Section 6.2 Geometry of Linear Operators

NORM-PRESERVING LINEAR OPERATORS

In the last section we studied three kinds of operators on R?: rotations about the origin, reflections
about lines through the origin, and orthogonal projections onto lines through the origin; and we
showed that the standard matrices for these operators are

R — cosfd —sinf
" |siné cost|’

Rotation about the origin
through an angle &

cos 20 sin 26 B
sin20 —cos20|’' %

Reflection about the line
through the origin making
an angle & with the positive
X-axis

cos*@  sin@cosf
sin & cos @ sin® @

Orthogonal projection onto the
line through the origin making
an angle # with the positive
X-axis

(1-3)



As suggested in Figure 6.2.1, rotations about the origin and reflections about lines through the
ongin do not change the lengths of vectors or the angles between vectors: thus, we say that these
operators are length preserving and angle preserving.

In contrast, an orthogonal projection onto
a line through the ongin can change the length of a vector and the angle between vectors.

A rotation about the origin A reflection about a line

does not change lengths of through the origin does not

vectors or angles between change lengths of vectors or Figure 6.2.1
vectors. angles between vectors.

In general, a linear operator T : R™ — R"™ with the length-preserving property |7 (x)]| = lIx|I
is called an orthogonal operator or a linear isometry (from the Greek isometros, meaning “equal
measure”). Thus, for example, rotations about the origin and reflections about lines through the

origin of R? are orthogonal operators.



Theorem 6.2.1 IfT:R" — R" is a linear operator on R", then the following statements
are equivalent.

(a) | T(x))] = ||Ix|| for all x in R". [T orthogonal (i.e., length preserving)]
(b) T(x)-Ti¥y)=x-¥Yforallxandy in R". [T is dot product preserving.]

Proof (a) = (b) Suppose that T is length preserving, and let x and y be any two vectors in R".
We leave it for you to derive the relationship

x.y =1 (Ix+ylI*=IIx—¥l°) 4)
by writing [|x + y||* and ||x — y||* as

Ix+yP=x+y)-(x+y) and [x—y|P=@Ex—y)-x—y)
and then expanding the dot products. It now follows from (4) that

T(x):T(y) =+ (IT®+TWI* = ITx — THI)

LTx+y> = IT(x—y)I?)  [Additivity and Theorem 6.1.3]
- % {”E '4‘11"”2 — |Ix = F”z} [T is length preserving.]

=X+¥ [Formula (4)]



Theorem 6.2.1 IfT:R" — R" is a linear operator on R", then the following statements
are equivalent.

(a) ||T(x))| = ||x|| for all x in R". [T orthogonal (i.e., length preserving)]
(b) T(x)-T(y)=X-Yforallxandy in R". [T is dot product preserving.]

Proof (b) = (a) Conversely, suppose that T is dot product preserving, and let x be any vector
in R". Since we can express ||x|| as

x| = vx+x (3)
it follows that
1T = VT(x) T(x) = x-x=||x| ®

REMARK Formulas (4) and (5) are “flip sides of a coin™ in that (5) provides a way of expressing
norms in terms of dot products, whereas (4), which is sometimes called the polarization identity,
provides a way of expressing dot products in terms of norms.

x-y= % (Ix+yl* - lIx - yl*) (4)



ORTHOGONAL OPERATORS PRESERVE ANGLES AND ORTHOGONALITY

Recall that the angle between two nonzero vectors x and y in R" is given by the formula

o (5 6
AN ©)

Thus, if T: R" — R" is an orthogonal operator, the fact that 7 is length preserving and dot
product preserving implies that

af Tx)-T(y) )= —I( Xy ) -
— (urmnnr(y)u iyl )

which implies that an orthogonal operator preserves angles.

In particular, an orthogonal operator
preserves orthogonality in the sense that the images of two vectors are orthogonal if and only if
the original vectors are orthogonal.



ORTHOGONAL MATRICES

Our next goal is to explore the relationship between the orthogonality of an operator and proper-
ties of its standard matrix.

As a first step, suppose that A is the standard matrix for an orthogonal

linear operator 7: R" — R". Since T(x) = Ax for all x in R”", and since ||7(x)|| = [Ix]l, it
follows that
IAX|| = |Ix]i (8)

forall x in R".

Thus, the problem of determining whether a linear operator is orthogonal reduces
to determining whether its standard matrix satisfies (8) for all x in R".

The following definition
will be useful in our investigation of this problem.

Definition 6.2.2 A square matrix A is said to be erthogonal if A~' = AT,



EXAMPLE 1 An Orthogonal Matrix

The matrix
i 2 67
7 7 7
s | ¥ 3 2
A= 7 7 7
2 s 2
L. 7 7 T
is orthogonal since
- 2T T 2 2 5" - -
7 7 7 7 7 7 1 0 0
ik o | 2 3 6 5 2 2 | — -
A - 7 7 7 7 7 i N 01 0|=d
6 2 _3 2 e _3 0 0 1
. 7 7.3 L 7 T - -
and hence
3 _ 6 27
7 7 7
=l A% s | B 3 6
AT =A" = 7 7 7
6 2 2
L7 7 7.

The following theorem states some of the basic properties of orthogonal matrices.



Theorem 6.2.3
(a) The transpose of an orthogonal matrix is erthogonal.
(B} The inverse of an orthegonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.
(d) If A is orthogonal, then det(A) = | ordet{A) = —1.

Proof (a) If A is orthogonal, then A’A = I, We can rewrite this as AT (A”)" = I, which implies
that (A7)~! = (AT)". Thus, A7 is orthogonal.

Proof (b) If A is orthogonal, then A~! = A”. Transposing both sides of this equation yields

which implies that A~! is orthogonal.



Theorem 6.2.3
(a) The transpose of an orthogonal matrix is erthogonal.
(B} The inverse of an orthegonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.
(d) If A is orthogonal, then det(A) = | ordet{A) = —1.

Proof (¢) We will give the proof for a product of two orthogonal matrices. If A and B are
orthogonal matrices, then
see Kreyszig, sc. 7.8 for inverse

A gedast BT T
(AB)" =B"A"" =BA =(AD) and transpose of a matrix product.

Thus, AB is orthogonal.

Proof (d) If A is orthogonal, then A’A = I. Taking the determinant of both sides, and using
properties of determinants yields

see Kreyszig, sc. 7.8 for

properties of determinants.

which implies that det(A) = 1 or det(A) = —1. S

det(A)det(A”) = det(A) det(A) = 1



Theorem 6.2.4 If A is an m x n matrix, then the following statements are eguivalent.
(@) A'A=1I.
(b) | Ax]| = x| for all x in R".
c) AX- Ay =Xy forallx and vy in R".
(d) The column vectors of A are orthonormal.

We will prove the chain of implications (a) = (b) = (¢) = (d) = (a).
Proof (a) = (b) It follows from Formula (12) of Section 3.2 that

|AX]|> = AX- AXx=x-ATAx =x-:IxX=Xx-Xx = ||x||?

from which part (b) follows.

Au-v=u-Alvy (12)

If 2 vectors u and v are column vectors, then u.v = v'u.

Au.v = v'(Au) = (VIA)u = (A'V)'u = u.Alv .

Proof (b) = (¢) This follows from Theorem 6.2.1 with T'(x) = Ax.



Proof (¢) = (d) Define T: R" — R" to be the matrix operator T(x) = Ax. By hypothesis,
T(x)-T(y) =x-yforall xand y in R", so Theorem 6.2.1 implies that [|7(x)]| = ||x]|| for all

T Im K”.

This tells us that 7" preserves lengths and orthogonality, so 7 must map every set of
orthonormal vectors into another set of orthonormal vectors. This is true, in particular, for the

sel of standard unit vectors, so

T(E]) = Aey,

T(ey) = Aey, ...,

T (e,;) = Ae,

must be an orthonormal set. However, these are the column vectors of A (why?), which proves

part (d).

Proof (d) = (a) Assume that the column vectors of A are orthonormal, and denote these vectors

by a), ay, ..., a,,. It follows from Formula (9) of Section 3.6 that ATA = I (verify). B
4 -a; a); @ ar-a, | [|a;I® a-a a-a, |
a)-a; a-a a-a a -a |as? a, -
AT | N B || II?II 2.3:: )
- - W & .2
a,-a; a,- -a Y __al a, a-a, ||ﬂ,, " 8l




If A is square, then the condition A’A = / in part (a) of Theorem 6.2.4 is equivalent to saying
that A~' = AT (i.e., A is orthogonal). Thus, in the case of a square matrix, Theorems 6.2.4 and
6.2.3 together yield the following theorem about orthogonal matrices.

Theorem 6.2.5 If A is an n x n matrix, then the following statements are equivalent.
(a) A is orthogonal.
(b) | Ax]| = x|l for all x in R".
(c) AX- Ay =X-¥yjforallx and ¥ in R".
(d) The column vectors of A are orthonormal.

(e) The row vectors of A are orthonormal.

Recall that a linear operator 7 : R" — R" is defined to be orthogonal if |7 (x)|| = ||x|| for all
x in R". Thus, T is orthogonal if and only if its standard matrix has the property || Ax| = ||x||

for all x in R". This fact and parts (a) and (b) of Theorem 6.2.5 yield the following result about
standard matrices of orthogonal operators.

Theorem 6.2.6 A linear operator T : R — R" is orthogonal if and only if its standard
matrix is orthogonal.



EXAMPLE 2 standard Matrices of Rotations and Reflections Are Orthogonal ‘

Since rotations about the origin and reflections about lines through the origin of R? are orthogonal

operators, the standard matrices of these operators must be orthogonal. This is indeed the case,
since Formula (1) implies that

RTR — " cosf sinf] [cosf® —sinf
970 7 | —sinf cos@| | sinf®  cosd
B [ cos2 6 + sin® @ 0 » [1 {]] -
B 0 sin®# +cos?6| |0 1]
and, similarly, Formula (2) implies that H, Hy = I (verify). ¥

EXAMPLE 3 Identifying Orthogonal Matrices
We showed in Example 1 that the matrix

|

9)

~I|w e ~afen

-
I
I
b | S T | = R T Y]

oy g e

is orthogonal by confirming that A’A = I. In light of Theorem 6.2.5, we can also establish the
orthogonality of A by showing that the row vectors or the column vectors are orthonormal. We
leave it for you to check both. ®



ALL ORTHOGONAL LINEAR OPERATORS ON R?
ARE ROTATIONS OR REFLECTIONS

We have seen that rotations about the ongin and reflechons about lines through the ongin of
R? are orthogonal (i.e., length preserving) operators. We will now show that these are the only
orthogonal operators on R,

Theorem 6.2.7 If T: R? — R? is an orthogonal linear operator, then the standard matrix
for T is expressible in the form

cos? —sin#d cos @ sin &
Ry = Hsrn = 10
' [sinﬂ' t:n-r.-;H:| or e |:5i|1 (= —l:u-r.-;-ﬂ':| (10)

That is, T is etther a rotation about the origin or a reflection about a line through the origin.

A 2x2 orthogonal matrix represents a rotation if det(A) = 1 and it represents a
reflection if det(A) = -1.



EXAMPLE 4 Geometric Properties of Orthogonal Matrices

In each part, describe the linear operator on R* corresponding to the matrix A.

|z =142 12 12
{ﬂ}‘d‘_[lfﬂ uﬁ} m”‘[uﬁ —1,«'&]

Solution (@) The column vectors of A are orthonormal (verify), so the matrix A is orthogonal.
This implies that the operator is either a rotation about the origin or a reflection about a line
through the origin. Since det(A) = 1, we know definitively that the operator is a rotation. We

can determine the angle of rotation by comparing A to the general rotation matrix Ry in (1).
This yields

cos® = 1/+/2 and sin@ = 1/v2

from which we conclude that the angle of rotation is # = m /4 (= 457).

Solution (b) The matrix A is orthogonal and det(A) = —1, so the corresponding operator is a
reflection about a line through the origin. We can determine the angle that the line makes with
the positive x-axis by comparing A to the general reflection matrix Hy in (2). This yields

cos 28 = ll.-"ﬁ and smn2¢ = lfﬁ

from which we conclude that 8 = /8 (= 22.5%). [ ]



CONTRACTIONS AND DILATIONS OF R?

Up to now we have focused primarily on length-preserving linear operators; now we will consider
some important linear operators that are not length preserving.

If k is a nonnegative scalar, then the linear operator T (x, y) = (kx, ky) is called the scaling
operator with factor k. In particular, this operator is called a contraction if 0 < k < 1 and a
dilation if k > 1. Contractions preserve the directions of vectors but reduce their lengths by the
factor k, and dilations preserve the directions of vectors but increase their lengths by the factor
k. Table 6.2.1 provides the basic information about scaling operators on R,

Table 6.2.1
Ilustration Effect on the Standard
(yperator Tix,y)=kx,ky) Unit Square Matrix
Contraction u;'ith t¥ X o (x,y) (0. “'-l- 0, &) | ]
factor k on R- Tix) x ky) ‘ -
O=<k<l) X
- TN (k. 0) [k 0
0 .if]
. (0. k) \
Dilation with ¥ Tix) @ (ke ky) | (0, 1)) il
factor k on R? X 3 (x. ¥) ‘ —
= X -
"r' } - L Lo | (k. 0)




VERTICAL AND HORIZONTAL COMPRESSIONS AND EXPANSIONS OF R?

An operator T (x, y) = (kx, y) that multiplies the x-coordinate of each point in the xy-plane by
a nonnegative constant k has the effect of expanding or compressing every figure in the plane in
the x-direction—it compresses if 0 < k < 1 and expands if k£ > 1. Accordingly, we call T the
expansion (or compression) in the x-direction with factor k. Similarly, T(x, y) = (x, ky) is
the expansion (or compression) in the y-direction with factor k. Table 6.2.2 provides the basic
information about expansion and compression operators on R2.

Table 6.2.2
lustration Effect on the Standard
Operator T(x,y) =({kx, ¥) Unit Square Matrix
y
Compressionof R* T(h‘, vl (11 | —— (0, 1) -
in the x-direction s (x,) -
with factor & / e
2 .
O=<k<l) k ,0) L kO b 8
o 1
1 i'lrl
Expansion of R? (¥ (kr,y) | 0 1) ©, 1)
in the x-direction X oy g
with factor k /':?Eﬂ ' T _hi_
(k> 1) = ¥ R ; (k, 0)




VERTICAL AND HORIZONTAL COMPRESSIONS AND EXPANSIONS OF R?

in the v-direction
with factor &

(k = 1)

(x, ¥)

X
S

Table 6.2.2
HNiustration Effect on the Standard

Operator T(x,y) =(x,ky) Unit Square Matrix
Compression of B* = (0. 1) Ll
in the y-direction Lx, ¥) (0, k),
with factor k A k)

4 e [ )
O<k<l) tm L (L0) (L 0) [1 D]
0 k
Ay

Expansion of R’ 5 (= k) 0. 1




SHEARS

A linear operator of the form T (x, v) = (x + kv, y) translates a poant (x, v) in the xy-plane
parallel to the x-axis by an amount kv that 1s proportional to the y-coordinate of the point, This
operator leaves the points on the x-axis fixed (since y = (), but as we progress away from the
x-axis, the translation distance increases. We call this operator the shear in the x-direction with
Jactor k. Similarly, a linear operator of the form T'(x, v) = (x, y + kx) is called the shear in
the y-direction with factor k. Table 6.2.3 provides the basic information about shears in R*.

Table 6.2.3
Operator Effect on the Unit Square Standard Matrix
(k. 1) (%, 1)
Shear of R? in 0. 1) : e
the x-direction — " 1 k
with factor & : —_— — [D 1]
T(x.y) = (x + ky, y) (1, 0) (1,0) )
| (k> 0) (k < 0)

Shear of R? (0, 1) (0, 1) [ ‘ (0, 1)

in the y-direction H (1 k) 1 0

with factor k | 1: | == [A—. |]
(1,00 1.6

T(x,y) = (x,y + kx)
(k=0) (k<0)




EXAMPLE 5

Some Basic Linear Operators on R?

In each part describe the linear operator corresponding to A, and show its effect on the unit
square.

1 2 2 0 2 0
(a) A]:[D ]] (b) -42:|:D 1:| (c) -“13:|:D J

Solution By comparing the forms of these matrices to those in Tables 6.2.1, 6.2.2, and 6.2.3,
we see that the matrix A corresponds to a shear in the x-direction with factor 2, the matrix A,
corresponds to a dilation with factor 2, and A corresponds to an expansion in the x-direction
with factor 2. The effects of these operators on the unit square are shown in Figure 6.2.3. =

AY AY AV
3 I 3 ——
") N 2 g b
11—t ] 1
12 ' e 5
Figure 6.2.3 L3 3 L 2 3 L2 3

, I &k kK 0 kK 0
standard matrices > [D ]] (a) [{] X (b) [ﬂ I] (c)



EXAMPLE 6 Application to Computer Graphics

Figure 6.2.4 shows a famous picture of Albert Einstein and three computer-generated linear
transformations of that picture. The original picture was scanned and then digitized to decom-
pose it into a rectangular array of pixels. The transformed picture was then obtained as follows:
¢ The program MATLAB was used to assign coordinates and a gray level to each pixel.
® The coordinates of the pixels were transformed by matnx multiplication.

® The images were then assigned their original gray levels to produce the transformed
picture. &

| i i 1 | |
‘ Digitized scan | ( Rotated 5 | Sheared horizontally | Compressed horizontally |

e 1 i — |

Figure 6.2.4



LINEAR OPERATORS ON R®

We now turn our attention to linear operators on R*. As in R*, we will want to distinguish
between operators that preserve lengths (orthogonal operators) and those that do not. The
most important lincar operators that are not length preserving are orthogonal projections onto
subspaces, and the simplest of these are the orthogonal projections onto the coordinate planes
of an xyz-coordinate system. Table 6.2.4 provides the basic information about such operators.

Operator

Table 6.2.4

Orthogonal projection
on the xy-plane

T(x,y.7)=(x,y,0)

Orthogonal projection

on the xz-plane

F(x.y,2) =(x.0,2)

Orthogonal projection

on the yz-plane

Tix,y,2)=(0,y,2)




We have seen that 2 x 2 orthogonal matrices comespond to rotations about the ongin or
reflections about lines through the origin in R. One can prove that all 3 x 3 orthogonal matrices

correspond to linear operators on R* of the following types:

Type 1: Rotations about lines through the ongin.
Type 2: Reflections about planes through the ongin.

Type 3: Arotation about a line through the orgin followed by a reflection about the plane through
the orgin that 1s perpendicular to the line.

Recall that one call tell whether a 2 x 2 orthogonal matrix A represents a rotation or a reflection
by its determinant—a rotation if det(A) = | and a reflection if det(A) = —1.

Similarly, if A
is a 3 x 3 orthogonal matrix, then A represents a rotation (i.e., is of type 1) if det(A) = 1 and

represents a type 2 or type 3 operator if det(A) = —1. Accordingly, we will frequently refer to
2 x 2 or 3 x 3 orthogonal matrices with determinant | as rotation matrices.

) To tell whether a
3 x 3 orthogonal matrix with determinant —1 represents a type 2 or a type 3 operator requires
an analysis of eigenvectors and eigenvalues.



REFLECTIONS ABOUT COORDINATE PLANES

The most basic reflections in a rectangular x yz-coordinate system are those about the coordinate

planes. Table 6.2.5 provides the basic information about such operators on R°.

Operator Mustration Standard Matrix
, Lx, v z)
Reflection about x /7 1 0o o
the x y-plane 1 ¥ 0o 1 0
Tix,y,z) = (x,y,—1) /“ 0 0 -1
N\
* * v -z
\ I
(x, -y 2) (x, vy, z)
Reflection about Fd a2 1 0 0
the xz-plane Tix)™, | A% y 0 -1 0
Tix,v,2) =(x.—v,2) i 0 0 1
X
Reflection about -1 00
the vz-plane 01 0
Tix,y,z) =(—x,¥y.1) 0o 01

Table 6.2.5



ROTATIONS IN R®

We will now turn our attention to rotations in R*. To help understand some of the issues involved,
we will begin with a familiar example—the rotation of the Earth about its axis through the North
and South Poles. For simplicity, we will assume that the Earth is a sphere. Since the Sun rises
in the east and sets in the west, we know that the Earth rotates from west to east. However, (o
an observer above the North Pole the rotation will appear counterclockwise, and to an observer
below the South Pole it will appear clockwise (Figure 6.2.5). Thus, when a rotation in R is
described as clockwise or counterclockwise, a direction of view along the axis of rotation must
also be stated.

Rotation looks
counterclockwise

% North Pole

South Pnle”

T Rotation looks
clockwise

Figure 6.2.5



Rotation looks
counterclockwise

;Cl
{ North Pole

South Pnle”

™ Rotation looks
clockwise

Figure 6.2.5

There are some other facts about the Earth’s rotation that are useful for understanding general
rotations in R3. For example, as the Earth rotates about its axis, the North and South Poles remain
fixed, as do all other points that lie on the axis of rotation. Thus, the axis of rotation can be
thought of as the line of fixed points in the Earth’s rotation. Moreover, all points on the Earth
that are not on the axis of rotation move in circular paths that are centered on the axis and lie in
planes that are perpendicular to the axis. For example, the points in the Equatorial Plane move
within the Equatonal Plane in circles about the Earth’s center.



A rotation of R® is an orthogonal operator with a line of fixed points, called the axis of
rotation. In this section we will only be concerned with rotations about lines through the origin,
and we will assume for simplicity that an angle of rotation i1s at most 180° (7 radians).

If
T:R? — R? is a rotation through an angle 6 about a line through the origin, and if W is the

plane through the origin that is perpendicular to the axis of rotation, then T rotates each nonzero
vector w in W about the origin through the angle @ into a vector T(w) in W (Figure 6.2.6a).

AL
Oriented axis

ol s '
Axis of rotation of rotation

e Al

<,
W f - W | w

(a) (b) Figure 6.2.6




Thus, within the plane W, the operator T behaves like a rotation of R? about the origin. To
establish a direction of rotation in W for the angle 6, we need to establish a direction of view
along the axis of rotation. We can do this by choosing a nonzero vector u on the axis of rotation
with its initial point at the origin and agree to view W by looking from the terminal point of u
toward the origin; we will call u an orientation of the axis of rotation (Figure 6.2.6b).

AL
Oriented axis

IO of -
Axis of rotation of rotation

(a) (b) Figure 6.2.6



Now let us see how we might choose the orientation u so that rotations in the plane W appear
counterclockwise when viewed from the terminal point of u. If @ # 0 and € # 7, then we can
accomplish this by taking

u=wx T(w) (12)

where w 1s any nonzero vector in W. With this choice of u, the right-hand rule holds, and the
rotation of w into 7' (w) is counterclockwise looking from the terminal point of u toward the origin
(Figure 6.2.7). If we now agree to follow the standard convention of making counterclockwise
angles nonnegative, then the angle € will satisfy the inequalities 0 < 8 < .

Counterclockwise
rotation

4

|
25 W x T(w)

f it
8
W w

|

Figure 6.2.7




The most basic rotations in a rectangular x yz-coordinate system are those about the coordinate
axes. Table 6.2.6 provides the basic information about these rotations. Foreach of these rotations,
one of the standard unit vectors remains fixed and the images of the other two can be computed
by adapting Figure 6.1.8 appropriately.

Operator Iustration Standard Matrix Table 6.2.6

-
il

Rotation about the positive
x-axis through an angle #

L B

1 0 0
0 cost? —sind
)] sin# cos &

Rotation about the positive

cos# 0 sind
: 0 1 0
y-axis through an angle & —sinfd 0 cost

Rotation about the positive cos # —singd 0
i sin @ cos ]
z-axis through an angle #

0 0 1

L A




For example, in a rotation about the positive y-axis
through an angle @, the vector e; = (0, 1, 0) along the positive y-axis remains fixed, and the
vectors e; = (1, 0,0) and e; = (0, 0, 1) undergo rotations through the angle @ in the zx-plane.
Thus, if we denote the standard matrix for this rotation by R, 4, then

R.'l"

e; = (1,0,0) = (cos®, 0, —sin )
& = (0. 1. 0) =% (0,1,0)

Ry,
e; = (0,0,1) =5 (sin8, 0, cos 9) (see Figure 6.2.8).
y: p
I 7
cos @ > R >
e 6 /sin 0

|
\ —sin @
X X

T(e;) =(cos 6,0, —sin @) T(e;) =(sin 6, 0, cos 8)

Figure 6.2.8




