

Ministério da Educação Universidade Federal do Paraná Departamento de Engenharia Mecânica Curso de Engenharia Mecânica

Disciplina: TMECO20 - Mecânica dos Sólidos II - Turma AN

Professor: Jucélio Tomás Pereira, D.Sc.

Introdução:

Esta lista de exercícios tem como meta servir de guia de estudo para os alunos da disciplina Mecânica dos Sólidos II (Engenharia Mecânica da UFPR). É recomendado que os alunos façam esse conjunto de exercícios na sequência em que são apresentados.

Boa sorte!!
Bons estudos!!

|--|

Seja um estado plano de tensões (EPT), já conhecido e posto na forma geral através de uma matriz 2x2. Para este, explique os significados de:

- a) Tensões;
- b) Componente genérico T_{ii} desse estado de tensões;
- c) Estado de tensões;
- d) Qual a representação matemática desse estado de tensões;
- e) Qual a representação gráfica do mesmo.

Λ.	estão	# 2.	
t III	ロクマナバハ	д / '	

O estado de tensões anterior é decorrente de esforços mecânicos aplicados sobre a estrutura (o sólido). Explique cuidadosamente (e exemplifique) os conceitos de:

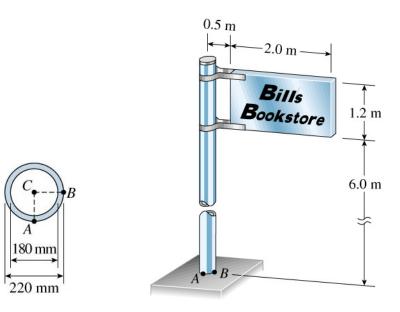
- a) Forças externas de superfície;
- b) Forças externas de corpo.

Questão # 3:

A placa de sustentação de uma placa, visualizada abaixo, está submetida a um carregamento provocado pela força do vento frontal à placa (no valor de 10.000 N) e seu próprio peso no valor de 5.000 N. O dimensionamento do poste de sustentação dessa placa envolve a determinação do estado de tensões em vários pontos críticos do poste.

Para esse problema, obtenha o estado de tensões completo (3D) nos pontos A e B.

Para facilitar, obtenha a tensão cisalhante gerada pelo esforço cortante (caso o mesmo ocorra) através da expressão $\tau_{med} = 1.5 \frac{Força}{Area}$.



Considere um ponto material onde é conhecido um estado plano de tensões (EPT) genérico (com componentes T_{11} , $T_{12} = T_{21}$ e T_{22}) e defina um novo sistema de coordenadas (denotado $x_1' - x_2'$), rotacionado de um ângulo genérico θ , medido no sentido anti-horário a partir do eixo de coordenadas fixo (original) x_1 . Pela construção de um pequeno elemento de volume em torno desse ponto, realize um corte segundo as direções Cartesianas do sistema gerado e obtenha as componentes do estado de tensões nesse novo sistema (T'_{11} , $T'_{12} = T'_{21}$ e T'_{22}).

Questão # 5:

Mostre que as expressões desse novo estado de tensões (obtido anteriormente) recaem na equação de um círculo (denominado Círculo de Mohr).

Ouestão # 6:			
I IIIPSTAN # h'			

Tendo como referência o Círculo de Mohr genérico obtido anteriormente, obtenha as expressões para:

- a. Raio do círculo;
- b. Tensão normal máxima ($\sigma_{m\acute{a}x}$);
- c. Tensão normal mínima (σ_{min});
- d. Tensão cisalhante máxima ($\tau_{m\acute{a}x}$);
- e. Ângulo de tensões princpais;
- f. Apresente, em um rascunhe do círculo, cada uma das grandezas anteriores.

Explique minuciosamente o que é estado de tensões principais? Qual sua importância em um problema da mecânica estrutural?

$\boldsymbol{\alpha}$	ues	+≈	_	#	o.
UI	ues	τα	o	Ħ	ð:

Construa o Círculo de Mohr para os seguintes estados de tensões e obtenha, para cada um deles, as variáveis:

- a. Raio do círculo;
- b. Tensão normal máxima ($\sigma_{m\acute{a}x}$);
- c. Tensão normal mínima (σ_{min});
- d. Tensão cisalhante máxima (τ_{max});
- e. Ângulo de tensões principais.

$$T = \begin{bmatrix} -20, & -60, \\ -60, & 60, \end{bmatrix} MPa;$$

$$T = \begin{bmatrix} 0, & 100, \\ 100, & 0, \end{bmatrix} MPa;$$

$$T = \begin{bmatrix} -50, & 0, \\ 0, & 50, \end{bmatrix} MPa.$$

Questão # 9:

Tendo como referência o estado de tensões descrito na Questão #4, acima, realize o mesmo corte virtual como descrito. Nessa face gerada, surge um vetor de densidade de forças, aqui denotado \mathbf{t}^n (definido como vetor de tensões) e escrito em relação ao sistema de coordenadas fixo $x_1 - x_2$. Para este problema:

- a. Obtenha a expressão final para o vetor de tensões \mathbf{t}^n ;
- b. Explique minuciosamente o significado de vetor de tensões;
- c. Obtenha os vetores de tensões (e rascunhe) quando os vetores normais unitários n são:

c.1.
$$n = e_1$$
;

c.2.
$$n = e_2$$
.

Questão # 10:

De acordo com o realizado na Questão #9, acima, demonstre como se dá a decomposição do vetor de tensões genérico obtido (\mathbf{t}^n) em dois vetores ortogonais: um vetor puramente normal à face cortada (\mathbf{t}^n_n) e outro vetor cisalhante ("shear") à face (\mathbf{t}^n_s). Explique cada um dos termos envolvidos no processo e rascunhe-os em um elemento de volume genérico.

Qι	ıest	ão	#	11	:
----	------	----	---	----	---

Refaça as Questões #9 e #10 para um estado de tensões genérico 3D.

Questão # 12: _____

Seja o estado de tensões T e a direção normal **N**, fornecidos a seguir. Para esse problema, rascunhe a solução e obtenha:

- a. Vetor tensão atuante na face definida pela direção N;
- b. Intensidade da tensão normal à face;
- c. Intensidade da tensão cisalhante à essa face;
- d. Vetor tensão normal à face;
- e. Vetor tensão cisalhante à face.

Estado de tensões:
$$T = \begin{bmatrix} -20, & -60, & 40, \\ -60, & 60, & 15, \\ 40, & 15, & 40, \end{bmatrix} MPa$$
.

Vetor direção: **N** = $\{3, -4, 0,\}^{T}$

Questão # 13: _____

Refaça a Questão anterior considerando $\mathbf{n} = \mathbf{e}_{\gamma}$. Rascunhe a solução.

Questão # 14:

Mostre todos os passos do porquê a solução do problema de busca das tensões principais recai na solução de um problema de autovalores/autovetores?

Questão # 15: _____

O que são invariantes de um estado de tensões?

Questão # 16: _____

Para os estados de tensões fornecidos abaixo, obtenha:

- a. Tensões principais;
- b. tensão cisalhante máxima;
- c. rascunhe o Círculo de Moh:

$$T = \begin{bmatrix} -20, & -60, & 40, \\ -60, & 60, & 15, \\ 40, & 15, & 40, \end{bmatrix} MPa;$$

$$T = \begin{bmatrix} -20, & -60, & 40, \\ -60, & 60, & 15, \\ 40, & 15, & 40, \end{bmatrix} MPa;$$

$$T = \begin{bmatrix} -20, & -60, & 0, \\ -60, & 60, & 0, \\ 0, & 0, & 40, \end{bmatrix} MPa;$$

$$T = \begin{bmatrix} -30, & 0, & 0, \\ 0, & 40, & 0, \\ 0, & 0, & 70, \end{bmatrix} MPa.$$

Questão # 17:

Mostre que o tensor de tensões é sempre simétrico (com exceção de situações totalmente peculiares e não estudadas em nosso curso).

Questão # 18: _____

O que é um filamento material. Qual a utilidade dessa definição?

Questão # 19: _____

Explique minuciosamente o que é deformação e quais são seus dois tipos fundamentais.

Questão # 20:

Dado o campo de deslocamentos $\mathbf{u} = \mathbf{u}(x)$, fornecido abaixo, represente o processo de deformação obtendo as posições finais do ponto-base material P (coordenadas \mathbf{x}_0) e de 4 pontos no entorno do mesmo. Utilize um fator de escala para visualizar os deslocamentos dos pontos extremos dos filamentos \overline{QR} e \overline{ST} .

Adote as dimensões $\Delta x_1 = \Delta x_2 = 10^{-3} \, \text{m}$.

DICA: Use um papel quadriculado para facilitar.

Campo de deslocamentos:
$$\mathbf{u} = \mathbf{u}(x) = \mathbf{u}(x_1, x_2) = \begin{cases} u_1(x_1, x_2) \\ u_2(x_1, x_2) \end{cases} = \begin{cases} 2 + x_1 + x_2^2 \\ 1 - x_2^2 - x_1^2 \end{cases} 10^{-3} \, \text{m}$$

Ponto P:
$$\mathbf{x}_o = \begin{cases} 1, \\ 2, \end{cases} m$$
.

Ponto Q:
$$\mathbf{x} = \mathbf{x}_o + \begin{cases} -\Delta \mathbf{x}_1 \\ 0 \end{cases}$$
, Ponto R: $\mathbf{x} = \mathbf{x}_o + \begin{cases} \Delta \mathbf{x}_1 \\ 0 \end{cases}$.

Ponto S:
$$\mathbf{x} = \mathbf{x}_o + \begin{cases} 0 \\ -\Delta x_2 \end{cases}$$
, Ponto T: $\mathbf{x} = \mathbf{x}_o + \begin{cases} 0 \\ \Delta x_2 \end{cases}$.

Questão # 21:

A partir das coordenadas finais (na configuração deformada) dos pontos P, Q, R, S e T, definidos na Questão anterior, obtenha:

- a. A deformação longitudinal do filamento material PR;
- b. A deformação longitudinal do filamento PT;

- c. A rotação no plano, e em relação ao eixo x_3 , do filamento \overline{PR} (denote-o θ_1);
- d. A rotação no plano, e em relação ao eixo x_3 , do filamento \overline{PT} (denote-o θ_2);
- e. A rotação média, definida em relação ao eixo x_3 , dos filamentos \overline{PR} e \overline{PT} ;
- f. A deformação cisalhante (total), aqui denotada γ_{12} , dos filamentos \overline{PR} e \overline{PT} .

Questão # 22:

Seja um problema de deformações no plano (x_1-x_2) , no qual é definido o campo de deslocamento $\mathbf{u}=\mathbf{u}(x)=\mathbf{u}(x_1,x_2)$. Seja, também, um filamento material \overline{PQ} , muito pequeno, com início no ponto material P (cujas coordenadas são $\{x_1,x_2\}$) e término no ponto Q (de coordenadas $\{x_1+\delta x_1, x_2+\delta x_2\}=\{x_1, x_2\}+\{\delta x_1, \delta x_2\}$). Para esse problema:

- a) Obtenha o vetor diferença de deslocamentos desses dois pontos (denotado $\delta \mathbf{u}$) utilizando o conceito de expansão em série de Taylor. Rascunhe graficamente a resposta;
- b) O que é matriz gradiente de deslocamentos (aqui denotada $\nabla \mathbf{u}$);
- c) Decomponha a matriz gradiente de deslocamentos em suas parcelas simétrica (denotada $\nabla^s \mathbf{u}$) e anti-simétrica (denotada $\nabla^{\mathsf{AS}} \mathbf{u}$).

Questão # 23:

Utilizando o resultado da Questão anterior e 3 pontos (P, Q e R), defina dois filamentos genéricos, mas orientados segundo os eixos Cartesianos, na forma:

Ponto P:
$$\mathbf{x}_{p} = \begin{cases} x_{1} \\ x_{2} \end{cases}$$
, Ponto Q: $\mathbf{x}_{Q} = \mathbf{x}_{p} + \begin{cases} \Delta x_{1} \\ 0 \end{cases}$, Ponto R: $\mathbf{x}_{R} = \mathbf{x}_{p} + \begin{cases} 0 \\ \Delta x_{2} \end{cases}$.

Filamento na direção Cartesiana e_1 : \overline{PQ} ;

Filamento na direção Cartesiana \mathbf{e}_2 : \overline{PR} .

Para esse problema:

- a) Obtenha o vetor diferença de deslocamentos dos dois pontos extremos de cada filamento e rascunhe as formas finais destes;
- b) Obtenha a expressão para a deformação longitudinal do filamento PR (denomine-a ε_{22}) e para a deformação cisalhante (γ_{12}) entre os dois filamentos;
- c) Defina completamente a expressão que fornece a matriz de deformações no plano. Justifique o fato de a mesma ser simétrica;
- d) Obtenha a rotação média desses dois filamentos em relação ao eixo Cartesiano x₃;
- e) Compare com os resultados obtidos na Questão #22.c.

Questão # 24:

Utilizando o resultado da Questão anterior, generalize as expressões que fornece a matriz de deformações em um problema 3D. Faça o mesmo para o vetor de rotações médias em relação aos três eixos Cartesianos.

variável para um campo de deslocamentos genérico 3D. Compare esse resultado com as expressões para as rotações médias obtidas na Questão anterior e com parcela anti
simétrica do gradiente dos deslocamentos (Questão #22.c).
Questão # 26:
Aplique os resultados obtidos na Questão #23 ao campo de deslocamento fornecido no Questão #20, obtendo as deformações e a rotação média do ponto \mathbf{x}_o fornecido. Compare estes resultados com aqueles obtidos na Questão #21.
Questão # 27:
Explique minuciosamente o que é material elástico, linear e isotrópico (MELI).
Questão # 28:
Obtenha a Lei de Hooke Generalizada (LHG) para um MELI.
Questão # 29:

Seja um MELI cujas propriedades materiais são:

Questão # 25: _____

módulo de elasticidade longitudinal: E = 208, GPa e

Questão # 30: _____

Obtenha a forma inversa da equação obtida na Questão anterior.

coeficiente de Poisson: v = 0,30.

Obtenha o tensor de deformações completo para os estados de tensões dados em:

a.
$$T = \begin{bmatrix} -20, & -60, & 40, \\ -60, & 60, & 15, \\ 40, & 15, & 40, \end{bmatrix} MPa;$$
b.
$$T = \begin{bmatrix} -20, & -60, & 0, \\ -60, & 60, & 0, \\ 0, & 0, & 40, \end{bmatrix} MPa;$$
c.
$$T = \begin{bmatrix} -30, & 0, & 0, \\ 0, & 40, & 0, \\ 0, & 0, & 70, \end{bmatrix} MPa.$$

Questão # 31:

Partindo da questão #22.a, obtenha a parcela do vetor diferença de deslocamentos ($\delta \mathbf{u}$) que é somente na direção longitudinal ao filamento (na direção do versor que define sua direção). Denote essa grandeza escalar como δu_n . Observe que essa parcela representa o alongamento total do filamento. Assim:

- a. A partir desse valor e do comprimento total do filamento, obtenha a expressão que fornece a deformação longitudinal do filamento que está com uma inclinação θ qualquer. Denote-a ε_{θ}
- b. Aplique essa expressão aos filamentos nas duas direções Cartesianas (com vistas à validação do resultado).

\sim	uestão	•	22
()	IPSTAN	ш	<i>4)</i>
v.	acstac	П	<i>J</i> L .

Pesquise na bibliografia e/ou internet e encontre as definições para extensometria e extensômetros elétricos (ou strain-gages) e rosetas. Mostre alguns tipos desses extensômetros e de rosetas.

Questão # 33:

Seja um componente mecânico submetido a vários esforços mecânicos e adequadamente vinculado no espaço. Em seu ponto crítico, é instalada uma roseta do tipo estrela, como mostrada na Figura abaixo. Após a leitura das deformações em cada extensômetro, obtenha:

- a. A matriz de deformações no plano tangente à superfície da peça;
- b. A matriz de deformações completa (3D) no ponto;
- c. A matriz de tensões completa no ponto;
- d. As três tensões principais no ponto;
- e. A tensão cisalhante máxima ($\tau_{m\acute{a}x}$).

Deformações lidas nos extensômetros:

 $\varepsilon_a = 10^{-3} \text{ mm/mm}$

 $\varepsilon_h = -10^{-3} \, \text{mm/mm}$

 $\varepsilon_c = 2 \cdot 10^{-3} \, \text{mm/mm}$

Propriedades do material:

E = 208, GPa

v = 0.30

