

Laboratório de Conformação Mecânica - UFPR

Aspectos Gerais da Conformação

Prof. Paulo Marcondes, PhD. DEMEC / UFPR

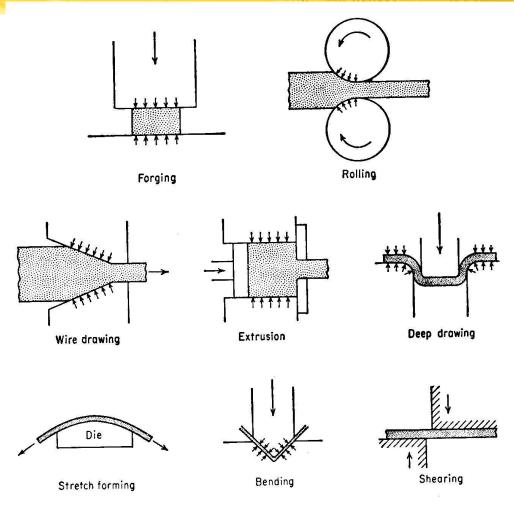
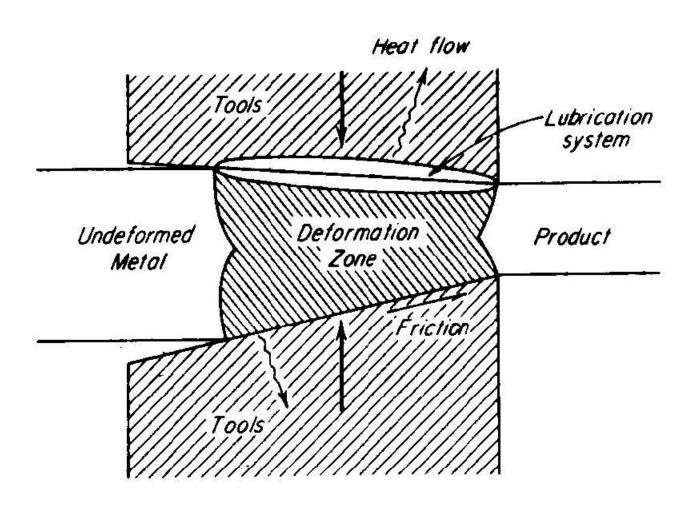
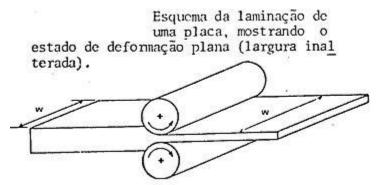
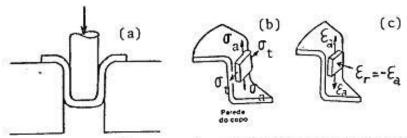



Fig. 15-1 Typical forming operations.





Estado de tensão e de deformação:

Deformação plana ou bi-axial ('plane strain')

Deformação plana com tração

Esquema do embutimento de um copo cilíndrico (a), mostran do o estado de tensão (b) e o estado de deformação (c) na parede do copo durante a operação.

Círculo de Mohr

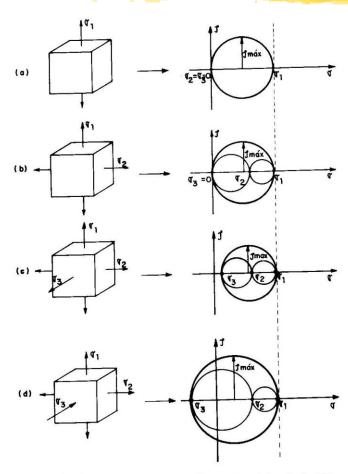


Fig. 1.13 Exemplos de círculos de Mohr para diferentes estados de tensão.

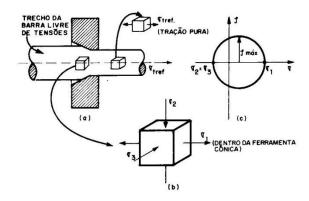
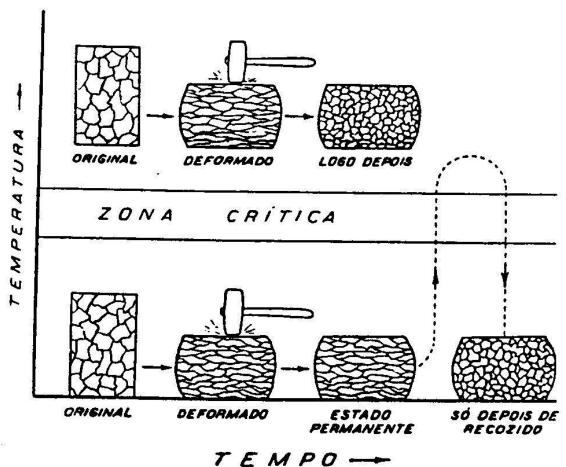
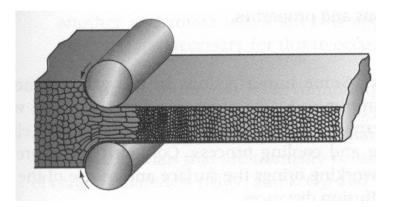



Fig. 1.15 Estado aproximado de tensões e círculo de Mohr correspondente para o caso da trefilação.

Círculo de Mohr em trefilação

Efeitos da temperatura na conformação

Os processos podem ser subdivididos quanto à temperatura em que são realizados:


A quente

Vantagens:

- reduzir os esforços de deformação;
- aumentar a homogeneidade;
- reduzir a anisotropia e
- induzir a recristalização (reduzir o tamanho de grão).

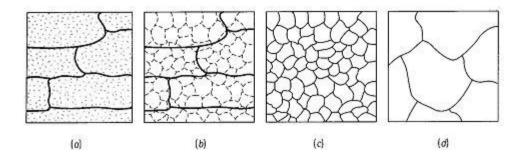
Desvantagens:

- oxidação da superfície (laminação);
- descarburização (perda de material);
- difícil controle dimensional (dilatação e contração térmica) e
- anisotropia (grãos menores na superfície).

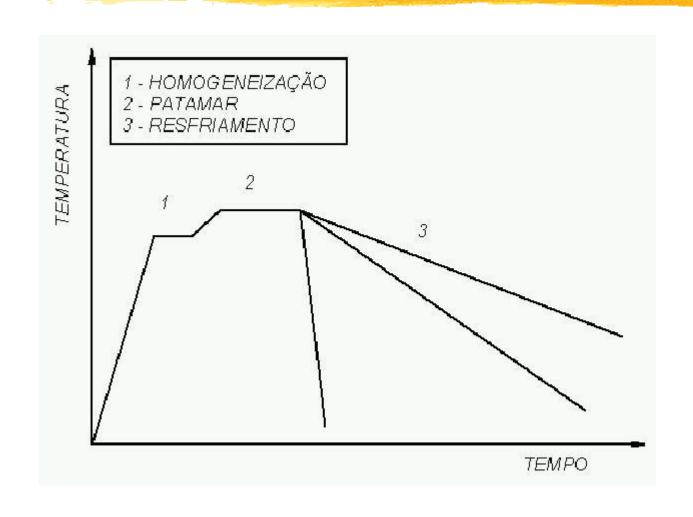
A frio

Vantagens:

- excelentes tolerâncias dimensionais e acabamento superficial;
- aumento da resistência e dureza;
- barato para grandes lotes de pequenas peças e
- boa condutividade elétrica.


Desvantagens:

- não adequados para trabalhos em alta temperatura e
- baixa dutilidade.


Recozimento

- Recuperação;
- Recristalização;
 - Temperatura de recristalização
- Coalescimento.

The effect of annealing temperature on the microstructure of cold-worked metals: (a) cold worked, (b) after recovery, (c) after recrystallisation, and (d) after grain growth.

Atrito

Atrito em processos de conformação

Coeficiente de atrito

- atrito de deslizamento e
- atrito de aderência.

Os efeitos práticos principais do atrito são:

- Aumentar o esforço necessário a conformação;
- Aumentar o desgaste das ferramentas e matrizes;
- Prejudicar o acabamento superficial e
- •Acentuar a tendência à ruptura e ao trincamento da peça (tende a tornar a deformação mais heterogênea).

	Valores de µ para diferentes processos	μ
A	Laminação a frio	
	Aco ao C — cilindro de aco polido — lubrificada	0,04-0,05
	Aco ao C — cilindro de aço polido — imersao — boa lubrificação	0,05-0,10
	Aco ao C — cilindro rugoso ("sand blast")	0,30
	Al, Cu e Pb — cilindro de aço polido	0,10
	Al, Cu e Pb — cilindro rugoso	0,40
A' —	Laminação a quente	0.40
	Aço ao C — cilindro de aço — 400-900°C	0,40
	Aco ao C — cilindro de aço — -1000°C	0,30
	Aco ao C — cilindro de aço — -1100°C	0,20
	Aço ao C — cilindro fundido (aprox. 50% maior)	
	Alumínio — cilindro de aço — 375°C	0,54
	Cobre — cilindro de aco — 750°C	0,35
	Níquel e chumbo — cilindro de aço -900 e 180°C	0,32
	Bismuto e cádmio — cilindro de aço – 150 e 180°C	0,25
	Estanho e zinco — cilindro de aço -100 e 110°C	0,17
В —	Trefilação	0.02.0.04
	Aço ao C — matriz CW — diferentes lubrificantes	0,03-0,00
	Cobre — matriz CW — lubrif. forçada de óleo	0,06
	Latao — matriz de aço — lubrif. forçada de óleo	0,10
	Cobre e inox — matriz CW — cera	0,07
	Cobre e inox — matriz CW — azeites minerais	0,30
c -	Estampagem profunda	0.10
	Alumínio — lubrificado com sebo	0,10
	Cobre — lubrificado com óleo sob pressão	0,15
	Latão — lubrificado com óleo sob pressão	0,08-0,12
	Bronze — lubrificado com óleo sob pressão	0,14

Lubrificação:

As forças de fricção ocorrem entre as peças e as ferramentas de conformação:

• Limitrofe ou limite

Considerações importantes:

- Aditivos de extrema pressão
- Revestimentos conversivos.

Efeitos funcionais dos lubrificantes:

- Reduzir os carregamentos necessários para a deformação;
- Melhor controle de acabamento superficial;
- Minimizar a soldagem do metal no ferramental;
- Minimizar o desgaste das ferramentas;
- Isolar termicamente as peças e ferramentas;
- Resfriar as peças e ferramentas e
- Aumentar os limites de deformação antes da fratura

Função dos Lubrificantes:

Os lubrificantes reduzem o atrito ao introduzirem uma interface que seja facilmente cisalhada.

Tensões residuais em produtos conformados:

Aparecem em um corpo quando o mesmo está livre de forças externas.

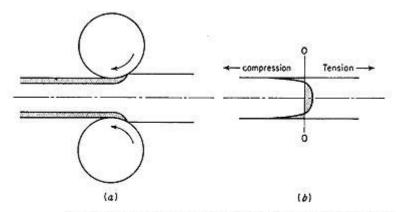
- São geradas por deformação plástica não-uniforme e são tensões elásticas no máximo iguais ao limite de escoamento.
- Alívio de tensões

porém, uma não-uniforme termo-expansão ou contração devido a um não-uniforme aquecimento ou resfriamento pode originar tensões residuais.

• É importante um resfriamento lento.

Obs. Deformação plástica em temperatura ambiente pode aliviar tensão residual.

Tensões residuais:

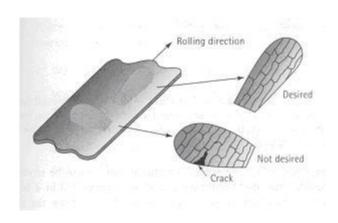

Técnicas experimentais.

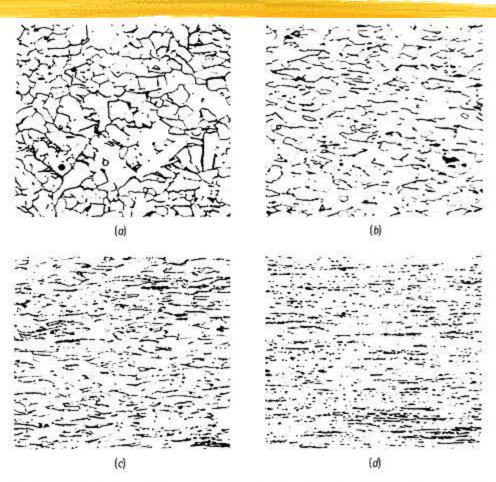
Testes destrutivos:

A remoção da parte estressada para causar uma redistribuição da tensão no restante do corpo da peça.

Usinagem de camadas superficiais ou furando um pequeno orifício e medindo a redistribuição de tensão.

Um método <u>não destrutivo</u> é a difração de raios-X.


(a) Inhomogeneous deformation in rolling of sheet;
(b) resulting distribution of longitudinal residual stress over thickness of sheet (schematic).



Efeitos metalúrgicos na conformação

Fibramento mecânico (textura metalográfica)

The fibrous grain structure of a low carbon steel produced by cold working: (a) 10% cold work, (b) 30% cold work, (c) 60% cold work, and (d) 90% cold work (x 250). (From Metals Handbook, Vol. 9, 9th Ed. American Society For Metals, 1985.)