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Mudança de fase

Ebulição e Condensação



General Considerations

Considerações Gerais

• Lei de Newton para o resfriamento:

 s s sat eq h T T h T   

 saturation temperatur of  ide  liqusatT 

   excess  temperaturee s satT T T   



Boiling Curve

Curvas de ebulição

 Pouca formação de vapor.

 Movimentação é devido a convecção livre.

• Ebulição com convecção livre                      5 CeT

• Início da Ebulição Nucleada  5 CeONB T

Água a pressão atmosférica

Nukiyama, 1934

Drew e Mueller, 1937



Boiling Curve (cont.)

• Ebulição Nucleada  5 30 C eT

 Bolhas individuais  5 10 C eT

– Liquid motion is strongly influenced by nucleation

of bubbles at the surface.

–  and  increase sharply with increasing .s eh q T

– Heat transfer is principally due to contact of liquid 

with the surface  (single-phase convection) and not 

to vaporization.

 Jatos e colunas  10 30 C eT

– Increasing number of nucleation sites causes

bubble interactions and coalescence into

jets and slugs.

– Liquid/surface contact is impaired.

– continues to increase with         while h begins to decrease.sq eT



Boiling Curve (cont.)

• Fluxo de calor crítico- CHF,  max 30 C eq T

 Maximum attainable heat flux in nucleate boiling.


2

max 1 MW/m  for water at atmospheric pressure.q 

• Potential Burnout for Power-Controlled Heating

 An increase in     beyond         causes the surface to be blanketed by vapor,

and the surface temperature can spontaneously achieve a value that potentially

exceeds its melting point 

sq maxq

 1000 C .sT

 If the surface survives the temperature shock, conditions are characterized

by film boiling.

• Película

 Heat transfer is by conduction and

radiation across the vapor blanket.

 A reduction in     follows the cooling

curve continuously to the Leidenfrost

point corresponding to the minimum 

heat flux        for film boiling.

sq

minq



Boiling Curve (cont.)

 A reduction in      below        causes an abrupt reduction in surface

temperature to the nucleate boiling regime.
sq minq

• Transition Boiling for Temperature-Controlled Heating

 Characterized by a continuous decay of                                      with increasing max minfrom  to sq q q  

.eT

 Surface conditions oscillate between nucleate and film boiling, but portion

of surface experiencing film boiling increases with     .eT

 Also termed unstable or partial film boiling.



Correlations

Correlações de Ebulição em vaso
•Ebulição Nucleada

 Correlação de Rohsenow
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Correlations

• Eblulição com formação de película

The cumulative (and coupled effects) of convection and radiation across

the vapor layer 
4 / 34 / 3 1/ 3
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Condensação



General Considerations

General Considerations

• Heat transfer to a surface occurs by condensation when the surface temperature

is less than the saturation temperature of an adjoining vapor.

• Film Condensation

 Entire surface is covered by the

condensate, which flows 

continuously from the surface 

and provides a resistance to heat

transfer between the vapor and the

surface.

 Thermal resistance is reduced through use of short vertical surfaces

and horizontal cylinders. 

 Characteristic of clean, uncontaminated surfaces.

• Dropwise Condensation

 Surface is covered by drops ranging from

a few micrometers to agglomerations visible

to the naked eye.



Film Condensation: Vertical Plates

Film Condensation on a Vertical Plate

• Distinguishing Features

 Generally, the vapor is superheated

and may be part of a mixture

that includes noncondensibles.

 ,v satT T 

 A shear stress at the liquid/vapor

interface induces a velocity gradient

in the vapor, as well as the liquid.

• Nusselt Analysis for Laminar Flow

Assumptions:

 A pure vapor at .satT

 Negligible shear stress at liquid/vapor interface.
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 Thickness      and flow rate       of 

condensate increase with increasing x
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Vertical Plates (cont)

 Negligible advection in the film. Hence, the steady-state x-momentum 

and energy equations for the film are
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 The boundary layer approximation,                   may be applied to the film.0/ ,p y  
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 Solutions to momentum and energy equations 
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Vertical Plates (cont)

Flow rate per unit width:
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Vertical Plates (cont)

• Effects of Turbulence:

 Transition may occur in the film and three flow regimes may be identified

and delineated in terms of a Reynolds number defined as
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Vertical Plates (cont)

 Wave-free laminar region  Re 30 :

 Wavy laminar region  30 Re 1800  :

(10.42)

(10.43)

 Turbulent region  Re >1800 :

(10.44)
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Film Condensation: Radial Systems

Film Condensation on Radial Systems

• A single tube or sphere:
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Film Condensation: Radial Systems  (cont).

• A vertical tier of N tubes:
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 Why does           decrease with increasing N?
,D Nh

 How is heat transfer affected if the continuous sheets (c) breakdown and the

condensate drips from tube to tube (d)?

 What other effects influence heat transfer?



Film Condensation: Internal Flow

Film Condensation for a Vapor Flow in a Horizontal Tube
• If vapor flow rate is small, condensate flow is circumferential and axial:
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• For larger vapor velocities, flow is principally 

in the axial direction and characterized by 

two-phase annular conditions.



Dropwise Condensation

Dropwise Condensation

• Steam condensation on copper surfaces:
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Problem:  Condensation on a Vertical Plate

Problem 10.48 a,b:   Condensation and heat rates per unit width for saturated

steam at 1 atm on one side of a vertical plate at 54˚C if 

(a) the plate height is 2.5m and (b) the height is halved.

KNOWN: Vertical plate 2.5 m high at a surface temperature Ts = 54C exposed to steam at 

atmospheric pressure. 

FIND: (a) Condensation and heat transfer rates per unit width, (b) Condensation and heat rates if 

the height were halved. 

ASSUMPTIONS: (1) Film condensation, (2) Negligible non-condensables in steam. 

SCHEMATIC:



Problem:  Condensation on a Vertical Plate (cont)

PROPERTIES: Table A-6, Water, vapor (1 atm):  Tsat = 100C, hfg = 2257  kJkg;  Table A-6, 

Water, liquid (Tf = (100  54)C2 = 350 K):   973.7 kgm
3
, k  0.668 WmK,   365  

10
-6

 Nsm
2
 , p,c  = 4195 JkgK, Pr  = 2.29,  = /  = 3.75  10

-7
 m

2
/s. 

ANALYSIS:  (a) For the long plate length, assume turbulent film condensation, Eq. 10.44. 
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 where fg fg p, sat sh h 0.68c (T T )= 2388 kJ/kg.   l  The turbulent assumption is correct. Then from 

Eqs. 10.36 and 10.34, 
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Problem:  Condensation on a Vertical Plate (cont)

(b) If the length is halved, L = 1.25 m, Re  will decrease and we begin by trying Eq. 10.43,  
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and the assumption of wavy laminar flow was correct.  The flow regime changes.                  

We find 
Re

m 0.125kg / s m
4

    
and fgq = m h  =  300 kW/m   . 

COMMENT:

Note that the height was decreased by a factor of 2, while the rates decreased by a factor of 2.2. 

Would you have expected this result? 



Problem:  Electronic Chip Cooling

Problem 10.23:   Chip thermal conditions associated with cooling by 

immersion in a fluorocarbon.

KNOWN:  Thickness and thermal conductivity of a silicon chip.  Properties of saturated 

fluorocarbon liquid. 

FIND:  (a) Temperature at bottom surface of chip for a prescribed heat flux and for a flux that is 

90% of CHF, (b) Effect of heat flux on chip surface temperatures; maximum allowable heat flux 

for a surface temperature of 80
°
C. 



Problem:  Electronic Chip Cooling (cont)

ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform heat flux and adiabatic sides, hence 

one-dimensional conduction in chip, (3) Constant properties, (4) Nucleate boiling in liquid. 

PROPERTIES:  Saturated fluorocarbon (given):  p,c  = 1100 J/kgK, hfg = 84,400 J/kg,   = 

1619.2 kg/m
3
, v = 13.4 kg/m

3
,  = 8.1  10

-3
 kg/s

2
,   = 440  10

-6
 kg/ms, Pr  = 9.01. 

 

ANALYSIS:  (a) Energy balances at the top and bottom surfaces yield 

 o cond s o sq q k T T L     = sq  ; where Ts and sq   are related by the Rohsenow correlation, 
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Problem:  Electronic Chip Cooling (cont)

From the rate equation, 

 
4 2

o
o s

s

q L 5 10 W m 0.0025m
T T 72.9 C 73.8 C

k 135W m K

  
    


 

For a heat flux which is 90% of the critical heat flux (C1 = 0.9), 
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From the results of the previous calculation and the Rohsenow correlation, it follows that 
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Problem:  Electronic Chip Cooling (cont)

(b) Parametric calculations for 0.2  C1  0.9, yield the following variations of 

s oT  and T  with q .o  
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The chip surface temperatures, as well as the difference between temperatures, increase with 

increasing heat flux.  The maximum chip temperature is associated with the bottom surface, and 

To = 80C corresponds to 

 
4 2

o,maxq 11.3 10 W m    < 

 
which is 73% of CHF ( maxq  = 15.5  10

4
 W/m

2
). 

COMMENTS:  Many of today’s VLSI chip designs involve heat fluxes well in excess of 15 

W/cm
2
, in which case pool boiling in a fluorocarbon would not be an appropriate means of heat 

dissipation. 



Problem: Quenching of Aluminum Sphere

Problem 10.26:   Initial heat transfer coefficient for immersion of an

aluminum sphere in a saturated water bath at atmospheric

pressure and its temperature after immersion for 30 seconds.

KNOWN:  A sphere (aluminum alloy 2024) with a uniform temperature of 500C and 

emissivity of 0.25 is suddenly immersed in a saturated water bath maintained at atmospheric 

pressure. 

FIND:  (a) The total heat transfer coefficient for the initial condition; fraction of the total 

coefficient contributed by radiation; and (b) Estimate the temperature of the sphere 30 s after it 

has been immersed in the bath. 

SCHEMATIC 

 Saturated water 
    T  = 100 Csat

o



Problem: Quenching of Aluminum Sphere 

(cont.)

ASSUMPTIONS:  (1) Water is at atmospheric pressure and uniform temperature, Tsat, and (2) 

Lumped capacitance method is valid. 

PROPERTIES:  

 f,i v p,v
3 6 2

v v sat
3 6

Table A-4, Water vapor T 573K : k 0.0399 W/m K, c 2010 J/kg K,

0.3843kg/m , 51.44 10 m / s, Table A-6, Water (T =373K): 

958 kg/m , 2.257 10 J/kg.l fgh
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 Aluminum Alloy:  ss

3
p, s2700 kg/m , 875 J/kg K, k 186 W/m K.    c  

ANALYSIS:  (a) For the initial condition with Ts = 500C, film boiling will occur and the 

coefficients due to convection and radiation are estimated using Eqs. 10.8 and 10.11, 

respectively, 
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4
.  The corrected latent heat is 

  fg fg p,v s sath h 0.8 c T T     (3)



Problem: Quenching of Aluminum Sphere 

(cont.)

Using the foregoing relations, the following results are obtained. 

       D
2 2 2

cnv radNu h W / m K h W / m K h W / m K    

  85.5     171      12.0   180  

where s and cs are properties of the sphere.  Numerically integrating Eq. (5) and evaluating  

h  as a function of Ts, the following result is obtained for the sphere temperature after 30s. 

  sT 30s 300 C.   

The total heat transfer coefficient is given by Eq. 10.9 as 

 
4/3 4/3 1/3

conv radh h h h    (4)

(b) For the lumped-capacitance method, from Section 5.3, the energy balance is 

   s
s s sat s s

dT
hA T T Vc

dt
     

(5)

COMMENTS:  The Biot number associated with the aluminum alloy sphere cooling process for the 
 initial condition is Bi = 0.09.  Hence, the lumped-capacitance method is valid. 

The radiation process contribution is 6.7% of the total heat rate.


