EXAMPLE 1.1

Consider the low-speed flow of air over an airplane wing at standard sea level conditions; the
free-stream velocity far ahead of the wing is 100 mi/h. The flow accelerates over the wing,
reaching a maximum velocity of 150 mi/h at some point on the wing. What is the percentage
pressure change between this point and the free stream?

H Solution
Since the airspeeds are relatively low, let us (for the first and only time in this book) assume

_incompressible flow, and use Bernoulli’s equation for this problem. (See Ref. 1 for an ele-

mentary discussion of Bernoulli’s equation, as well as Ref. 104 for a more detailed presenta-
tion of the role of this equation in the solution of incompressible flow. Here, we assume that
the reader is familiar with Bernoulli’s equation—its use and its limitations. If not, examine
carefully the appropriate discussions in Refs. 1 and 104.) Let points I and 2 denote the free
stream and wing points, respectively. Then, from Bernoulli’s equation,

p+3pVii=pr+5pVa°

or pr—p2=3p(V22 = V?)
At standard sea level, p = 0.002377 slug/ft>. Also, using the handy conversion that 60 mi/h =
88 ft/s, we have V| = 100 mi/h = 147 ft/s and V, = 150 mi/h = 220 ft/s. (Note that, as
always in this book, we will use consistent units; for example, we will use either the English
Engineering System, as in this problem, or the International System. See the footnote in
Sec. 1.4 of this book, as well as Chap. 2 of Ref. 1. By using consistent units, none of our basic
equations will ever contain conversion factors, such as ¢g. and J, as is found in some refer-
ences.) With this information, we have

p—p=3p(V2-V?)
%(0.002377)[(220)2 — (147)%] = 31.8 Ib/ft?

The fractional change in pressure referenced to the free-stream pressure, which at standard sea
level is p; = 2116 Ib/ft?, is obtained as
pr—p> 318

== =0015
» 2116

Therefore, the percentage change in pressure is 1.5 percent. In expanding over the wing surface,
the pressure changes by only 1.5 percent. This is a case where, in Eq. (1.6), dp is small, and
hence dp is small. The purpose of this example is to demonstrate that, in low-speed flow prob-
lems, the percentage change in pressure is always small, and this, through Eq. (1.6), justifies the
assumption of incompressible flow (dp = 0) for such flows. However, at high flow velocities,
the change in pressure is not small, and the density must be treated as variable. This is the regime
of compressible flow—the subject of this book. Note: Bernoulli’s equation used in this example
is good only for incompressible flow, therefore it will not appear again in any of our subsequent
discussions. Experience has shown that, because it is one of the first equations usually encoun-
tered by students in the study of fluid dynamics, there is a tendency to use Bernoulli’s equation
for situations where it is not valid. Compressible flow is one such situation. Therefore, for our
subsequent discussions in this book, remember never to invoke Bernoulli’s equation.




EXAMPLE 1.2

A pressure vessel that has a volume of 10 m? is used to store high-pressure air for operating a
supersonic wind tunnel. If the air pressure and temperature inside the vessel are 20 atm and
300 K, respectively, what is the mass of air stored in the vessel?

H Solution
Recall that 1 atm = 1.01 x 10° N/m?. From Eq. (1.9)

P (20)(1.01 x 10%) \
= X T 5346 ket
P=RT (287)(300) b

The total mass stored is then

M = 7p = (10)(23.46) = | 234.6 kg

EXAMPLE 1.3

Calculate the isothermal compressibility for air at a pressure of 0.5 atm.

H Solution
From Eq. (1.3)

From Eq. (1.8)

Thus
(81}) _RT
op /) p?
a=-t(2) oo (2)(-R0) L
! v \adp/, RT p? P

We see that the isothermal compressibility for a perfect gas is simply the reciprocal of the
pressure:

Hence

1 1
IrT=—=—= 2 atm™!
p 0.5

In terms of the International System of units, where p = (0.5)(1.01 x 10°) = 5.05 x 10*
N/m?,

77 = | 1.98 x 1079 m?/N

In terms of the English Engineering System of units, where p = (0.5)(2116) = 1058 Ib/ft?,

r = | 9.45 x 107 ft*/1b




EXAMPLE 1.4

For the pressure vessel in Example 1.2, calculate the total internal energy of the gas stored in
the vessel.

B Solution
From Eq. (1.23)
R 287
y —1 1.4—-1

=717.5Jkg - K

From Eq. (1.19)
e=c,T = (717.5)(300) = 2.153 x 10° J/kg

From Example 1.2, we calculated the mass of air in the vessel to be 234.6 kg. Thus, the total

internal energy is

E = Me = (234.6)(2.153 x 10°) = | 5.05 x 10" ]

EXAMPLE 1.5

Consider the air in the pressure vessel in Example 1.2. Let us now heat the gas in the vessel.
Enough heat is added to increase the temperature to 600 K. Calculate the change in entropy of
the air inside the vessel.

B Solution

The vessel has a constant volume; hence as the air temperature is increased, the pressure also
increases. Let the subscripts 1 and 2 denote the conditions before and after heating, respec-
tively. Then, from Eq. (1.8),

§ 2] _ T, _ 600 -2
P1 - T] - 300 -
In Example 1.4, we found that ¢, = 717.5 J/kg - K. Thus, from Eq. (1.20)
¢, =c, + R=71754287 =1004.5J/kg - K

From Eq. (1.36)

T
$2 — 5 =c,,ln—2—Rln£2~
T; D1

=1004.5In2 —287In2 =497.3 J/kg - K

From Example 1.2, the mass of air inside the vessel is 234.6 kg. Thus, the total entropy
change is

S, =81 =M(sx —51) = (234.6)(497.3) = | 1.167 x 10° J/K
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Consider the flow through a rocket engine nozzle. Assume that the gas flow through the nozzle
is an isentropic expansion of a calorically perfect gas. In the combustion chamber, the gas
which results from the combustion of the rocket fuel and oxidizer is at a pressure and temper-
ature of 15 atm and 2500 K, respectively; the molecular weight and specific heat at constant
pressure of the combustion gas are 12 and 4157 J/kg - K, respectively. The gas expands to su-
personic speed through the nozzle, with a temperature of 1350 K at the nozzle exit. Calculate
the pressure at the exit.

H Solution

From our earlier discussion on the equation of state,

- A8 sk K
T 1p T etk

From Eq. (1.20)
¢y =c¢, — R =4157—-692.8 = 3464 J/kg - K
Thus

oy 4187

= =—=1.2
Cy 3464

From Eq. (1.43), we have

EXAMPLE 1.6

EXAMPLE 1.7

T y/(y—=1) 1350 1.2/(1.2—1)
2 - (—2) = (—) = 0.0248
pPi T 2500

p> = 0.025p, = (0.0248)(15 atm) = | 0.372 atm

Calculate the isentropic compressibility for air at a pressure of 0.5 atm. Compare the result
with that for the isothermal compressibility obtained in Example 1.3.

N Solution
From Eq. (1.4), the isentropic compressibility is defined as

. 1 /odv
g T U ap 4

Since v = 1/p, we can write Eq. (1.4) as

7, = l(a—p) (E.1)
p \3p J

The variation between p and p for an isentropic process is given by Eq. (1.43)
P _ (P_)
P1 P1

p = cp’ (E.2)

which is the same as writing

where c is a constant. From Eq. (E.2)

pY

)
Y = oL = oL g1 = £ (E.3)
ap ), P



From Egs. (E.1) and (E.3),
. 1 (ap) 1 (ap)_l 1 (yp)]
: p \0p /J, p\0p J p\p

T = . (E.4)

yp
Recall from Example 1.3 that 7 = 1/p. Hence,

Hence,

B =it (E.5)
Y

Note that 7 is smaller than t7 by the factor y. From Example 1.3, we found that for p = 0.5 atm,
7r = 1.98 x 10~° m?*/N. Hence, from Eq. (E.5)

1.98 x 1077 -
TsZTZ 1.41 x 107° m“/N

EXAMPLE 1.8

A flat plate with a chord length of 3 ft and an infinite span (perpendicular to the page in
Fig. 1.12) is immersed in a Mach 2 flow at standard sea level conditions at an angle of attack
of 10°. The pressure distribution over the plate is as follows: upper surface, p, = const =
1132 Ib/ft; lower surface, p3 = const = 3568 Ib/ft>. The local shear stress is given by

2= 3568 Ib g

Pressure distribution

Shear stress distribution

Figure 1.12 | Geometry for Example 1.8.



1, = 13/§%2, where t,, is in pounds per square feet and £ is the distance in feet along the
plate from the leading edge. Assume that the distribution of 7,, over the top and bottom sur-
faces is the same. (We make this assumption for simplicity in this example. In reality, the
shear stress distributions over the top and bottom surfaces will be different because the flow
properties over these two surfaces are different.) Both the pressure and shear stress distribu-
tions are sketched qualitatively in Fig. 1.12. Calculate the lift and drag per unit span on
the plate.

B Solution
Considering a unit span,

3 3
—#pds e [—[ prdE + f P dé} n = [—(1132)(3) + (3568)(3)]n = 7308n
0 0

From Eq. (1.46)

L = y component of [ — #pdS] =7308cos 10° = | 7197 Ib | per unit span

From Eq. (1.47)

Pressure drag = wave drag = D,, = x component of [ — # )4 dS:l

Hence

D, =7308sin10° = | 1269 Ib |per unit span

Also from Eq. (1.46)

Skin-friction drag = Dy = x component of [ # Tm dS]

3 3
#rm ds = [13/ S“O'st} m = 16.255‘“/5’ m = 39.13m
0 0

Hence, recalling that shear stress acts on both sides,

Dy =2(39.13) cos 10° = | 77.11b | per unit span

The total drag is
D=D, + Dy

D =12691b+77.11b= | 13461b

Note: For this example, the drag is mainly wave drag; skin-friction drag accounts for only
5.7 percent of the total drag. This illustrates an important point. For supersonic flow over slen-
der bodies at a reasonable angle of attack, the wave drag is the primary drag contributor at sea
level, far exceeding the skin-friction drag. For such applications, the inviscid methods dis-
cussed in this book suffice, because the wave drag (pressure drag) can be obtained from such
methods. We see here also why so much attention is focused on the reduction of wave drag—
because it is frequently the primary drag component. At smaller angles of attack, the relative
proportion of Dy to D increases. Also, at higher altitudes, where viscous effects become
stronger (the Reynolds number is lower), the relative proportion of D ¢ to D increases.




