Matrices, Vectors

A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called the entries (or sometimes the elements) of the matrix.
For example,
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are matrices.
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We shall denote matrices by capital boldface letters A, B, C, - - -, or by writing the general
entry in brackets; thus A = [a;,], and so on. By an m X n matrix (read m by n matrix)
we mean a matrix with m rows and n columns—rows come always first! i X n is called
the size of the matrix. Thus an m X n matrix is of the form

a1 ayz a1n
Qa3 Adgg Az,
@) A = [a] =
L Gm1 A2 e mn

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus aq, is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
ayy, G2, * * * , Gny 1S called the main diagonal of A.



A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b, - - * or by its

general component in brackets, a = [a;], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form
=[ay ag -+, ay) For instance, a=[-2 5 08 0 1]

A column vector is of the form
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Equality of Matrices

Two matrices A = [ay,] and B = [by,] are equal, written A = B, if and only if they
have the same size and the comresponding entries are equal, that is,
a7 = by, 413 = bys, and so on. Matrices that are not equal are called different.

Thus, matrices of different sizes are always different.

Equality of Matrices

Let
a1 o 4 0
A= and B= .
asy ags 3 -]
Then _ - 0
A=B ifand onlyif '

The following matrices are all different. Explain!
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Addition

Addition of Matrices

The sum of two matrices A = [a;] and B = [b;,] of the same size is written
A + B and has the entries a;, + b;;, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

As a special case, the sum a + b of two row vectors or two column vectors, which must

have the same number of components, is obtained by adding the corresponding
components.

Addition of Matrices and Vectors
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Scalar Multiplication

b L

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [a;;] and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [caj] obtained by multiplying each entry of A
by c.

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B
(which must have the same size!).

Scalar Multiplication
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Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) A+B=B+A

3 b) A+B+C=A+B+0 (written A + B + C)
(c) A+0=A
(d) A+ (—A)=0.

Here 0 denotes the zero matrix (of size mm X n), that is, the m X n matrix with all entries
Zero. -» see previous slide.

Hence matrix addition is commutative and associative [by (3a) and (3b)].
Similarly, for scalar multiplication we obtain the rules

(a) c(A+ B)=cA+ B

(b) (c + k)A = cA + kA

(c) c(kA) = (ck)A (written ckA)
(d) 1A = A,

(4)



Matrix Multiplication

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [ay,] times an r X p
matrix B = [by] is defined if and only if »r = n and is then the m X p matrix
C = [cji] with entries

n
(1) Cix = 2 ajby. = ajbyy + ajpbgy + ¢ - -+ Ajbyy
1=1

The condition » = n means that the second factor, B, must have as many rows as the first
factor has columns, namely n.



¢; in (1) is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. For instance,
Cop = aoibyy + Aggbs; + -+ ag,b,, and so on. One calls this briefly a
“multiplication of rows into columns.” See the illustration in Fig. 155, where n = 3.
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Fig. 155. Motations in a product AB = C
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— In matrix multiplication, are then the corresponding entries directly multiplied?
No! They are not and that has to do with the use of matrices (eg, linear systems).



Matrix Multiplication
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Multiplication of a Matrix and a Vector
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CAUTION! Matrix Multiplication Is Not Commutative, AB # BA in General

IR [ I [

Our examples show that the order of factors in matrix products must always be observed

very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) (EAYB = HAB) = A(KB) writren KAB or AKB
(b) A(BC) = (AB)C written ABC
(¢c) (A + B)C=AC+ BC

(2)

(d) CA+B)=CA+CB

provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) 15 called the associative law. (2c) and (2d) are called the distributive laws.



Linear Systems of Equations

A linear system of m equations in n unknowns x,, - - -, x,, is a set of equations of the form

ﬂ21I1++"+ﬂ2ﬂxﬂ=b3

1)

The system is called linear because each variable x; appears in the first power only, just
as in the equation of a straight line. ay,, - -, a,, are given numbers, called the
coefficients of the system. b,, * * +, b, on the right are also given numbers. If all the b;
are zero, then (1) is called a homogeneous system. If at least one b; is not zero, then (1)
is called a nonhomogeneouns system.

A solution of (1) is a set of numbers x,, - - -, x,, that satisfies all the m equations.
A solution vector of (1) is a vector x whose components form a solution of (1). If the
system (1) is homogeneous, it has at least the trivial solution x; = 0,---,x, = 0.



Coefficient Matrix

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be writlen as a single vector equation

(2) Ax =Db Definition of matrix
\ multiplication allows
the description of a

where the coefficient matrix A = [a;,] is the m X n matrix linear system by (2).
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are column vectors. We assume that the coefficients aj;, are not all zero, so that A is not
a zero matrix. Note that x has n components, whereas b has m components.



Augmented Matrix

The matrix

ay """ iy

S
I

| Gm1 " Omn bm_
is called the augmented matrix of the system (1). The dashed vertical line could be
omitted (as we shall do later); it is merely a reminder that the last column of A does not
belong to A.

The augmented malrix A determines the system (1) completely because it conlains all
the given numbers appearing in (1).



Geometric Interpretation. Existence and Uniqueness of Solutions

If m = n = 2, we have two equations in two unknowns Xy, Xo
ayyxy + aypxg = b
asy1X1 + (99Xg = bz

If we interpret xy. xg as coordinates in the xyxg-plane,
then each of the two equations represents a straight line,

and (x,. x) is a solution if and only if the point P with coordinates x;. x lies on both lines.
Hence there are three possible cases:

(a) Precisely one solution if the lines intersect. existence: (a) & (b);
(b) Infinitely many solutions if the lines coincide. uniqueness: (a).

(c) No solution if the lines are parallel



For instance,
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Applications of Linear Systems
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source: Contemporary Linear Algebra, H. Anton / R.C. Busby
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Solving Linear Systems by Row Reduction

If by a sequence of elementary row operations,

the augmented matrix for a system of linear equations

i1s put in reduced row echelon form,

then the solution set can be obtained either by inspection,
or by converting certain linear equations to parametric form.



Elementary Row Operations. Row-Equivalent Systems

Elementary Row Operations for Matrices:

Interchange of two rows
Addition of a constant multiple of one row to another row
Multiplication of a row by a nonzero constant c.

CAUTION!  These operations are for rows, not for columns! They correspond to

Elementary Operations for Equations:

Interchange of two equations
Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c.

source: Advanced Engineering Mathematics, Erwin Kreyszig
Copyright © 2007 John Wiley & Sons, Inc.



Elementary Operations for Equations:

Interchange of two equations
Addition of a constant multiple of one equation to another equation
Multiplication of an equation by a nonzero constant c.

Clearly, the interchange of two equations does not alter the solution set.

Neither does that addition because we can undo it by a corresponding
subtraction.

Similarly for that multiplication, which we can undo by multiplying
the new equation by 1/c (since ¢ # 0), producing the original equation.
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To be in reduced row echelon form, a matrix must have the following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row is a
1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at the
bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else.

A matrix that has the first three properties is said to be in row echelon form.

source: Contemporary Linear Algebra, H. Anton / R.C. Busby
Copyright © 2003 John Wiley & Sons, Inc.



EXAMPLE 1
Row Echelon
and Reduced
Row Echelon
Form

The following matrices are in reduced row echelon form:

The following matrices are in row echelon form:
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We leave it for you to confirm that each of the matrices in this example satisfies all of the
requirements for its stated form.



all matrices of the following types are in row echelon form:

More on Row
Echelon and
Echelon Form

EXAMPLE 2
Reduced Row
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Moreover, all matrices of the following types are in reduced row echelon form:
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GAUSS-JORDAN AND GAUSSIAN ELIMINATION

Now we will give a step-by-step procedure that can be used to reduce any

matrix to reduced row echelon form by elementary row operations. As we state each step, we
will illustrate the idea by reducing the following matrix to reduced row echelon form:

O 0 -2 0 7 12
2 4 -10 6 12 28 (6)
2 4 -5 6 -5 -1

It can be proved that elementary row operations, when applied to the augmented matrix of a
linear system, do not change the solution set of the system. Thus, we are assured that the linear
system corresponding to the reduced row echelon form of (6) will have the same solutions as
the original system. Here are the steps for reducing (6) to reduced row echelon form:



Step 1. Locate the leftmost column that does not consist entirely of zeros.

= oy

0 0 -2 0 7 12
2 4 -10 6 12 28
s K —3 O = =i

L Lefimost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry to the
top of the column found in Step 1.

7 4 <10 6 12 28

The first and second rows in the preceding
0 0 -2 0 T 12 matrix were interchanged.
2 4 -5 6 -5 -1




Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the first
row by | /a in order to introduce a leading 1.

1 2% 3 &% 14 "
0 8 -9 0 T 12 The first row of the preceding matrix was

multiplied by +.
2 4 -5 6 -5 ~I_

Step 4. Add suitable multiples of the top row to the rows below so that all entries below the
leading 1 become zeros.

1 2 -8 8 % i

o —2 times the first row of the preceding
0 0 2 0 ! 12 matrix was added to the third row.
o 0 5 0 -17 =29




Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix
that remains. Continue in this way until the entire matrix is in row echelon form.

1 2 =3 3 6 14
0O 0 -2 0 7 12
2 9 3 0 =17 =29

in the submatrix
s 2 =5 3 6 14
T The first row in the submatrix was

0 0 | s multiplied by -1 to introduce a leading 1.
0 0 5 0 -—17 =29

I 2 -5 3 6 14 -5 times the first row of the submatrix

0 0 | 0 =& =i was added to the second row of the

2 mh:}-mtrix to introduce a zero below the

_ﬂ' 0 0 0 % 1_. leading 1.




o e The top row in the submatrix was covered,
0 0 I 0 2 6 and we returned again to Step 1.

III— Leftmost nonzero column
in the new submatrix

1 2 -5 3 6 14
7 The first (and only) row in the new

0 0 1 ) = =G submatrix was multiplied by 2 1o introduce
|

0 0 0 0 2 a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we need
the following additional step.



1 2 =53 6 14

4 The first (and only) row in the new
0 0 I 0 - 3 —6 suhm was multiplied by 2 10 introduce
0 0 0 0 | 2 a leading 1.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples of
each row to the rows above to introduce zeros above the leading 1’s.

F- vy

1 2 -5 3 6 14
0 0 1 0 0 | %limﬂlhﬂllﬂrdmwnﬂhcpmmdjng

mainx was added to the second row.
0O 0 0 0 1 2

1 B8 3 O F

() 0 | 0 0 1 —6 times the third row was added to
the first row.

0 0 0 0 1 2

1 & 6 3 6 7]
5 times the second row was added 1o

0O 0 1 0 0 1 Ry

0 0 0 0 1 2

The last matrix is in reduced row echelon form.



The procedure (or algorithm) we have just described for reducing a matrix to reduced
row echelon form is called Gauss—Jordan elimination.

This algorithm consists of two parts,
a forward phase in which zeros are introduced below the leading 1’s
and then a backward phase in which zeros are introduced above the leading 1’s.

If only the forward phase is used, then the procedure produces a row echelon form
and is called Gaussian elimination. —= end of Step 5

SOME FACTS ABOUT ECHELON FORMS

1. Every matrix has a unique reduced row echelon form;

2. Row echelon forms are not unique;



EXAMPLE 5

Solving a Linear System
by Gauss—Jordan Elimination

Solve the following linear system by Gauss—Jordan elimination:

X + 3x; — 2x3 + 2xs = 0
2x; + 6x3 — 5x3 — 2x4 +4xs — 3xg = —1
5x3 + 10x4 4+ 15x= 35

2x; 4+ 6x; + 8Bxs+4xs+ 18xg= 6

Solution The augmented matrix for the system is

M 33 0 & b 0
P 82 45
0 0 5 10 0 15 5
2 6 0 8 4 18 6



Adding —2 times the first row to the second and fourth rows gives

[ 3= @ % B
0 0 =1 2 0 -3 <1
g & 5 10 4 &8 #
0 0 4 8 0 18 6]

Multiplying the second row by —1 and then adding —5 times the new second
row to the third row and —4 times the new second row to the fourth row gives

"t 3-2 0 2 0 O
6 0 1 2 b 3 1|
0O 0 0 0 0 0 0

0 0 0 0 0 6 2



Interchanging the third and fourth rows and then multiplying the third row of
the resulting matrix by ¢ gives the row echelon form

—_—

= R e R e
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3
1
0

-

=R Ll ==

E

—> row echelon form;
Gaussian elimination.

Adding —3 times the third row to the second row and then adding 2 times the
second row of the resulting matrix to the first row yields the reduced row echelon

form

1
0
0

0
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- reduced row echelon form;
Gauss-Jordan elimination.
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The corresponding system of equations is

X1 + 3x» + 4x4 + 2x5 =0
X3 + 2x4 = )
1

.Iﬁ=-'3—

Solving for the leading variables we obtain

X; = —3x3 — 4x4 — 2x5

X3 = —2x4



If we now assign the free variables x», x4, and xs arbitrary values r, s, and 1,

respectively, then we can express the solution set parametrically as

Xg==3r—4s—-2t, x2=r, Xxa=—25, X4 =35, Xs =1, Iﬁ=%



Alternatively. we can express the solution set as a linear combination
of column vectors by writing

k-l —3r —4s -2t -0’ —3r —4s — 217
X2 r 0 r
X3 —25 0 —2s
X4 - 5 — 10 ¥ s
Xs § 0 4
X6 % M _-;;_ s 0 =
0 =37 —47 =27
0 ] 0 | 0
= g +r g +5 ‘? 4 g (7)
0 0 0 1
%_ L. 0] 19 o B




GAUSSIAN ELIMINATION AND BACK SUBSTITUTION

In the examples given thus far we solved various linear systems by first transforming the aug-
mented matrix to reduced row echelon form (Gauss—Jordan elimination) and then solving the
corresponding linear system.

However, it is possible to use only the forward phase of the reduc-
tion algorithm (Gaussian elimination) and solve the system that corresponds to the resulting row
echelon form.

With this approach the backward phase of the Gauss—Jordan algorithm is replaced
by an algebraic procedure, called back substitution, in which each equation corresponding to the

row echelon form is systematically substituted into the equations above, starting at the bottom
and working up.



EXAMPLE 6

Gaussian Elimination and
Back Substitution

We will solve the linear system in Example 5 using the row echelon form of the augmented
matrix produced by Gaussian elimination. In the forward phase of the computations in Example
5, we obtained the following row echelon form of the augmented matrix:

1 32 0 2 0 o
0 0 1 2 0 3

O 0 0 0 0 1
O 0 0 0 0 0 0

To solve the corresponding system of equations

|
, - see slide 33.
3

X1 + 3x; — 2x3 + 2xs = {)
x3 + 2x4 + 3xs =1
x.5=-:',;

we proceed as follows:



Step 1.

Solve the equations for the leading variables.
X; = =3x3 + 2x3 — 2x5s
x3=1—2x4 —3x¢

|
Iﬁ=§

Step 2.

Beginning with the bottom equation and working upward, successively
substitute each equation into all the equations above it.

Substituting x¢ = % into the second equation yields
X; = —3x3 + 2x3 — 2x5
X3 = —2.!'4

o,
Iﬁ—i



Substituting x3 = —2x;4 into the first equation yields

X = —31'2 — 4x4 — 2.1'5

Step 3.

Assign arbitrary values to the free variables, if any.

If we now assign x», x4, and x5 the arbitrary values r, s, and ¢, respectively, we obtain
Xy ==3r—4s—2, xp=r, x3=—25, X4 =5, Xs =1, X6 = 3

which agrees with the solution obtained in Example 5 by Gauss—-Jordan elimination. =



We now call a linear system S; row-equivalent to a linear system S,
if S; can be obtained from S, by (finitely many!) row operations.

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

— They are also called, by simplicity, equivalent systems.




A linear system is called overdetermined if it has more equations
than unknowns, determined if mm = n, and underdetermined if it
has fewer equations than unknowns.

Furthermore, a system is called consistent if it has at least one

solution (thus. one solution or infinitely many solutions), but
inconsistent if it has no solutions at all.



Additional aplications of linear systems

» Economic models (Leontief models);

» State changes in systems (Markov chains);
» Distribution of equilibrium temperature;

» Computerized tomography.

source: Elementary Linear Algebra, H. Anton / C. Rorres
Copyright © 2014 John Wiley & Sons, Inc.



