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Abstract

A number of approaches have evolved over the last decade for the implementation of total variational diminishing

(TVD) schemes within an unstructured grid finite volume method framework. Unfortunately none of these approaches

has been comprehensive enough to permit the general implementation of TVD-based schemes in unstructured grids,

and/or accurate enough to recover the exact TVD formulation in structured grids. In this paper we propose a simple

method that allows the implementation of the full spectrum of TVD schemes in unstructured grids, while recovering

their exact formulation on structured grids. Four schemes implemented using this approach, TVD-MINMOD, TVD-

MUSCL (monotonic upstream-centered scheme for conservation laws, MUSCL), TVD-SUPERBEE, TVD-OSHER,

are tested and compared to Bruner�s TVD formulation [Parallelization of the Euler equations on unstructured grids,

AIAA paper 97-1894, 1995], and to the Barth and Jesperson linear reconstruction scheme [The design and application

of upwind schemes on unstructured meshes, AIAA paper 89-0366, 1989] by solving four pure advection problems.

Results indicate that the Bruner formulation yields, for the same original TVD scheme, overly diffusive results when

compared to the current method. The BJ-MUSCL and TVD-MUSCL are shown to be comparable and more accurate

than the OSHER scheme. The SUPERBEE performs best though showing tendency for stepping the modeled profile.

In all tests the current method is found to retain the behavior of the structured grid TVD formulation.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The last two decades have witnessed a sustained ef-

fort by the CFD community to develop robust high-

resolution (HR) schemes [3–9] for the simulation of

advection-dominated flows. Many of these schemes

have been implemented on structured grids within the

framework of finite volume methods. The main ingre-

dients common to all these schemes are a high order

profile for the reconstruction of cell face values from cell

averages, combined to a monotonicity criterion. The

high order reconstruction is usually based on an upwind

biased, sometimes symmetric, high order interpolation

profile [10–12]. To satisfy monotonicity, a number of

concepts have been proposed over the years [13,14], all

within a structured grid framework. In the flux corrected

transport (FCT) approach [15–18], a first order accurate

monotone scheme is converted to a HR scheme by

adding limited amounts of anti-diffusive flux. In the

monotonic upstream-centered scheme for conservation

laws (MUSCL) of Van Leer [19], monotonicity is en-

forced through a limiter function applied to a piecewise

polynomial flux reconstruction procedure. Harten [20]

expressed monotonicity as a measure of discrete varia-

tion in the solution fields, hence the name total varia-

tional diminishing (TVD). This criterion was then

expressed as a flux limiter by Sweby using the r–w dia-

gram [21]. In the Leonard�s approach [4,22,23], the

monotonicity criterion is presented using a relation be-

tween a normalized face value, ~//f , and a normalized

upwind value, ~//C . While on the conceptual level the

above-mentioned monotonicity criteria can be shownto be

related and sometimes equivalent, implementation-wise

they are very different. However within the framework
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of structured grids these differences have not translated

into increased difficulties in implementation.

For unstructured grids the situation is more compli-

cated and HR schemes are not as advanced as for

structured grids [24–26]. This is specifically due to the

difficulty in implementing and enforcing a monotonicity

criterion that relies on logical or directional next-

neighbor information, which is readily available in

structured grids but missing in unstructured grids. To

circumvent this difficulty a number of approaches have

evolved, with varying degrees of success, based on dif-

ferent monotonicity criteria, such as the FCT [14–17],

the flux difference splitting concepts [27,28], or the

MUSCL approach [29–32]. The MUSCL-based tech-

nique developed by Barth and Jespersen [2] (and am-

mended in [33,34]), by modifying the Spekreijse [35]

definition of monotonicity to bound the cell face values

rather than the cell nodal values, is currently the most

popular and successful approach for the implementation

of HR schemes in unstructured grids [36–44], partly

because of its simplicity. Unfortunately, most of the

limiters developed for structured grids cannot be im-

plemented using the BJ technique as it is restricted to

schemes where the base high order profile uses a cell

based gradient, which is basically equivalent to the

FROMM scheme [19], whose bounded version is

equivalent to the MUSCL scheme. In one dimension the

BJ scheme can be shown to be equivalent to the TVD-

MUSCL scheme [45]. Bruner [1,45] suggested a more

general approach to bound convective schemes. In this

approach he used the Sweby r–w diagram with a mod-

ified r factor defined for unstructured grids. Unfortu-

nately his modification did not recover the exact r factor
on structured grids. In this paper we present a valid re-

formulation of the r factor for unstructured grids that

yields the exact TVD formulation on structured grids.

In what follows the formulation of TVD schemes is

presented for structured grids following the r–w diagram

of Sweby. The modification of Bruner to the r-factor is

then described before detailing the new r-formulation.

Spekreijse�s criterion is then presented and the BJ tech-

nique described. Finally, the new method is compared to

the Bruner implementation and the BJ scheme. For that

purpose, four TVD schemes (MINMOD [20], OSHER

[46], TVD-MUSCL [19], and SUPERBEE [47]), imple-

mented using the new formulation, are tested by solving

a number of pure advection problems.

2. TVD schemes

Following Roe [47], the face value /iþ1=2 of a TVD

scheme is written as the sum of a diffusive first order

upwind term and an anti-diffusive one. The anti-diffusive

part is multiplied by the flux limiter function, wðrÞ,
which is a non-linear function of r, the upwind ratio of

consecutive gradients of the solution, defined as (with-

out loss of generality, we assume the velocity at the face

viþ1=2 > 0):

riþ1=2 ¼
/i � /i�1

/iþ1 � /i
ð1Þ

leading to the flux-limited scheme:

/iþ1=2 ¼ /i þ 1
2
wðriþ1=2Þð/iþ1 � /iÞ ð2Þ

Using a flux limiter, wðrÞ, which is simply a linear

function of r, different high order schemes can be written

in the form of Eq. (2). For example for, w equal to r, the
second order upwind (SOU) scheme is obtained. Other

schemes can be similarly formulated:

DOWNWIND scheme wðrÞ ¼ 2

CD scheme wðrÞ ¼ 1

SOU scheme wðrÞ ¼ r

FROMM scheme wðrÞ ¼ 1þ r
2

ð3Þ

Nomenclature

f ð Þ functional relationship

r Sweby�s r-factor
u, v velocity components in the x and y directions
u, v averaged control volume face velocities

v velocity vector

Rð Þ reconstructed polynomial

Greek symbols

C diffusion coefficient

/ general dependent variable

q density

w Sweby�s flux limiter

r gradient operator

r linearly Interpolated gradient

Dr position vector

Subscripts

f refers to a control volume face

C central grid point

D downstream grid point

F neighboring cell point

P main grid point

U upstream grid pointe refers to normalized variable
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TVD schemes can also be formulated in a form slightly

different from the one given by Eq. (2), as in:

/iþ1=2 ¼ /i þ 1
2
wðr0iþ1=2Þð/i � /i�1Þ ð4Þ

in this case the r term, now denoted by r0, is defined as

r0iþ1=2 ¼
/iþ1 � /i

/i � /i�1

¼ 1

riþ1=2

the relation between the two formulations is given by

1

r0iþ1=2

w0ðr0iþ1=2Þ ¼ wðriþ1=2Þ ð5Þ

taking for example the SOU scheme where wðrÞ ¼ r, the
equivalent flux limiter function for Eq. (4) becomes

w0
SOUðr0Þ ¼ r0wSOUðrÞ ¼

1

r
r ¼ 1 ð6Þ

This can be demonstrated by deriving /iþ1=2 for the SOU

scheme:

/iþ1=2 ¼ /i þ
1

2
wSOUðriþ1=2Þð/iþ1 � /iÞ

¼ /i þ
1

2
riþ1=2ð/iþ1 � /iÞ

¼ /i þ
1

2

ð/i � /i�1Þ
ð/iþ1 � /iÞ

ð/iþ1 � /iÞ

¼ 3

2
/i �

1

2
/i�1 ð7Þ

/iþ1=2 ¼ /i þ
1

2
w0

SOUðriþ1=2Þð/i � /i�1Þ

¼ /i þ
1

2
ð/i � /i�1Þ ¼

3

2
/i �

1

2
/i�1 ð8Þ

In this work the formulation of TVD schemes will be

performed using Eq. (2). Following Sweby [21], these

schemes may be plotted along with the TVD mono-

tonicity region on an r–w diagram (see Fig. 1(a)). Using

this diagram, it is simple to grasp the formulation of

TVD schemes: any flux limiter function, wðrÞ, formu-

lated to lie within the TVD monotonicity region yields a

Fig. 1. (a) High order and TVD monotonicity region on Sweby�s diagram, (b)–(e) TVD schemes in Sweby r–w diagram.
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TVD scheme. Sweby has also shown that for second

order schemes the flux limiter function, wðrÞ, has to pass

through point (1,1). A number of TVD schemes are

shown in Fig. 1(b)–(e), and formulated as

SUPERBEE limiter wðrÞ ¼ maxð0;minð1; 2rÞ;minð2; r; ÞÞ
MINMOD limiter wðrÞ ¼ maxð0;minð1; rÞÞ
OSHER limiter wðrÞ ¼ maxð0;minð2; rÞÞ

MUSCL limiter wðrÞ ¼ r þ jrj
1þ jrj

ð9Þ

Since the index-based notation used above is not suit-

able for unstructured grids, the more appropriate nota-

tion, shown in Fig. 2(a) and (b), is adopted. As shown in

Fig. 2(b), nodes C and D are defined as the Upwind and

Downwind nodes around face f, and the virtual U node

is defined as the node upwind of the C node.

Using this notation Eq. (2) is rewritten as

/f ¼ /C þ 1
2
wðrf Þð/D � /CÞ ð10Þ

and the r ratio becomes

rf ¼ /C � /U

/D � /C
ð11Þ

It is clear that the main difficulty in implementing TVD

schemes in unstructured grids lies in the need for de-

fining a �virtual� U node.

2.1. Bruner r modification

Bruner [1,45] proposed the following modification to

the definition of the r-factor for TVD schemes:

rf ¼ /C � /U

/D � /C
	

2ð/f � /CÞ
/D � /C

¼ 2D r
* 
 ðr/ÞC
/D � /C

ð12Þ

This approximation is clearly inconsistent and when

brought back into one dimension does not recover the

TVD condition, as Eq. (11) becomes:

rf ¼ /C � /U

/D � /C
6¼ rf ;bruner ¼

2D r
* 
 ðr/ÞC
/D � /C

¼ /D � /U

/D � /C
ð13Þ

Fig. 2. (a) Unstructured grid notation, (b) advection node notation, (c) extended stencil for face gradient, and (d) compact stencil for

face gradient.
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2.2. Exact r formulation

A better formulation for r in unstructured grids can

still be derived. Returning to the definition of r, we can

write:

rf ¼ /C � /U

/D � /C
¼ /D þ ð/C � /U Þ � /D

/D � /C

¼ ð/D � /U Þ � ð/D � /CÞ
/D � /C

ð14Þ

Noting that values for /D and /C represent the values of

the nodes straddling the interface and thus are readily

available for unstructured grid. Therefore, the r-values
would be computable if the term involving /U could be

replaced by a known term. In this case

ð/D � /U Þ ¼ r/C 
 rUD ¼ ð2r/C 
 rCDÞ ð15Þ

where rCD is the vector between the nodes �C� and �D�,
and rUD is the vector between nodes �D� and the virtual

node �U �, representing the node Upstream of node �C�
(see Fig. 2(b)). Node �U � is chosen such that it lies along

the line joining nodes �D� and �C� with �C� at the center of
the �UD� segment. Other positions of �U � could also be

chosen, but with a loss of accuracy as the nodal gradient

yields a second order accuracy only when the difference

is centered at node �C�.
The formulation of r becomes

rf ¼ ð2r/C 
 rCDÞ � ð/D � /CÞ
/D � /C

¼ ð2r/C 
 rCDÞ
/D � /C

� 1 ð16Þ

which can be easily computed for unstructured grids.

2.3. Gradient interpolation

Another important aspect of the TVD implementa-

tion resides in the interpolation of gradients to the cell

faces. Gradients at the cell faces are used in the dis-

cretization of the convection term when using HR

schemes and are usually obtained by a weighted inter-

polation from the neighboring cell gradients. A simple

weighted interpolation leads to an extended stencil as

shown in Fig. 2(c), the stencils of the cell gradients

computed using the Gauss theorem or least squares in-

volving the neighboring cell nodes are added to yield the

face gradient extended stencil. A better method is to

force the face gradient along the PN direction (Fig. 2(d))

to be directly computed from the cell nodes in a manner

similar to the Rhie–Chow interpolation [48] for pressure

gradients. In this case the cell face gradient along PN is

more compact and accurate, and is given by

ðr/Þf ¼ ðr/Þf þ
ð/F � /P Þ

krPF k
ePF � ðr/Þf 
 ePF

� �
ePF

ð17Þ

where ðr/Þf is the gradient interpolated from the two

adjacent cell gradients, rPF the vector between the nodes

P and F (where F ¼ F 1, or F 2; . . .), and ePF is a unit

vector in the direction of rPF . What is achieved with this

formulation is a reduction in the stencil of the face

gradient along the PF direction. The stencil for ðr/Þf ,
shown in Fig. 2(c), is basically the union of the stencils

of the P and F cells, whereas that for ðr/Þf along

the PF direction is formed of the P and F cells only,

(Fig. 2(d)).

This modification was found to be especially impor-

tant for HR schemes that are defined as a function of

face gradients such as the SOU scheme.

3. Barth and Jesperson scheme

BJ [2] followed a different approach in enforcing the

monotonicity criterion. In their approach the Speikreijse

monotonicity criterion [35] was modified to apply it for

the reconstruction of / within the control volume, i.e.

the condition was changed to state that the values of the

reconstructed polynomial within the control volume

should not exceed the maximum and minimum values at

the neighbors of the control volume.

Using the notation of Fig. 2(a) the Speikreijse crite-

rion written as

minð/N Þ6/P 6 maxð/N Þ 8N 2 NeighborsðPÞ ð18Þ

was modified to:

minð/N ;/P Þ6RP ðrjÞ6 maxð/N ;/P Þ 8N 2 NeighborsðPÞ
ð19Þ

where j is some point within the control volume P , and R
is the reconstruction operator given by

RP ðrjÞ ¼ /P þ wjr/P 
 ðrj � rP Þ ð20Þ

where w is the flux limiter, and r the position vector.

Instead of enforcing the condition of Eq. (2) over the

control volume, it is enforced at the cell faces integration

points, thus changing Eq. (19) into:

minð/N ;/P Þ6RP ðrf Þ6 maxð/N ;/P Þ 8N 2 NeighborsðPÞ
ð21Þ

where f is a cell face centroid. The computation of the

value of the limiter w is performed in two steps as fol-

lows.

Step 1: The reconstruction polynomial is evaluated at

each cell face integration point in order to determine the

value of wf that satisfies the relation:
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minð/N ;/P Þ6RP ðrf Þ ¼ /P þ wr/P 
 ðrf � rP Þ
6 maxð/N ;/P Þ ð22Þ

which can be rewritten as

wf ¼

U
maxð/N ;/P Þ � /P

r/P 
 ðrf � rP Þ

� �
/f > /P

U
/P �minð/N ;/P Þ
r/P 
 ðrf � rP Þ

� �
/f < /P

1 /f ¼ /P

8>>>><>>>>: ð23Þ

where

UðxÞ ¼ minðx; 1Þ ð24Þ

Step 2: The value of the limiter is computed as the

minimal value of w over all cell faces, i.e.:

wP ¼ minðwf Þ ð25Þ

Because of convergence problems found with the limiter,

Venkatakrishnan [33,40] proposed a modified version of

Fig. 3. Convection of a step profile: (a) physical domain, (b) dense grid used, (c) / profile at y ¼ 0:8 using coarse grid, (d) / profile at

y ¼ 0:8 using dense grid.
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the original limiter. The modified limiter is based on the

differentiable function:

UðxÞ ¼ x2 þ 2xþ e2

x2 þ xþ 2þ e2
ð26Þ

The role of the constant, e2, being to deactivate the

limiter in smooth flow regions, with its value specified as

e2 ¼ ðKhÞ3 where K is a user-specified constant, and h a

local mesh size.

It is worth noting that for a one dimensional dis-

cretization, the Barth and Jesperson scheme can be

shown to be equivalent to the TVD-MUSCL scheme,

and thus in this special case could be represented

graphically using the Sweby diagram of Fig. 1(c).

4. Test problems

The validity of the newly proposed r-factor for-

mulation in unstructured grids is demonstrated in this

section. For that purpose four TVD schemes are

implemented using the Bruner and the new formula-

tions. The schemes are then used in solving four pure

convection test problems: advection of a step profile,

advection of a sinusoidal profile, advection of a double-

step profile, and the Smith and Hutton problem [49].

Results obtained using the schemes are compared

against those obtained using the BJ linear reconstruction

scheme and the first order upwind scheme.

4.1. Advection of a step profile

Fig. 3(a) shows the well known benchmark test

problem consisting of a pure advection of a transverse

step profile imposed at the inflow boundaries of a square

computational domain. Two unstructured mesh systems

consisting of 862 and 2094 cells (illustrated in Fig. 3(b))

were used. The governing conservation equation for the

problem is simply:

r 
 ðqv/Þ ¼ 0 ð27Þ

where / is the dependent variable and v ¼ 1iþ 1j is the

Cartesian velocity vector. The computed values of /
using the upwind scheme, the OSHER, the MINMOD,

the MUSCL and the SUPERBEE schemes, implemented

using the exact r-formulation, in addition to the BJ

scheme are shown in Fig. 3(c) and (d) for the coarse and

fine grids respectively. As is the case for structured grids

[5] the MINMOD is the most diffusive, the BJ-MUSCL

and TVD-MUSCL schemes yield comparable results

that are better than the OSHER scheme. The perfor-

mance of the upwind scheme is worse in unstructured

grids than for structured grids because no flow can be

aligned with the grid lines. As expected the SUPERBEE

yields the best results because it is a highly compressive

scheme. All results are devoid of over/undershoots.

Performance-wise the TVD and BJ implementations re-

quired about the same computational cost per iteration,

TVD schemes generally did not experience any flattening

of the convergence rate below a residual of 10�6 except

for the SUPERBEE scheme, while the BJ scheme expe-

rienced oscillations of the residual around 10�6. This was

inconsequential with respect to the results.

In Fig. 4, the TVD-MUSCL scheme profiles gener-

ated using the current formulation are compared against

profiles obtained following Bruner�s formulation on both

coarse (Fig. 4(a)) and dense (Fig. 4(b)) grid systems. As

depicted, Bruner�s scheme results are over diffusive due to

the approximation introduced in the formulation of r.
The same trend was observed with all the other schemes

and deemed unnecessary to be reported for compactness.

Fig. 4. Comparison of / profiles at y ¼ 0:8 using MUSCL

scheme implemented via the new TVD formulation against

Bruner�s formulation [1] over (a) coarse and (b) dense grid

systems for the pure convection of a step profile problem.
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4.2. Advection of a sinusoidal profile

This problem is similar to the previous one in geo-

metry except that a sinusoidal profile is used. The sinu-

soidal profile involves steep and smooth regions, as well

as an extremum point, making its simulation much more

demanding than the simple step profile. The profile is

given as

/ ¼ sin p
2
max 1� absðy�0:1707Þ

0:1707
; 0

� �� �
06 y6 0:3414

0 otherwise

(
ð28Þ

The problem is depicted in Fig. 5(a), the same meshes as

the step-profile problem were used. Results are shown in

Fig. 5(b) and (c) for the coarse and fine meshes respec-

tively. As expected all the schemes suffer from a sub-

stantial decrease in the numerical extremum, with its

value decreasing down to 0.48 for the UPWIND scheme.

The SUPERBEE preserves on the coarse mesh more of

the extremum value (0.83), and experience no loss in

extremum on the fine mesh. The BJ-MUSCL, TVD-

MUSCL and OSHER schemes results are much better

than those of the UPWIND scheme and the MINMOD

scheme, while still experiencing on the coarse and fine

meshes a decrease in the extrema down to 0.68 and 0.92

respectively.

4.3. Advection of a double-step profile

A double-step profile is imposed at inlet to the square

domain depicted in Fig. 6(a). The profile is given as

Fig. 5. Convection of a sinusoidal profile: (a) physical domain, (b) / profile at y ¼ 0:8 using coarse grid, (c) / profile at y ¼ 0:8 using

dense grid.
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/ ¼ 1 06 y6 0:3
0 y > 0:3

�
ð29Þ

The same meshes as for the step-profile problem were

used. Results are shown for the coarse and fine meshes

in Fig. 6(b) and (c) respectively. As expected all schemes

suffer from an important decrease in the numerical ex-

tremum on the coarse mesh, however on the fine mesh

the SUPERBEE, OSHER, TVD-MUSCL and BJ-

MUSCL preserve the extremum of 1.0. The profiles

obtained by the MINMOD and UPWIND schemes are

however of lower quality.

4.4. Smith and Hutton problem

In the fourth test problem, shown schematically in

Fig. 7(a) along with an illustrative grid used (Fig. 7(b)),

a step discontinuity at x ¼ �0:5 is convected clockwise

from the inlet plane (x < 0, y ¼ 0) to the outlet plane

(x > 0, y ¼ 0) by a rotational velocity field given by

v ¼ u
v

� �
¼ 2yð1� x2Þ

�2xð1� y2Þ

� �
ð30Þ

The use of the above equation, denoted by the �point
formula�, to compute the convective fluxes yielded a

non-conservative velocity field, i.e. continuity was not

satisfied over each cells. This is clearly demonstrated

in the continuity residuals� map depicted in Fig. 7(c).

The reason for this behavior is that the cell face veloci-

ties in the discretized equation are assumed, when using

the point formula, to be constant through out the face,

which is clearly wrong. In order to satisfy continuity

Fig. 6. Convection of a double-step profile: (a) physical domain, (b) / profile at y ¼ 0:8 using coarse grid, (c) / profile at y ¼ 0:8 using

dense grid.
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over each cell the above equations should be inte-

grated over the cell faces to yield the respective face

fluxes. The resulting equation is denoted here by the

�integration formula�. Integrating Eq. (30) over a cell

face yielded the following equations for the x and y face

fluxes:

Z yn2

yn1

Z xn2

xn1

udxdy ¼
Z yn2

yn1

Z xn2

xn1

2yð1� x2Þdxdy ð31Þ

over a general cell face defined by

y ¼ mxþ n with m ¼ yn2 � yn1
xn2 � xn1

; n ¼ yn2 � mxn2 ð32Þ

Fig. 7. Smith Hutton problem: (a) physical domain, (b) dense grid used, (c) divergence error over the domain using the ‘‘point for-

mulation’’, (d) divergence error over the domain using the ‘‘integral formulation’’, (e) / profile at exit from the domain (y ¼ 0) using

coarse grid, (f) / profile at exit from the domain (y ¼ 0) using dense grid.
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Integrating equation (31) from node 1 to node 2, one gets:

u ¼ 1

l

Z n2

n1

udl ¼
Z xn2

xn1

2ðmxþ nÞð1� x2Þdx

¼ 1

l

Z xn2

xn1

ð2mxþ 2n� 2mx3 � 2nx2Þdx

¼ 1

l
mx2

�
þ 2nx� 1

2
mx4 � 2

3
nx3

�xn2
xn1

¼ 1

l
mðx2n2

�
� x2n1Þ þ 2nðxn2 � xn1Þ �

1

2
mðx4n2 � x4n1Þ

� 2

3
nðx3n2 � x3n1Þ

�
ð33Þ

and for the y component we get

v ¼ 1

l

Z n2

n1

vdl ¼
Z xn2

xn1

�2xð1� ðmxþ nÞ2Þdx

¼ 1

l

Z xn2

xn1

�
� 2xþ 2n2xþ 2m2x3 þ 4mnx2

�
dx

¼ 1

l

�
� x2 þ n2x2 þ 1

2
m2x4 þ 4

3
mnx3

�xn2
xn1

¼ 1

l

�
� ðx2n2 � x2n1Þ þ n2ðx2n2 � x2n1Þ þ

1

2
m2ðx4n2 � x4n1Þ

� 4

3
mnðx3n2 � x3n1 Þ

�
ð34Þ

where m and n define the equation passing through

nodes n1 and n2, i.e. the cell face. Using the �integration
formula� to compute the velocity component yielded a

continuity satisfying velocity fields as shown by the map

displayed in Fig. 7(d).

The boundary conditions for the Smith and Hutton

problem [49] are:

/ ¼

2 for � 0:5 < x < 0; y ¼ 0

0 for � 1 < x < �0:5; y ¼ 0

0 for � 1 < x < 1; y ¼ 1

0 for x ¼ �1; 0 < y < 1

0 for x ¼ 1; 0 < y < 1

8>>>>>><>>>>>>:
ð35Þ

No physical diffusion was considered and the problem

was solved using two grid systems of size 889 and 1060

cells (Fig. 7(b)). Results are displayed in Fig. 7(e) and (f).

As before, for the coarse mesh numerical results ob-

tained with the SUPERBEE are better than those

achieved with the other schemes. For the fine mesh the

SUPERBEE, OSHER, BJ-MUSCL and TVD-MUSCL

scheme profiles are nearly similar. Results from the

MINMOD scheme are quite diffusive, but nonetheless

better than the UPWIND scheme.

5. Conclusion

In this paper, a number of TVD schemes, namely the

SUPERBEE, TVD-MUSCL, OSHER, and MINMOD

schemes, in addition to the BJ-MUSCL scheme were

implemented on unstructured grids. As expected, results

for the BJ-MUSCL and TVD-MUSCL were found to be

similar. The approach followed was proved to be general

and consistent with the Sweby TVD formulation for

structured grids. Results for all test problems presented

showed that TVD monotonicity was properly enforced

for all schemes resulting in oscillation free profiles. The

benefit of such an approach are twofold: (i) a wide range

of TVD schemes including compressive schemes such as

the SUPERBEE scheme can be readily implemented; (ii)

improvement to the standard TVD formulation such as

extremum preserving algorithms [50] can now be used

for unstructured grids.
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