Section 7.5 The Rank Theorem
and Its Implications

Theorem 7.5.1 (The Rank Theorem) The row space and column space of a matrix have
the same dimension.

EXAMPLE 1 Row Space and Column Space Have the Same Dimension

In Example 4 of Section 7.3 we showed that the row space of the matrix

T O 0 0 2

P =, 1 =3 =2 =4 "
-1 8 5 =14 -9 0

2 10 -28 —-18 4

— -

is three-dimensional, so the rank theorem implies that the column space 1s also three-dimensional.
Let us confirm this by finding a basis for the column space.

One way to do this is to transpose
A (which converts columns to rows) and then find a basis for the row space of A” by reducing
it to row echelon form and extracting the nonzero row vectors.



Proceeding in this way, wc first transpose A to obtain

1 -2 0 2
0 1 5 10
AT=|0 -3 —-14 -28
0 -2 -9 -18
2 -4 0 4 |
and then reduce this matrix to row echelon form to obtain
1 -2 0 2 |
0 1 5 10
0 0 | 2 (2)
0O 0 0 0
0 0 0 0]

(verify). The nonzero row vectors in this matrix form a basis for the row space of A, so the
column space of A is three-dimensional as anticipated. If desired, a basis of column vectors for
the column space of A can be obtained by transposing the row vectors in (2) to obtain

0
-2 1 0
C = ol’ C = 5| Cy = | |
| 2] | 10 | | |



Theorem 7.5.2 If A is an m x n matrix, then

rank(A) = rank(A") (3)

This result has some 1mportant implications. For example, if A 15 an m x n matnx, then
applying Theorem 7.4.1 to A® yields

rank(A" ) 4+ nullity(A" ) = m

which we can rewnte using (3) as

rank({A) + nullity(A" ) = m (4)

This relationship now makes 1t possible to express the dimensions of all four fundamental spaces
of a mainx 1n terms of the size and rank of the matnx. Specifically, if A 15 anm x n mainx with
rank k, then

dim(row(A)) = &k. dimi{nulliA))=n—k

dim(col(A)) =k, dim(null{AT))=m —k (3)

Theorem 7.4.1 (The Dimension Theorem for Mairices) If A is anm x n marrix, then
rank{A) 4+ nullity(A) =n (2)




EXAMPLE 2 Dimensions of the Fundamental Spaces from the Rank

Find the rank of
1 28 I %
A=|-3 | 7 —1 ]

-2 3 &4 0 2

and then use that result to compute the dimensions of the fundamental spaces of A.

Selution The rank of A is the number of nonzero rows in any row echelon form of A, so we
will begin by reducing A to row echelon form. Introducing the required zeros in the first column
yields

1 2 -3 1 1|
o 7 -2 2 4
0 7 -2 2 4

At this point there is no need to go any further, since it is now evident that the row space is
two-dimensional. Thus, A has rank 2 and
dim(row(A4)) =rank = 2, dim(null(4)) = number of columns —rank=5—-2=3
dim(col(A)) =rank = 2, dim(null(A7)) = number of rows —rank =3 -2 =1 ]




The consistency or inconsistency of a linear system Ax = b is determined by the relationship
between the vector b and the column vectors of A. To see why this so, suppose that the successive
column vectorsof A area,;, a,, ..., a,, and use Formula (10) of Section 3.1 to rewrite the system
as

xja;+xa +---+x,a,=D>b (5)

We see from this expression that Ax = b is consistent if and only if b can be expressed as a
linear combination of the column vectors of A, and if so, the solutions of the system are given
by the coefficients in (5).

This idea can be expressed in a slightly different way: If A is an m x n matrix, then to say
that b is a linear combination of the column vectors of A is the same as saying that b 1s in the
subspace of R™ spanned by the column vectors of A. This subspace is called the column space
of A and is denoted by col(A). The following theorem summarizes this discussion.

Theorem 3.5.5 A linear system Ax = b is consistent if and only if b is in the column space
of A.




Theorem 7.5.3 (The Consistency Theorem) If Ax = b is a linear svstem of m eguations in
n unknowns, then the following statemenis are equivaleni.

(a) Ax = b is consistent.
(b) b is in the column space of A.

(c) The coefficient mairix A and the augmenied matrix [ A | b] have the same rank.

The equivalence of parts (a) and (b) was given in Theorem 3.5.5, so we need only prove that
(b} < (c). The equivalence {a) < (c) will then follow as a logical consequence.

Proof (b) < (c) If b 1s in the column space of A, then Theorem 7.2.5 implies that the column
spaces of A and [A | b] have the same dimension; that 15, the two matrices have the same rank.
Conversely, if A and [A | b] have the same rank, then their column spaces have the same di-
mension, 50 Theorem 7.2.5 imphes that b 1s a inear combination of the column vectorsof A. =

Theorem 7.2.5 Let § be a nonempty set of vectors in R", and let §' be a set that results by
adding additional vectors in R" 1o §.

(a) If the additional vectors are in span( §), then span(5”) = span( 5).
(b) If span(5") = span(X), then the additional vectors are in span(§).

(c) If span(5") and span(§) have the same dimension, then the additional vectors are in
span(§) and span(§") = span(5§).




EXAMPLE 3 Visualizing the Consistency Theorem

To obtain a better understanding of the relationship between the ranks of the coefficient and
augmented matrices of a linear system, consider the system

A —2.1'.'2 —3.1'3='—"5|-
—3x1+ T — m=-—3
2xy —Sx0 4+ b= 7

—3xy + 6xs + 9x3 = —1

The augmented matrix for the system is

Y g e e
-3 7 —-1;{-3
3 -8 4 7
=3 B Biad]




and the reduced row echelon form of this matnx 1s (venfy)

10 =23 ! 0]
0 1 =10} 0

6
0 0 011 (6)
0o 0o 0] o]

The “bad” third row in this matrix makes it evident that the system is inconsistent.

However, this
row also causes the corresponding row echelon form of the coefficient matrix to have smaller
rank than the row echelon form of the augmented matrix [cover the last column of (6) to see
this].

~ This example should make it evident that the augmented matrix and the coefficient matrix
of a linear system have the same rank if and only if there are no bad rows in any row echelon
form of the augmented matrix, or equivalently, if and only if the system is consistent. ¥



Definition 7.5.4 Anm x n matrix A is said to have full column rank if its column vectors
are linearly independent, and it is said to have full row rank if its row vectors are linearly

independent.

—> full column/row rank = “posto coluna/linha maximo”.

Simnce the column vectors of a matnx span the column space and the row vectors span the
row space, the column vectors of a matnix with full column rank must be a basis for the column
space, and the row vectors of a matnx with full row rank must be a basis for the row space.
Thus, we have the following alternative way of viewing the concepts of full column rank and
full row rank.

Theorem 7.5.5 Let A be anm % n matrix.

(a) A has full column rank if and only if the column vectors of A form a basis for the
column space, that is, if and only if rank{A) = n.

(b) A has full row rank if and only if the row vectors of A form a basis for the row
space, that is, if and only if rank{iA) = m.



EXAMPLE 4

Full Column

Rank and Full
Row Rank
The matnx
1 @
A= 2 1
-3 1

has full column rank because the column vectors are not scalar multiples of one another; it does
not have full row rank because three vectors in R? are linearly dependent. In contrast,

I § <3
AT =
[ﬂ ] J

has full row rank but not full column rank.



Theorem 7.5.6 If A is an m x n matrix, then the following statements are equivalent.
(a) AX = 0 has only the trivial solution.
(b) AX = b has at most one selution for every b in R™.
(c) A has full column rank.

Since the equivalence of parts (a) and (f) 1s the content of Theorem 3.5.3, 1t suffices to show
that parts {a) and (c) are equivalent to complete the proof.

Theorem 3.5.3 If A isan m x n matrix, then the following statements are equivalent.
(a) Ax = 0 has only the trivial solution.

(b) Ax = b has at most one solution for every b in R™ (i.e., is inconsistent or has a
unique solution).

Theorem 3.5.2 A general solution of a consistent linear system AX = b can be obtained
by adding a particular solution of AX = b to a general solution of Ax = 0.




Theorem 7.5.6 If A is an m x n matrix, then the following statements are equivalent.
(a) Ax = U has only the trivial solution.
(b) Ax = b has at most one selution for everv b in R™.

(c) A has full column rank.

If (a) then (b):

For trivial solution, null(A) = 0 and rank(A) = n.

Then, either b is in col(A), in an unique way (m = n, columns as basis vectors),
or itis not (m > n, m vectors would be required to fully span the R™);

If (b), then (a):
If there is more than one solution for every b, then the columns of A are LD,
and rank(A) < n and null(A) > 0.



Theorem 7.5.6 If A is an m x n matrix, then the following statements are equivalent.
(a) Ax = 0 has only the trivial solution.
(b) AX = b has at most one selution for every b in R™.
(c) A has full column rank.

Proof (a) & (c¢) Leta;, a,, ..., a, be the column vectors of A, and write the system Ax = 01n
the vector form

xa +xa+ -+ xa,=0 (7)

Thus, to say that Ax = 0 has only the trivial solution is equivalent to saying that the n column
vectors in (7) are linearly independent; that 1s, Ax = 0 has only the trivial solution if and only
if A has full column rank. E



EXAMPLE 5 1mplications of Full Column Rank

We showed in Example 4 that
F % i
A= 2 3
-3 1

has full column rank. Thus, Theorem 7.5.6 implies that the system Ax = 0 has only the trivial
solution and that the system Ax = b has at most one solution for every b in R*. We will leave
it for you to confirm the first statement by solving the system Ax = 0; and we will show that
Ax = b has at most one solution for every vector b = (b, b, b3) in R3.

Reducing the augmented matrix [A | b] until the left side is in reduced row echelon form
yields

E by

0 by — 2b,

0 0] by —by+5b
(verify), so there are two possibilities: by — by + 5by # 0 or by — by + 5b) = 0. In the first case

the system is inconsistent, and in the second case the system has the unique solution x; = by,
x; = by — 2b,. In either case it is correct to say that there is at most one solution. n

0
1

|
I
I
I
I




OPTIONAL Proof of Theorem 7.5.1

We want to prove that the row space and column space of an m x n matrix A
have the same dimension. For this purpose, assume that A has rank k, which
implies that the reduced row echelon form R has exactly k nonzero row vectors,
say ry,ra,...,ry. Since A and R have the same row space by Theorem 7.3.7,

it follows that the row vectors a;, a5, ..., a, of A can be expressed as linear
combinations of the row vectors of R, say

= C11I1 + C12'2 + C13's + -+ Ccu T}
C21T] + €22 + €33 + -+ -+ CuIy

. 8
|

(10)

an = CyI') + Cp2ll2 + Cpy33 ++ -+ + CmiX'x



a), = cyr + c12rp + €133 +- -+ el

21 1+ CnI2 + 033 + 1+ Caly

- (10)

an = CpN + Cpall2 + Cyal’3 + -+ + Conik Tk

Next we equate corresponding components on the two sides of each equation.
For this purpose let a;; be the jth component of a;, and let r;; be the jth compo-
nent of r;. Thus, the relationships between the jth components on the two sides
of (10) are

a)j = cunj + Ciarzj + C1ar3j =+ -+ Culij
arj = curyj + carzj + cursj + -+ culyj

Amj = Cm1T1j + Cm2l2j + Cmal3j + -+ Coiklkj



dyj = ey + Ci1arzj + C1ary; + -+ Clel;
(dy; = €21 + C€xar2j + €3r3; + -+ Culgj

Omj = CoIT1j T Cm2F2j T Cmal3; + "1 Conk T

which we can rewrite 1n matrix form as

iy C11 C12 C13 Clk

Lo 21 | €22 €23 C2k
; =Ty ; +rai| . + ri; : + Ty

e f Crml | | Com2 Cm3 | Cimk

Since the left side of this equation 1s the jth column vectorof A,
we have shown that the k column vectors on the night side of the equation
span the column space of A.



Thus, the dimension of the column space of A is at most k; that is,
dim(col(A)) < dim(row(A)) (11)

It follows from this that

. T : T — If (11) holds for a generic matrix A,
dim(col(A™)) = dim(row(A")) i 165 holds for AT

or
dim(row(A)) < dim(col(A)) (12)

We can conclude from (11) and (12) that dim(row(A)) = dim(col(A)). a



OVERDETERMINED AND
UNDERDETERMINED
LINEAR SYSTEMS

In engineering applications, the equations in a linear system AX = b are often mathematical
formulations of physical constraints on a set of variables, and engineers generally try to match the
number of variables and constraints.

However, this is not always possible, so an engineer may
be faced with a linear system that has more equations than unknowns (called an overdetermined
system) or a linear system that has fewer equations than unknowns (called an underdetermined
system).

The occurrence of an overdetermined or underdetermined linear system in applications
often signals that some undesirable physical phenomenon may occur. The following theorem
explains why.



Theorem 7.5.7 Let A be an m x n matrix.

(a) (Overdetermined Case) If m > n, then the syvstem AX = b is inconsistent for some
vector b in R™.

(b) (Underdetermined Case) If m < n, then for every vector b in R™ the system
AX = b is either inconsistent or has infinitely many solutions.

Proaf (a) If m > n, then the column vectors of A cannot span R™. Thus, there 15 at least one

vector b in B™ that 1s not a linear combination of the column vectors of A, and for such a b the
system Ax = b has no solution.

Proaf (b) If m < n, then the column vectors of A must be linearly dependent (n vectors in R™ ).
This imphies that Ax = 0 has mhnitely many solutions, so the result follows from Theorem
3.3.2, ]

In proof (b), by Theorem 7.5.6, Ax = 0 will have more than the trivial solution (the columns of A
are LD, rank(A) < n and null(A) > 0).

Then, if Ax = 0 has infinitely many solutions, either Ax = b will follow the same way, or the
system does not have a particular solution (inconsistent).

Theorem 3.5.2 A general solution of a consistent linear system AX = b can be obtained
by adding a particular solution of AXx = b to a general solution of Ax = 0.




EXAMPLE 6
A Misbehaving
Robot

To express Theorem 7.5.7 in transformation terms, think of Ax as a matnx transformation from
R"™ to R™, and think of the vector b in the equation Ax = b as some output that we would like

the transformation to produce in response to some input X.

Part (a) of Theorem 7.5.7 states
that if m > n, then there is some output that cannot be produced by any input, and part (b)
states that if m < n, then for each possible output b there 1s either no input that produces that
output or there are infinitely many mputs that produce that output.

Thus, for example, if the
input X is a vector of voltages to the driving motors of a robot, and if the output b is a vector of
speeds and position coordinates that describe the action of the robot in response to the input, then

an overdetermined system governs a robot that cannot achieve certain desired actions, and an
underdetermined system governs a robot for which certain actions can be achieved in infinitely
many ways, which may not be desirable. =



MATRICES OF THE FORM A7A AND AA”

Matrices of the form A’A and AA” play an important role in many applications, so we will now
focus our attention on matrices of this form.
To start, recall from Formula (9) of Section 3.6 that if A is an m x n matrix with column

vectors a;, a3, ...

ATA =

, 4,, then

_H| 8 a--JA
a-a a-a
a,+a; a,-a

a -a, |
ﬂz 'an

It is symmetric.

(8)

Since transposing a matrix converts columns to rows and rows to columns, it follows from (8)

thatif ry, ry, ..
_l'1 T
I
AAT = .
_rm * I

ry-m
ra«nm

rm"rz

T |
ry Iy

rm - rm_

.. I, are the row vectors of A, then

It is also symmetric.

9)

The next theorem provides some important links between properties of a general matrix A,
its transpose A, and the square symmetric matrix A’A.



Theorem 7.5.8 If A is an m x n matrix, then:
(a) A and ATA have the same null SICE.
(b)) A and ATA have the same row Space.

(c) A' and A'A have the same column SPICE.
(d) A and ATA have the same rank.

We will prove part (a) and leave the remamming proofs for the exercises.

Proof (a) We must show that every solution of Ax = 0 is a solution of A’Ax = 0, and con-
versely. If Xg is any solution of Ax = 0, then X, is also a solution of A’Ax = 0 since

Aldxy = AT (Axg) = AT0=10



Conversely, if Xp is any solution of A’Ax = 0, then X is in the null space of A’A and hence
is orthogonal to every vector in the row space of A’A by Theorem 3.5.6.

However, A'A is
symmetric, so Xg is also orthogonal to every vector in the column space of A’A. In particular,
Xp must be orthogonal to the vector ATAxq: that is, xg - (A"Axg) = 0.

It is known, from Eq. (12) below that x,.(A'Ax,) = (Ax,).(AX,).

This implies that Axg - Axg = 0, so Axy = 0 by part (d) of Theorem 1.2.6. This proves that x,
1s a solution of Ax = 0. B

Au-v=u-Aly (12)

Theorem 3.5.6 If A is an m x n matrix, then the solution space of the homogeneous linear
system AX = 0 consists of all vectors in R" that are orthogonal to every row vector of A.

Theorem 1.2.6 Ifu, v, and w are vectors in R", and if k is a scalar, then:

(@) u-v=v-u [Symmetry property]
(b) a-(V+wW)=u-v+u-w | Distributive property)
(c) k(a+v) = (ku)-v [Homogeneity property]

d) vev=0andv-v=0ifandonly ifv=0 [Positivity property]




Theorem 7.5.8 If A is an m % n matrix, then:
(@) A and A'A have the same null SPMICE.
(b) A and A'A have the same row space.
(c) A" and A'A have the same column space.
(d) A and A'A have the same rank.

For the remaining parts, see that:

* in part (d), recall that A and A'A have the same number of columns, n, and then,
from this and part (a), they should have the same rank (dimension theorem);

e parts (b) and (c) follow from part (d).



The following companion to Theorem 7.5.8 follows on replacing A by A? in that theorem
and using the fact that A and A" have the same rank for part (d ).

Theorem 7.5.9 If A is an m x n matrix, then:
(@) AT and AAT have the same null space.
(B) AT and AAT have the same row space.
(c) A and AAT have the same column SPMICE.

(@) Aand AA’ have the same rank.



Theorem 7.5.10 If A is an m x n matrix, then the following statements are equivalent.
(a) Ax = 0 has only the trivial solution.
(b) Ax = b has at most one solution for every b in R™.
(c) A has full column rank.
id) A"A is invertible.

It suffices to prove that statements (c) and (4 ) are equivalent, since the remaining equivalences
follow immediately from Theorem 7.5.6.

Proaf(c) < (d) Since A’A is an n x n matnix, it follows from statements (¢) and (g) of Theorem
7.4.4 that A'A is invertible if and only if A'A has rank n. However, A’A has the same rank as
A by part (d ) of Theorem 7.5.8, so A’A is invertible if and only if rank(A) = n, that is, if and
only if A has full column rank. |



Theorem 7.5.11 If A is an m x n matrix, then the following statements are eguivalent.
(a) A'x = 0 has only the trivial solution.
() A"x = b has at most ene solution for every vector b in R".
(c) A has full row rank.
(d) AAT is invertible.

Theorems 7.5.10 and 7.5.11 make it possible to use results about square matrices to deduce
results about matrices that are not square. For example, we know that A’A is invertible if and
only if det(A7A) # 0,and AA7 is invertible if and only if det(AAT) # 0.

Thus, it follows from
Theorems 7.5.10 and 7.5.11 that A has full column rank if and only if det(A’A) # 0, and A has
full row rank if and only if det(AA”) # 0.



EXAMPLE 7 A Determinant Test for Full Column Rank and Full Row Rank

We showed in Example 4 that the matrix
.3
A= o 3
= &
has full column rank, but not full row rank. Confirm these results by evaluating appropriate
determinants.

Solution To test for full column rank we consider the matrix

" T
] 2 =3 14 -1
0 ] 1 -1 .
and to test for full row rank we consider the matrix
"1 0] 1 & =3
AA! = 2 1 0 I I — 2 3 -5
-3 1 -3 =5 lﬂ_

Since det(A"A) = 27 = 0 (verify), the matrix A has full column rank, and since det(AAT) = 0
(verify), the matrix A does not have full row rank. 5



APPLICATIONS OF RANK

The advent of the Internet has stimulated research on finding efficient methods for transmitting
large amounts of digital data over communications lines with limited bandwidth. Digital data

are commonly stored in matrix form, and many techniques for improving transmission speed
use the rank of a matrix in some way.

Rank plays a role because it measures the “redundancy”
in a matrix in the sense that if A 1s an m x n matnx of rank &, then n — k of the column vectors

and m — k of the row vectors can be expressed in terms of k linearly independent column or row
vectors.

The essential idea in many data compression schemes is to approximate the original
data set by a data set with smaller rank that conveys nearly the same information, then eliminate
redundant vectors in the approximating set to speed up the transmission time.



