./k /X, in the y’-direction. The first column vector of P, which
is a unit eigenvector corresponding to A, is along the positive x’-axis; and the second column
vector of P, which is a unit eigenvector corresponding to A, is a unit vector along the y’-axis.

These are called the principal axes of the ellipse, which explains why Theorem 8.4.1 is called
“the principal axes theorem.” Also, since P is the transition matrix from x’y’-coordinates to
xy-coordinates, it follows from Formula (29) of Section 7.11 that the matrix P can be expressed
in terms of the rotation angle @ as

Unit eigenvector for A, Ay

cosf —sinf s ) / VkIA, X
= sin 6 cosé (22) (—sin 6, cos 6) (cos 8, sin 0)
(Figure 8.4.4). \ .

t
Unit eigenvector for A,

kI,

Figure 8.4.4



EXAMPLE 3 Identifying a Conic by Eliminating the Cross Product Term

(a) Identify the conic whose equation is 5x* — 4xy + 8y* — 36 = 0 by rotating the xy-axes
to put the conic in standard position.

(b) Find the angle 6 through which you rotated the xy-axes in part (a).

Solution (a) The given equation can be written in the matrix form
x’Ax = 36
where
5 -2
A=
2 7
The characteristic polynomial of A is

A—=S5 2
2 A-8

=A-4)(A-9)

so the eigenvaluesare A =4and A = 9.



We leave it for you to show that orthonormal bases for the eigenspaces are

A=

A=09;

1
N
2

Vs

L

Thus, A 1s orthogonally diagonalized by

E=

Si= &

V5

(16)

Moreover, it happens by chance that det(P) = 1, so we are assured that the substitution x = Px’
performs a rotation of axes. Had it been the case that det(P) = —1, then we would have

interchanged the columns to reverse the sign.



in the x'y’-coordinate system is

i 4 0] X’ =
s L]

which we can write as

xfz r2

Y

4x? +9y? =36 or —+—=1

9 -+

It follows from (13) that the equation of the conic

We can now see from Table 8.4.1 that the conic is an ellipse whose axis has length 2« = 6 in
the x'-direction and length 28 = 4 in the y’-direction.



Solution (b) It follows from (15) that

_ cosd —sin#
" |sin® cos 6

P =

- &)
S &l-

which implies that

cos8 = - sin@ = l tan @ = iy = 1
G /i : oI5 - cos@® 2
£y _ Figure 8.4.5
Thus, # = tan 5 = 26.6° (Figure 8.4.5). i

REMARK In the exercises we will ask you to show that if b 3 0, then the cross product term in
the equation

ax® +2bxy +cy* =k

can be eliminated by a rotation through an angle # that satisfies

a—cCc

2b

cot28 =

(17)

We leave it for you to confirm that this is consistent with part (b) of the last example.



POSITIVE DEFINITE QUADRATIC FORMS

We will now consider the second of the two problems posed earlier, determining conditions
under which x”Ax > 0 for all nonzero values of x. We will explain why this is important shortly,

but first we introduce some terminology.

Definition 8.4.2 A quadratic form x”Ax is said to be

positive definite if x'Ax > 0 for x # 0
negative definite if x"Ax < 0 forx # 0
indefinite if x”Ax has both positive and negative values

The terminology in this definition is also applied to the matrix A; that is, we say that a symmetric
matrix A is positive definite, negative definite, or indefinite in accordance with whether the

associated quadratic form x' Ax has that property.



The following theorem provides a way of using eigenvalues to determine whether a matrix
A and its associated quadratic form x’Ax are positive definite, negative definite, or indefinite.

Theorem 8.4.3 If A is a symmetric matrix, then:

(a) xTAX is positive definite if and only if all eigenvalues of A are positive.
(b) xTAX is negative definite if and only if all eigenvalues of A are negative.

(¢) xTAX is indefinite if and only if A has at least one positive eigenvalue and at least
one negative eigenvalue.

Proofs (a) and (b) It follows from the principal axes theorem (Theorem 8.4.1) that there is an
orthogonal change of variable x = Py for which

x"Ax = yIDy = A, y? + A, 93 + -+ A y> (18)

Moreover, it follows from the invertibility of P that y s 0 if and only if x # 0, so the values
of x"Ax for x # 0 are the same as the values of y'Dy for y # 0. Thus, it follows from (18) that
x’Ax > 0 for x # 0 if and only if all of the A’s in that equation (which are the eigenvalues of

A) are positive, and that x’Ax < 0 for x 5 0 if and only if all of the eigenvalues are negative.
This proves parts (a) and (b).



x'Ax = y'Dy = A\ yF + Ay5 + -4+ A, ) (18)

Proof (c) Assume that A has at least one positive eigenvalue and at least one negative eigenvalue,
and to be specific, suppose that A; > O and A; < 01in (18). Then

x’Ax >0 if y; = 1and all other y’s are 0
and

x’Ax <0 if y; =1 and all other y’s are 0

which proves that x”Ax is indefinite.

Conversely, if x’Ax > 0 for some x, then y’Dy > 0 for
some y, so at least one of the A’s in (18) must be positive. Similarly, if x’Ax < 0 for some X,
then y’Dy < 0 for some y, so at least one of the A’s in (18) must be negative, which completes

the proof. \ o

Also see parts (a) and (b).



Definition 8.4.2 A quadratic form x’Ax is said to be

positive definite if xX’Ax > 0 for x # 0
negative definite if x’Ax < 0 for x # 0
indefinite if x”Ax has both positive and negative values

REMARK The three classifications in Definition 8.4.2 do not exhaust all of the possibilities.
For example, a quadratic form for which x’Ax > 0 if x s 0 is called positive semidefinite,
and one for which x’Ax < 0if x # 0 is called negative semidefinite.

Every positive definite
form is positive semidefinite, but not conversely, and every negative definite form is negative
semidefinite, but not conversely (why?).

By adjusting the proof of Theorem 8.4.3 appropriately,

one can prove that x’Ax is positive semidefinite if and only if all eigenvalues of A are nonnegative
and is negative semidefinite if and only if all eigenvalues of A are nonpositive.



EXAMPLE 4 positive Definite Quadratic Forms

One cannot usually tell from the signs of the entries in a symmetric matrix A whether that matrix
is positive definite, negative definite, or indefinite. For example, the entries of the matrix

;U O
A=|1 0 2
L 2 0

are nonnegative, but the matrix is indefinite, since its eigenvalues are A = 1, 4, —2 (verify). To
see this another way, let us write out the quadratic form as

—3 ] 1- X
0,x)=x"Ax=1[x; x» x3]|1 0 2||x|= 3..«:,2 + 2x1x2 + 2x1x3 + 4x2x3
g 0_ _.1'.'3_
We can now see, for example, that Q4 = 4forx; =0, x; =1, x3 =1and Q4 = —4 for

I]=0,Ig=1,13=—1. n



IDENTIFYING POSITIVE DEFINITE MATRICES

Positive definite matrices are the most important symmetric matrices in applications, so it will
be useful to learn a little more about them.

We already know that a symmetric matrix is positive
definite if and only if its eigenvalues are all positive; now we will give a criterion that can be used
to determine whether a symmetric matrix is positive definite without finding the eigenvalues.

For this purpose we define the kth principal submatrix of an n x n matrix A to be the k x k
submatrix consisting of the first k rows and columns of A. For example, here are the principal
submatrices of a general 4 x 4 matrix:

:HIIJ diz d13 di4
ax  ax dz3 Az
t3) d3z d33z diq

| d41 Q42 A4y G4

First principal submatrix

{11 ﬂlii a1z di4

(24

tl34

A4

ap a2

da1 oo {113:[ tloa
as) ax 4z, 4y
dq) d42 443 d44

a1l
455

aan

a4

==Y

12
oo
32

as?

13
a3
33
a43

a4
24
34
44

Second principal submatrix

Third principal submatrix

Fourth principal submatrix = A

Theorem 8.4.5 A synmerric maltrix A f5 positive definite if and only if the determinant of
every principal siubatrix is positive.

T No proof given.




EXAMPLE 5 Working with Principal Submatrices

The matrix
=
A=1|-1 2 4
_—3 4 9

1s positive definite since the determinants

B ] sl
9 s
2l =2, ‘—1 21=3, ~1 2 4|=1
=8 4 0

are all positive. Thus, we are guaranteed that all eigenvalues of A are positive and x’Ax > 0
for x # 0. 2



Theorem 8.4.6  If A it a symmetric matrix, then the following siatemenis are equivalent.
{a) A iz positive definite.
{B) There is a symmerric pasitive definite matrix B such that A = B
{c} There is an invertitde matrix © such that A = CTC.

Proof (a) = (b) Since A is symmetric, it is orthogonally diagonalizable. This means that there
is an orthogonal matrix P such that PTAP = D, where D is a diagonal matrix whose entries
are the eigenvalues of A. Moreover, since A is positive definite, its eigenvalues are positive, so
we can write D as D = D7, where D, is the diagonal matrix whose entries are the square roots
of the eigenvalues of A. Thus, we have PTAP = ﬂf. which we can rewrile as

A = PD}PT = PD\D, PT = PD,P"PD, P* = (PD\P")(PD, P") = B? (22)

where B = PD; P". We leave it for you to confirm that B is symmetric.

We will show that B is
positive definite by proving that it has positive eigenvalues. The eigenvalues of B are the same
as the eigenvalues of D, since eigenvalues are a similarity invariant and B is similar to D).
Thus, the eigenvalues of B are positive, since they are the square roots of the eigenvalues of A.



Proof (b) = (¢) Assume that A = B?, where B is symmetric and positive definite. Then
A = B?* = BB = B'B, sotake C = B.

For the invertibility of B, recall that B = PD,P".

Proof (c) = (a) Assume that A = C7C, where C is invertible. We will show that A is positive

definite by showing that x’Ax > 0 for x % 0. To do this we use Formula (26) of Section 3.1 and
part (¢) of Theorem 3.2.10 to write

x'Ax = x"C’Cx = (Cx)'(Cx) =Cx - Cx = ||Cx|* = 0

But the invertibility of C implies that Cx % 0if x % 0, so x’Ax > 0 for x # 0. |

uwv=u:-vy=v-.-u=vu (26)




EXAMPLE 6 The Factorization A = B>

In Example 1 of Section 8.3 we showed that the matrix

(4 2 9]
A1 4 3
2 2 4

has eigenvalues A = 2 and A = 8 and that

s [ ] il | -
2 2 0 4.9 9ll & & B 2 o ol
T 1 1 2 1 l 1
PAP=|—=m —=m —m||2 4 2 7 7% 7A#A|I=|0 2 0/=D
| 1 1|12 4 4 0 2 1 008
I I ] i V] -

Since the eigenvalues are positive, Theorem 8.4.6 implies that A can be factored
as A = B? for some symmetric positive definite matrix B. One way to obtain
such a B is to use Formula (22) and take B = PD, P’ , where D, is the diagonal
matrix whose diagonal entries are the square roots of the diagonal entries of D.



This yields
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We leave it for you to confirm that A



CHOLESKY FACTORIZATION

We know from Theorem 8.4.6 that if A is a symmetric positive definite matrix, then it can
be factored as A = CTC, where C is invertible.

m) More specifically, one can prove that if A is
symmetric and positive definite, then it can be factored as A = R’R, where R is upper triangular
and has positive entries on the main diagonal. This is called a Cholesky factorization of A.

Cholesky factorizations are important in many kinds of numerical algorithms, and programs
such as MATLAB, Maple, and Mathematica have built-in commands for computing them.



