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CHAPTER 1 
 

FUNDAMENTALS OF THERMODYNAMICS 
 

1.1. INTRODUCTION 

 

 Any action in the known universe requires energy to happen, whether it is associated to 

life or not. It is also known that energy is conserved, i.e., it is not created or destroyed, but is 

converted in form. As a result, it is reasonable to state that evolution resulted from the countless 

energy conversion processes throughout the history of the universe. On earth, humanity learned 

how to make use of energy available in nature to its advantage, mainly using fossil fuels in the 

past two hundred years, and advance to a level of development that allowed for enormous 

population growth. The supplies of fossil fuels are likely to remain adequate for the next few 

generations, but unacceptable environmental long-term consequences are expected, and 

scientists and policy makers must search for alternative sources of energy [1, 2]. The broad 

discussion of global concerns and their relation to energy led Smalley+ [3] to propose a 

prioritized list of the top ten problems humanity has to face in the 21st century: 1. Energy; 2. 

Water; 3. Food; 4. Environment; 5. Poverty; 6. Terrorism and war; 7. Disease; 8. Education; 9. 

Democracy, and 10. Population. Smalley [3] argued that with energy as the key at the top, all 

the others are possible to be solved, but without cheap energy, there is no acceptable answer. 

Therefore, energy is the single most important factor that impacts the prosperity of any society.  

 In that context, in the beginning of the 21st century Dresselhaus and Thomas [1] pointed 

out that there was a need for increased push towards alternative energy technologies to replace 

fossil and nuclear sources in the near future, in order to determine what is scientifically possible, 

environmentally acceptable and technologically promising. Also, the authors recalled that 

policy, science and technology need to work together harmoniously, which are responsible for 

acceptability, possibility and practicability, respectively. The same challenges continue to be 

up to date as discussed by Chen et al. [4] who recently argued that technically and economically 

viable renewable energy generation and storage are major hurdles to be overcome. For that, on 

the basis of their own research experiences, the authors listed research areas that need to be 

pursued in the energy field: energy materials; electrochemical energy conversion and energy 

storage; solar cells; solar fuels; LED and display devices, and last but not least theory and 

computational modeling.  

 Chapter 1 therefore reviews the thermodynamics fundamentals that are necessary for a 

full understanding of the physical principles of all thermal machines treated in this book. 

Moreover, thermodynamics brings to light the principles on: i) how energy is conserved in the 

universe (1st law of thermodynamics), and ii) how to quantify the imperfections of all existing 

physical systems (2nd law of thermodynamics). Since our society is also based on currency 

exchange, in order to make physical analyses even more useful, the chapter also reviews 

thermoeconomy (or exergoeconomy) [5], as a branch of thermodynamics, that has been 

increasingly gaining importance in engineering design since the 1970’s energy crisis [6]. 

Furthermore, the knowledge of such basic concepts allows the engineering designer to 

mathematically model physical systems (e.g., thermal machines) and computationally simulate 

their behavior, which makes possible affordable system control, design and optimization. 

Finally, recognizing the need to think of alternative forms of energy to fossil fuels, a discussion 

on energetic sustainability is presented, and the role of renewable energy for sustainable thermal 

machines design. 
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1.2. FUNDAMENTAL CONCEPTS AND TERMINOLOGY 

 

 During the development of classical thermodynamics, an objective language was 

necessary to be established to analyze physical systems on a common ground. Hence, a few 

selected concepts are listed and defined in this section to review the technical terminology used 

throughout the book, as follows: 

1. Energy: it is the physical quantity that refers to the potential to make an action happen. In 

physics, it is a fundamental concept that is accepted without definition and appears in nature in 

several forms. The conversion of the different forms of energy into one another was 

experimentally demonstrated by Joule [7]. Some examples of forms of energy are the kinetic 

energy (nonstationary system), the potential energy (system position under a gravitational, 

electric or magnetic field), the elastic energy (solid system shape change), the chemical energy 

(made available by exergonic reactions), the radiant energy (transported by electromagnetic 

waves or photons), and the thermal energy (associated to system temperature); 

2. System: it is the region of space (or entity) that is of interest to analyze – it is vital to be 

adequately defined in order to evaluate precisely system response and determine the location 

and the magnitude of the thermodynamic irreversibility (or losses); 

3. Frontier or boundary: it is the line that delimits the system and, mathematically has no 

thickness (= 0), so there is no matter, nor does it occupy a place in space – the value of a property 

at the boundary is shared by the system and its neighborhood (Continuum Mechanics); 

4. The system can be isolated (without mass flow and energy across the boundary), closed (no 

flow of mass across the boundary) or open (with mass and energy flows across the boundary), 

which is also named as control volume delimited by a control surface; 

5. Ports: the parts of the boundary that allow mass to flow in and out of the system (inlet or 

outlet ports); 

6. Thermodynamic properties: physical quantities that characterize the state that a system is 

in at a given time (e.g., pressure, temperature, volume, enthalpy, internal energy); 

7. Non properties: physical quantities of interest in the analysis of a system that are not 

properties (e.g., work, heat, generation of entropy), as they depend on system history; 

8. State: identification of the condition in which a system is at any instant in time, that is 

characterized by a set of thermodynamic properties (e.g., two independent properties define the 

state of a simple system); 

9. Properties can be extensive (dependent on the size of the system) and intensive (independent 

of system size); 

10. Specific property: it is the extensive property divided by the mass of the system. Ex: 

specific volume v = V/m; 

11. Phase: is the collection of all parts of the system that have the same intensive state and the 

same values of extensive properties (e.g., liquid-vapor mixture has two phases: liquid water and 

steam); 

12. Process: it is the change of the system from an initial state to a final one – in order to analyze 

the process, it is necessary to know the interactions experienced by the system with the 

surroundings (e.g., heat, mass, work transfer); 

13. Path: it is the succession of states that the system visited during the process, and 

14. Cycle: it is the special process with the same initial and final thermodynamic states. 

 

1.3. THE FIRST LAW OF THERMODYNAMICS 

 

The discovery of fire by men dates to approximately 200,000 years [8], i.e., the point in 

time when humanity started to use thermal energy. However, thermal sciences historically 
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evolved at a slower pace than solid mechanics which had already achieved several fundamental 

advances by the end of the 17th century, including Newton’s laws.  

 

1.3.1. Closed systems 

 

Despite having different historical chronologies, in principle, work transfer and heat 

transfer are equivalent, as possible forms of energy interactions. Such principle was clearly 

stated in the first law of thermodynamics. The first formal statement of the first law was 

provided by Clausius for cyclic processes, and also for a general thermodynamic process, 

defining a system thermodynamic property, the internal energy [9, 10], as follows: “In a 

thermodynamic process involving a closed system, the increment in the internal energy is equal 

to the difference between the heat accumulated by the system and the work done by it”. The 

statement led to the currently well-known first law of thermodynamics equation for a closed 

system: 

 

U Q W = −        (1.1) 

 

in which Clausius established the system internal energy variation in the process as U , and 

defined Q and W, as the net heat and work transfer, respectively, to or from the system due to 

the interaction with its neighborhood. In Equation (1.1) there is an implicit sign convention 

adopted by Clausius, which is: Q > 0 for heat entering the system and Q < 0 otherwise, and W 

< 0 for work entering the system and W > 0 otherwise. Originally, the convention was motivated 

by heat engines which deliver useful work as a result of heat input. 

The discussion on what is physically possible or not is clarified by the second law of 

thermodynamics, which allows for quantifying the imperfections (or irreversibilities) of all 

processes in the known universe. The second principle states that all fluxes produced by any 

physical quantity (e.g., temperature, pressure, concentration) happen in one direction, from high 

to low. The nonidealities, or the generation of entropy, are always present in any physical 

process that happens in the universe. Such facts led Rudolf Clausius to acknowledge that the 

entropy of the universe is always increasing in the direction of a state of maximum entropy in 

a statement that addressed simultaneously the two laws of thermodynamics as follows: “a. The 

energy of the universe is constant, and b. The entropy of the universe strives to attain a 

maximum value” [11]. The latter statement will be further discussed in this chapter in the 

presentation of the second law of thermodynamics in section 1.4. 

At this point, it is important to highlight that the laws of thermodynamics are a result of 

the experimental observations done by the scientists who proposed them, therefore recognized 

as postulates or principles. As a result, no formal mathematical proof is required for them to be 

accepted. Any postulate or principle is accepted to be valid until a counter example is presented 

against its validity. So far, no counter proof against the validity of the accepted laws of 

thermodynamics has been successfully presented. 

In this treatment, the first law is discussed first, followed by the second law, according 

to tradition. However, the first and second laws of thermodynamics formulations as currently 

known were developed concomitantly by several scientists (William John MacQuorn Rankine, 

Rudolph Clausius, and William Thomson – Lord Kelvin) mostly in the first half of the 

nineteenth century [12]. In fact, the principle of conservation of energy in mechanics is a little 

older than the first and second thermodynamics principles. 

After the concept of system internal energy variation originally introduced by Clausius, 

which is intrinsically associated to system temperature, several other forms of system energy 

storage were identified. Therefore, the formulation proposed by Eq. (1.1) was amended by 

several other scientists. The final common understanding was in terms of system total energy, 
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which was made up of four macroscopic contributions: i) the change in kinetic energy, linked 

to whole system motion; ii) the change in system gravitational potential energy, iii) the change 

in system internal energy, and iv) the change in other possible forms of energy.  

As a result, since the beginning of the twentieth century, the mathematical formulation 

for the closed system first law of thermodynamics for a process from state 1 to 2 is given by 

[13 – 15]: 

 

( )1 2 k p other 1 2 1 2
1 2

E E E U E Q W− − −
−

 =  + + + = −     (1.2) 

 

in which kE , pE , and otherE  are the system kinetic, potential, and other forms of energy 

variations, respectively. Each form of system energy variation should be included or not in Eq. 

(1.2) after a case-by-case analysis. For example, for power and refrigeration systems, only the 

three first forms are usually necessary, i.e., kinetic, potential, and internal energy. Depending 

on the system, other forms of energy variation need to be accounted for, which could be 

uncoupled or coupled. Examples of uncoupled energy variations are those in which constitutive 

relations are independent of one another, such as electrical capacitance and inductance, kinetic 

rotational, spring translational and rotational [13]. Regarding coupled behavior, the most 

common systems to be cited are energy conversion systems, such as the electromechanical 

energy of an electric motor that could be altered via shaft work transfer or electrical work 

transfer independently, and by shaft work and electrical work transfer combined. 

 The left-hand side of Eq. (1.2), 1 2 2 1E E E− = − , is the system energy change in the 

process, which depends only on the initial and end states. The right hand side of Eq. (1.2) shows 

that the energy interactions experienced by the system during the process, 1 2Q −  and 1 2W− , do 

not have the same characteristics, since they depend on the end states and on the history (path) 

of process 1-2. Mathematically, the unique result 1 2 2 1E E E− = −  could be obtained with 

different values of 1 2Q −  and 1 2W− , i.e., the system can proceed from state 1 to state 2 along an 

infinity of paths.  

A simple numerical example demonstrates that clearly. If 1E 1 kJ=  and 2E 3 kJ= , then 

1 2E 2 kJ− = . States 1 and 2 are unique, and the only possible result for the system energy 

change is 1 2E 2 kJ− = . However, the pair ( )1 2 1 2Q ,W− −  is not unique so that 1 2E 2 kJ− = , i.e., 

any combination of 1 2Q −  and 1 2W−  that results in 1 2E 2 kJ− = , according to Eq. (1.2) would 

be acceptable. Therefore, 1 2Q −  and 1 2W−  depend on states 1 and 2, but also on the history (path) 

of the process. For example, ( ) ( )1 2 1 2Q ,W 6 kJ, 4 kJ− − =  or ( ) ( )1 2 1 2Q ,W 6 kJ, 8 kJ− − = − −  

would be two different paths from 1 to 2 that would comply with the first law of 

thermodynamics expressed by Eq. (1.2). As a result, the system total energy, E, is a 

thermodynamic property, because its variation depends only on the initial and end states of the 

process. Conversely, Q and W depend also on the history (or path) of the process, therefore 

they are classified as physical quantities of interest that are not properties. 

 

1.3.2. Open systems 

 

An open system is also defined as a control volume [15] and is a system in which mass 

and energy flow through the boundary to and from the surroundings. Therefore, the analysis 

starts by recalling the mass conservation principle: “nothing is lost, nothing is created, 

everything is transformed”, as it was originally stated by Antoine Lavoisier [16]. So, in a closed 

system, in which there is no mass flow across the boundary, the total system mass is constant. 
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As a result, mathematically, the mass conservation principle formulation for a nonreactive open 

system is derived with the help of Fig. 1.1.  

 

Mass conservation 

 

Consider a closed system whose mass is deformable and represented in Fig. 1.1 by the 

highlighted area. In Figure 1.1, for the analysis, the open system boundary is defined by the 

rigid and impermeable walls drawn with solid lines, and the dotted lines at the inlet and outlet 

ducts. The deformable mass of the closed system (highlighted area) is allowed to flow through 

the open system. Therefore, for a process that goes from t to t t+ , mass conservation applied 

to the closed system states that: 

 

cs os,t in os,t t outM  (constant) = M M M M++ = +    (1.3) 

 

where csM  is the total and constant (fixed) mass of the closed system, osM  the mass of the 

open system (or control volume). 

 

 
 

Figure 1.1. The process from t to t t+  of a closed system represented by the highlighted 

area through an open system (or control volume). 

 

 Rearranging Eq. (1.3) and dividing by t , the following relation is obtained: 

 

os,t t os,t
in out

M M
 m m

t

+ −
= −


     (1.4) 

 

in which, in
in

M
m

t


=


 and out

out

M
m

t


=


. 

 Next, taking the limit of Eq. (1.4) as t 0 → , and assuming as many inlets and outlets 

as desired to represent the actual physical system, the result is given by: 

 

os

in out

dM
 m m

dt
= −        (1.5) 

 

which is the general mass conservation principle for an open system. 

 

Energy conservation 

 

 

 

 

 

 

 

 

 

 

inlet inlet 

outlet outlet 

in inm ,   out outm ,   

Q  Q  W  W  
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 The derivation of the first law of thermodynamics for open systems starts by considering 

the process from a state at time t to another state at time t +Δt undergone by the closed system 

shown schematically in Fig. 1.1. For that, the first law of thermodynamics states that: 

 

cs,t t cs,t in outE E Q W (P ) (P )+ − = − +  −     (1.6) 

 

where Q Q t=  ; W W t=  , and the remaining terms on the right-hand side account for the 

work linked to the fluid pressure as mass gets in and out of the control volume. Indeed, 

in in in fluid,in(P ) (P A s) (F s) W =  =  =  is the work done by the matter flowing (flow work) 

through the inlet port, and at pressure Pin that results in the force Fin that pushes the closed 

system for a distance ins  into the open system, thus negative, which explains the positive sign 

in Eq. (1.6), and, analogously, out(P )  is the work done by the closed system (flow work) at 

pressure Pout through the outlet port on the environment, thus positive, which explains the 

negative sign in Eq. (1.6), according to Clausius’ thermodynamics signs convention [9, 10]. 

In like manner to Eq. (1.3), it is possible to find relations between the energy inventories 

of the closed and open systems as follows: 

 

cs,t os,t in os,t inE E E E (e M)= + = +       (1.7a) 

 

cs,t t os,t t out os,t t outE E E E (e M)+ + += + = +     (1.7b) 

 

where e is the fluid specific energy. Analogously, it is possible to write in in(v M) =   and 

out out(v M) =  , using v the fluid specific volume. 

 Combining Eqs. (1.6) and (1.7) in order to eliminate cs,tE  and cs,t tE + , and dividing the 

expression by t , the result is written as follows: 

 

os,t t os,t

ìn out

E E M M
Q W (e Pv) (e Pv) 

t t t

+ −     
= − + + − +   

     
  (1.8) 

 

 Taking the limit of Eq. (1.8) as t 0 → , and assuming multiple inlets and outlets, the 

general first law of thermodynamics for open systems is given by 

 

os

in out

dE
Q W m(e Pv) m(e Pv)

dt
= − + + − +     (1.9) 

 

 Equation (1.9) accounts for the energy transfers to the open system due to mass flow in 

and out, which are represented by the two last terms of the right-hand side. Additionally, it is 

instructive to recognize that when kinetic, gravitational and internal energy are the dominant 

macroscopic forms of energy in the system, 21
e Pv u Pv V gz

2
+ = + + + . 

 Using the fluid specific enthalpy h u Pv= + , Eq. (1.9) is rewritten as follows: 

 

2 2os

in out

dE 1 1
Q W m h V gz m h V gz

dt 2 2

   
= − + + + − + +   

   
    (1.10) 
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which is the energy conservation principle for an open system. 

Finally, taking 
2

0 v
h h gz

2

 
= + + 
 

, which is the property specific methalpy [13], the 

first law of thermodynamics is alternatively written for a general open system (or control 

volume) shown schematically in Fig. 1.2 as follows: 

 

0 0CV
CV CV

in out

dE
Q W m h m h

dt
= − + −      (1.11) 

 

where the subscript CV refers to the control volume (or open system) under analysis, and with 

a boundary defined by a control surface represented by the dashed line in Fig. 1.2. 

 

 
 

Figure 1.2. Schematic diagram of a general control volume delimited by a control surface 

represented by the dashed line. 

 

 Next, to complete the analysis, it is necessary to quantify the control volume net work 

and heat transfer rates across the boundary of the control volume. Note that Equations (1.2), 

(1.10) and (1.11) do not explicitly relate such quantities to the system geometry, which is 

required for adequate system design. For that, other branches of science are needed, such as 

electromagnetism, electricity, classical mechanics, solid and fluid mechanics, and heat transfer.  

 

1.3.3. Work transfer 

 

 In classical mechanics, the work produced or consumed by a system as a function of 

forces, F , and displacements, r , is given by [15]: 

 
2

1

W F dr=        (1.12) 

 

 In thermodynamics, the concept of work needs to be amplified to comprise other types 

of interactions. Work transfer is defined in a more general way that includes electrical and 
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magnetic work interactions was proposed by Hatsopoulos and Keenan [17]: “Work is an 

interaction between two systems such that what happens in each system at the interaction 

boundary could be repeated while the sole effect external to each system was the change in 

level of a weight.” For example, consider liquid water inside a container with an immersed 

paddle wheel as the system to be analyzed. The paddle wheel axle is connected by a cord to a 

weight placed at a high level. The paddle wheel is then rotated by the axle that crosses the 

system boundary as the weight descends and does work on a fluid inside the system increasing 

its internal energy, therefore transforming mechanical in thermal energy, as it was originally 

demonstrated by Joule [7]. Although there is no displacement of the originally defined system 

boundary, the work transfer could be quantified by Eq. (1.12) accounting for the forces and 

circular displacement of the paddle wheel in the fluid. Also, the same work would be transferred 

due to electrical energy from a power line that fed an electric motor connected to the paddle 

wheel axle. Based on this broad definition, as a result of doing work, it is seen that energy was 

transferred to and stored in the system. Hence, work is a means for transferring energy. 

 Finally, it is important to recognize that in the absence of (or negligible) system heat 

loss to the surroundings, the energy input to the axle could be transferred in its entirety to the 

system by the paddle wheel [7]. Joule showed with his experiment that the weight potential 

energy variation due to going from a higher to a lower level was equal to the internal energy 

gained by the water through friction with the paddle. Therefore, by definition, work transfer is 

an interaction free of thermodynamic losses. This aspect is crucial to understand the distinction 

between work and heat transfer. Equation (1.12) and other variations allow for explicitly 

relating system energy variation to system geometry, so that system design is made possible. 

 

1.3.4. Heat transfer 

 

 At this point, it should be noted that although the first law of thermodynamics does not 

make a distinction between heat and work transfer, there is a fundamental distinction between 

them. Both are energy interactions and are measured with the same energy physical units. 

However, heat transfer happens together with entropy transfer (thermodynamic loss), and work 

transfer does not. Such fundamental distinction appears clearly through the derivation of the 

mathematical formulation of the second law of thermodynamics, which will be presented in 

section 1.4. 

 Heat transfer was simply defined by Poincaré as the energy interaction that results from 

the temperature difference between the system and its surroundings [13]. Such definition is in 

agreement with the three different heat transfer modes (conduction, convection and radiation) 

that were quantified mathematically based on temperature differences with empirically based 

expressions. 

 

Conduction 

 

 Conduction is the mode of heat transfer that occurs in a stationary medium (solid, 

liquid or gas), and there must be mass so that energy flows due to temperature difference. The 

concept is understood as the transfer of energy from the more energized to less energized 

molecules. 

The conduction heat flux, W m-2, is macroscopically determined by the generalized 

Fourier’s law as follows: 

 

i ij

ji

Q T
q" k

A x

  
= = − 

 
     (1.13) 
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where T(t, x)  is the local temperature, which is a function of time t and space in terms of the 

position vector T
1 2 3x (x ,x ,x )= ; the spatial dimensions are indicated by the subscripts 

i, j 1,  2,  3= ; ijk  are the thermal conductivities that are given functions of x , experimentally 

measured and tabulated for known substances – if ijk  are uniform, i.e., independent of space, 

then the system is said to be homogeneous, and when the material is isotropic, i.e., ijk  is 

independent of direction, ij ijk (x) k(x) =   where ij  is the Kronecker delta, so that for an 

homogeneous and isotropic system ij ijk (x) k =  , and the minus sign accounts for Clausius sign 

convention for heat transfer to be positive entering the system, i.e., when 
j

T

x




 is negative. 

As a result, the heat transfer rate due to a temperature gradient through an homogeneous 

and isotropic system in the x direction, xQ , is given by: 

 

x

T
Q kA

x


= −


      (1.14) 

 

where A is the plane area perpendicular to the x direction in the system under analysis, e.g., a 

plane wall. 

 

Example 1.1) A straight copper rod with 0.1-m diameter and 0.8-m length has its lateral surface 

thermally insulated, with bare tips. One of the tips is attached to a heat source, where the 

measured temperature is 800 K. On the other tip, the measured temperature is 400 K at the point 

where it is connected to the generator component of an absorption refrigerator. What is the heat 

transfer rate supplied to the generator in kW?  

The thermal conductivity of copper is 1 1
ck 400 W m K− −= . 

 

Given 

0.8 m long, and 0.1 m diameter copper rod 

Thermal conductivity of copper (kc) = 400 W m-1 K-1  

Temperature of the hot tip (TH) = 800 K 

Temperature of the cold tip (TL) = 400 K 

 

Find 

The heat transfer rate supplied to the absorption refrigerator generator cQ  

 

Assumptions 

One dimensional heat flow 

The system has reached steady state 

 

Solution 

The solution is based on Eq. (1.14) and accounts for unidirectional conduction, i.e., the 

temperature variation is linear, therefore: 

 



 10 

L

HL H
c c c

T 400 K

T 800 KT TT
Q k A k A   

L 0.8 mx L

D 0.1 m

=


=− 
= − = − 

= 
 =

, i.e., 
T

0
x





 

 

and the copper rod cross sectional area is 

 
2 2

2 D 3.14159 (0.1 m)
A 0.00785 m

4 4

 
= = =  

 

Therefore, the heat transfer rate that is supplied to the absorption refrigerator generator is given 

by 

 

2
c

W 800 400 K
Q 400 0.00785 m 1,570 W 1.57 kW 

m K 0.8 m

−
= −   = =  

 

Comment: 

Note that the calculation of the conduction heat transfer rate with Fourier’s law allowed for 

assessing the rod geometry and how it impacts the resulting heat transfer rate. ■ 

 

Convection 

 

 Convection is defined as the mode of heat transfer that occurs between a moving 

medium (fluid: liquid, gas or fluidized bed – fluid carrying solid particles), and another 

stationary or moving medium at a different velocity, i.e., in presence of a velocity gradient 

between the entities that exchange heat. Therefore, there must be mass with physical contact, 

so that energy flows from the more to the less energized medium, from the higher to the lower 

temperature. Alternatively, convection could be simply defined as the study of heat transport 

processes effected by the flow of fluids and allows to understand and predict how a fluid flow 

will act as a “carrier” or “conveyor belt” for energy and matter [18].  

 The Newton’s law of cooling, that was empirically derived, shows that the convection 

heat flux, W m-2, between two entities at temperatures 1T  and 2T  is proportional to their 

temperature difference, as follows: 

 

conv 1 2

conv

Q
q" h (T T )

A

 
= = − 
 

     (1.15) 

 

in which convA  is the heat transfer area between the two entities in relative motion, as described 

previously, convQ  the convection heat transfer rate, W, and h is the proportionality factor first 

proposed by Newton, namely, the convection heat transfer coefficient. It should be noted, that 

convQ  is positive when 1T  > 2T . Therefore, when modeling physical systems, the sign 

convention adopted by Clausius should be respected, which is: convQ  > 0 for heat entering the 

system and convQ  < 0 otherwise. 

 The heat transfer coefficient is a proportionality factor between convq"  and the 

temperature difference 1 2T T− , and is not a thermodynamic property. In fact, it depends on 
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several characteristics of the interaction between the two entities exchanging heat. It is a 

coefficient of empirical nature, as originally proposed by Newton, but it could be estimated by 

the solution to momentum and energy conservation equations (velocities and temperatures) in 

a domain comprised by the two entities, either analytically or numerically. The heat transfer 

coefficient depends on the flow regime (laminar, transition or turbulent), the fluids 

thermophysical properties, and morphology (geometry). Additionally, convection could be 

external (fluid external to a solid) or internal (fluid internal to a solid); forced (with work 

input, i.e., fluid moves due to fans, compressors, or pumps) or natural (no work input, i.e., 

fluid moves due to buoyancy effects), and single phase or multiphase (e.g., condensation, 

boiling, melting). Hence, the accurate determination of the convection heat transfer coefficient 

is often considered a challenging problem. Through the years, scientists have thoroughly 

studied the heat transfer coefficient behavior in many situations of physical interest, mainly for 

engineering design, so that much is currently known with respect to the order of magnitude of 

h in such situations. Figure 1.3 shows one of the available compilations of typical values of the 

heat transfer coefficient, h, in terms of orders of magnitude [19], that have been shown to be 

useful in systems engineering preliminary design for reduced-order mathematical models [20]. 

 

 
 

Figure 1.3. Range of convection heat transfer coefficients for different fluids and cooling 

techniques [19]. 

 

Radiation 

 

 Radiation is the third mode of heat exchange between two systems at different 

temperatures. The physical mechanism is not yet completely understood. Two viewpoints are 

accepted to explain the phenomenon of radiation heat transfer: i) transported by electromagnetic 

waves (continuous description), and ii) carried by discrete particles (photons), assumed with 
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zero rest mass, namely the quantum theory [21]. In both descriptions, heat travels at the speed 

of light. 

Some fundamental characteristics need be emphasized: a) The radiation heat transfer 

rate between systems 1 and 2 depends on 
4 4

1 2(T T )− , in terms of absolute temperatures, not on 

1 2(T T )−  like in conduction or convection. As a result, radiation has intensified importance at 

high absolute T levels; b) No medium (matter) need be present between the 2 systems, and c) 

It is the mechanism by which bodies can exchange heat from a distance, without direct contact, 

even in vacuum. 

Thermal radiation is defined as radiant energy emitted by a medium (matter) in virtue 

of its temperature. The emission of thermal radiation is governed by the temperature of the 

emitting body, which in turn reflects the matter molecular agitation level. Kirchhoff’s 

experiment showed that blackbody emissive power, for a given wavelength (or frequency), 

depends only on temperature [22]. As a result, temperature is a property of thermal radiation. 

 In either description (continuous or discrete particles), thermal radiation is characterized 

by its frequency,   (s-1), or range of frequencies or wavelengths, that are related as follows: 

 

c
 =


  with 0c

c
n

=      (1.16) 

 

in which c is the wave or photons velocity; 8 1
0c 2.998 10 m s−=  , that is the light speed in 

vacuum, and n the medium index of refraction. For gases, n 1. 

 The thermal radiation wavelength band is 0.1 m 100 m     , which encompasses 

the visible range (what is seen by the human eye), i.e., 0.4 m 0.7 m     . The band also 

contains the full infrared range and part of the ultraviolet range. Further, no stream is of a single 

wavelength,  , but if the band is narrow, i.e., between   and d+  , it is said to be 

monochromatic radiation. 

 The total radiation heat flux, W m-2, arriving on the system surface is denoted by I . For 

a general surface, I  could be absorbed, reflected or transmitted. Indeed, conservation of energy 

and the intrinsic characteristics of the surface determine how I  is split as follows: 

 

I I I I + + =  or 1++  =     (1.17) 

 

where ,     and   are the surface properties absorptivity, reflectivity, and transmissivity, 

respectively. 

 The thermal radiation emitted by a system (solid surface, gas or liquid) is quantified 

with respect to an idealized perfect emitter (or absorber) body, namely, a black body 

( 0, 0) =  = , in terms of a material property named emissivity,  . In a black body, 1 = . 

Therefore, for a typical body 0 1   . The emissivity in general varies with respect to 

wavelength, but when the surface emissivity is approximately independent of  , the so called 

gray surface model, originally proposed by Planck [21] is utilized, and   is assumed constant 

as the total hemispherical emissivity, i.e., for all wavelengths that the surface emits radiation 

[22]. The model also assumes that the surface is a diffuse emitter, absorber, and reflector (i.e., 

isotropic – properties are the same in all directions), and additionally is opaque ( 0) = . The 

gray surface model approximates well the behavior of many materials found in thermal 

engineering, such as metals, paints and paper.  

 Kirchhoff’s law establishes an important relation between emissivity and absorptivity 

as functions of wavelength,  . A complete derivation of Kirchhoff’s law was reported by 
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Planck [21]. Fundamentally, for a system in thermodynamic equilibrium the law establishes for 

each surface that 

 

  =       (1.18) 

 

 Equation (1.18) was derived for surfaces in thermodynamic equilibrium with the 

medium, but since emissivity and absorptivity are surface properties that depend only on surface 

characteristics and temperature, it also applies for nonequilibrium conditions [22]. Further, for 

a gray surface, it follows that: 

 
 =        (1.19) 

 

 In order to quantify the energy amount that arrives or leaves a surface, envisioning one 

single ray is not representative of the phenomenon. Therefore, the concept of radiation 

intensity, 
2 1i (W m sr )− −

, is adopted, which is the radiant energy arriving or leaving a surface 

per unit of area normal to the collection of rays, per unit of solid angle, 2
hd dA / r= , which is 

the steradian (sr), and per unit time, as shown in Fig. 1.4, in which hdA  is the surface element 

on the hemisphere, and r the hemisphere radius.  

 As a result, it is possible to calculate the radiant energy flux, e (W m-2), from the surface 

to the hemispherical space above the surface. First, the radiant energy per unit time and unit 

area in the direction   within the solid angle d is calculated by: 

 

de
i

d  cos 
=

 
      (1.20) 

 

Therefore, the radiant energy flux is given by 

 
2 /2 2 /2

0 0 0 0

e i cos  d i cos  sin  d  d
   

= = = =

=   =          (1.21) 

 

 Although the analysis has been conducted for the total energy flux (over all 

wavelengths), Eqs. (1.20) and (1.21) also apply to monochromatic radiation. In this case, the 

results would be obtained for a specific wavelength in terms of i  and e , respectively. Then, 

the total hemispherical intensity and energy flux, i and e, would be calculated by the integrals 

of i  and e , from 0 to  =  , respectively. 

 The second law of thermodynamics allows for the demonstration that a maximum 

amount of radiant energy that can be emitted at a certain temperature and wavelength exists. A 

system that emits such radiant energy is named a black body emitter. Planck’s law [21] 

presented a mathematical expression that was derived based on quantum statistics 

thermodynamics for correlating the blackbody emissive power as a function of temperature and 

wavelength (or frequency), b,e (T) . Integrating b,e (T)  from 0 to  =  , it is possible to 

obtain the Stefan-Boltzmann law, that was originally experimentally derived [22, 23] as 

follows: 

 
2 4

be n  T=        (1.22) 
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where n 1  for gases; 8 2 45.670373 10  W m K− − − =   is the Stefan-Boltzmann constant, and 

T  the system surface absolute temperature, K. 

By taking bi i (T)= , the total blackbody intensity (over all wavelengths), i.e., a diffuse 

emitter (intensity does not depend on direction), using Eq. (1.21) and Planck’s law [21, 22], it 

is possible to demonstrate that 
4

b bi (T) e (T) /  T /=  =    (Problem 1.1).  

 The radiation heat transfer rate emitted by a surface is quantified by the empirically 

based Stefan-Boltzmann law adapted to the gray surface model, as follows [22]: 

 
4

emt s s sQ A T=         (1.23) 

 

where sA  the surface area; s  the surface emissivity, and sT  the surface absolute temperature. 

 

 
 

Figure 1.4. The radiation intensity and the hemispherical space above the emitting surface. 

 

 A conceptual method to understand and treat thermal radiation problems is to consider 

a space closed by n surfaces, as shown in Fig. 1.5 left. The method is based on the idea of an 

appropriately defined closed space, namely the enclosure. The analysis starts with the 

construction of an appropriate enclosure, so that all radiation is completely considered, noting 

that not all surfaces need to materially exist (e.g., the open end of a duct, an open window) in 

which case equivalent radiation properties and blackbody temperatures should be assigned to 

them, corresponding to radiation rates crossing the imaginary surface into the enclosure. It is 

then clear that only a fraction of the total stream emitted by one surface reaches one of the other 

surfaces and is possibly absorbed, reflected or transmitted by it. That fraction depends on: i) 

relative position; ii) surface characteristics (e.g., roughness, cleanliness, shape: convex, flat of 

concave), and iii) nature of the medium in the space. The heat transfer problem consists of 

calculating the resulting radiation net heat transfer rate for each surface. 

 

 
Figure 1.5. The enclosure idea. 
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Lemma 1.1 

 In an enclosure with n surfaces, as shown in Fig. 1.5 left, at steady state, the following 

relation holds: 

 
n

i

i 1

Q 0

=

=       (1.24) 

 

where iQ  is the internal net heat transfer rate in surface i. 

 

Proof: 

 

i) Based on Fig. 1.5 left, the first law of thermodynamics states that: 

 
n

e,i

i 1

Q 0

=

=  

 

where e,iQ  is the external net heat transfer rate in surface i. 

ii) Taking a system consisting of just one surface, as shown in Fig. 1.5 right, the first law of 

thermodynamics states that: 

 

e,i iQ Q 0+ =  

 

Therefore, doing the same for all n surfaces and adding up all Equations, the result is: 

 
n n

e,i i

i 1 i 1

Q Q 0

= =

+ =   

 

iii) After using the result from i), it is concluded that: 

 
n

i

i 1

Q 0

=

=  

■ 

 

The thermal radiation heat transfer rates are calculated for the surfaces that interact with 

one another. Considering an enclosure, as shown in Fig. 1.5 left, the internal radiation net heat 

transfer rate for each surface, e.g., a solar collector surface, as shown in Fig. 1.6, is calculated 

by 

 

( )i i i iQ H B   A= −      (1.24) 
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where iH  is the incident radiation heat flux, i.e., the total radiation heat transfer rate per unit of 

area striking the surface and coming from all directions; iB  is the radiosity, i.e., the total 

radiation heat transfer rate per unit of area leaving the surface, and iA  is the exposed surface 

area. 

 The objective of the analysis is to determine the radiation net heat transfer rate for each 

of the surfaces that interact energetically in the enclosure. For that, it is necessary to evaluate 

the fractions of the emitted heat transfer rates by the surfaces that are intercepted by the others. 

In order to do that, the concept of view factor (or, alternatively, angle factor, shape factor, 

configuration factor, geometrical factor) was introduced.  

 

 
Figure 1.6. Thermal radiation heat fluxes that arrive (Hi) and leave (Bi) a surface. 

 

 The view factor is defined as the fraction of the total radiant energy that leaves a given 

surface and is intercepted by another surface. There are four types of view factor between areas: 

i) Two infinitesimal areas, 
i jdA dAdF − ; ii) An infinitesimal and a finite area, 

i jdA AF − ; iii) A finite 

and an infinitesimal area, 
i jA dAdF − , and iv) Two finite areas, 

i jA AF − . Based on the definition, 

it is clear that the view factor is infinitesimal when the stricken surface is infinitesimal. Only 

the fourth type is discussed in this book, but the full description of the four types of view factor 

is available in the work of Sparrow and Cess [22]. 

The definition of the view factor of the fourth type is summarized as follows: 

 

i j

i j
A A

i

Radiation rate leaving A  and being intercepted by A
F

Radiation rate leaving A  in all directions
− =   (1.25) 

 

 In order to calculate 
i jA AF − , consulting Fig. 1.7, idB  (infinitesimal radiosity) 

intercepted by jdA  is the emitted and reflected radiation leaving idA  per unit of area and 

contained in the solid angle 
2

j j jd dA cos  / r =  , in which r is the distance between idA  and 

jdA . Then, using Eq. (1.20) with ide dB= , and assuming diffuse radiation (ii = constant), Eq. 

(1.25) is rewritten as follows: 

 

  
iB  iH  

Surface i 
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i j

j

j i

i j
i

i
i

i

dB  intercepted by dA

d

j j
i i i2

A A i j
A A j i2

A Ai

2 /2

i i
A 0 0

d

dB  in any direction ( , )

cos   dA
i cos  dA

cos  cos   r 1
F dA dA

A r

i  cos  sin  d  d dA



−

 

= =


 




 
= =

  
 
 

    
 
 
 

 


  

j
     (1.26) 

 

which is the general expression to calculate the view factor. Note that the view factor has a clear 

physical meaning from its definition and from Eq. (1.25), but Eq. (1.26) shows that it depends 

only on the geometry of the arrangement among the surfaces interacting energetically, as in the 

case of the enclosure shown in Fig. 1.5. 

 By switching subscripts i and j in Eq. (1.26), the following reciprocity relation results: 

 

i j j ii A A j A AA  F A  F− −=     (1.27) 

 

 
 

Figure 1.7. The general relative position of two finite areas iA  and jA  for the calculation of 

i jA AF − . 

 

 Through the years, the engineering community has developed many expressions for 

calculating the view factor in geometric situations of practical interest based on Eq. (1.26). Heat 

transfer books and radiation technical literature make those expressions available in tabular 

form [22, 25]. However, for novel structures, it will be necessary to calculate the appropriate 

view factors between the interacting surfaces in the enclosure to obtain the radiation net heat 

transfer rates in each of them. 
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 An important result of the definition of the view factor and of the first law of 

thermodynamics (conservation of energy) is known as the view factor conservation in an 

enclosure with n surfaces as the one shown in Fig. 1.5. The following expression summarizes 

the concept: 

 

i 1 i 2 i i i nA A A A A A A AF F F F 1− − − −+ + + + + =  or 
i k

n

A A

k 1

F 1−

=

=   (1.28) 

 

 Next, assuming gray surfaces (diffuse emitted and reflected radiation; opaque surface, 

i 0 = , and i i =  ) in the enclosure of Fig. 1.5 so that i i1 = − , the analysis proceeds with 

the calculation of the radiosity in each surface, as follows: 

 
4

i i i i iB T (1 ) H=   + −      (1.29) 

 

 Combining Eqs. (1.24) and (1.29), and with some algebra, surface i net heat transfer rate 

is given by 

 

4i
i i i i

i

Q A ( T B )
1


=  −

− 
     (1.30) 

 

 Equation (1.30) relates iQ  and iT  for all surfaces. Therefore, the method allows for the 

calculation of all surfaces radiation net heat transfer rates as functions of the surfaces 

temperatures, as follows: 

i) Derive an expression for the incident radiation on each surface: 

 

1 i 2 i i i n i

j i

i i 1 1 A A 2 2 A A i i A A n n A A

n

i i j j A A

j 1

A H B A F B A F B A F B A F

A H B A F

− − − −

−

=

= + + + + +

=
 (1.31) 

 

and using Eq. (1.27), i.e., the reciprocity relation, the result is 

 

i j

n

i j A A

j 1

H B F −

=

=       (1.32) 

 

ii) Substitute Eq. (1.32) in Eq. (1.29) to obtain 

 

i j

n

4
i i i i j A A

j 1

B T (1 ) B F −

=

=   + −       (1.33) 

 

which is a linear system of n equations to be solved for n unknowns, i.e., n radiosities, iB . 
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iii) The last step is the calculation of the n radiation net heat transfer rates, iQ , based on the 

calculated iB , using Eq. (1.30). 

 

 Alternatively, all n temperatures could be evaluated as functions of iQ  (Problem 1.2). 

Other possibility is to have a number of surfaces with iQ  as functions of iT , and the remaining 

surfaces with iT  as functions of iQ . 

 In this section a brief description of the thermal radiation phenomena of radiation 

exchange between surfaces was presented. Also, thermal radiation could be diffuse, or 

directional, i.e., with a specific direction of propagation (specular or mirrorlike). Additionally, 

radiation energy either incident on or leaving from a surface could be split in two components 

of polarization. One component is polarized parallel and the other perpendicular to the 

incidence plane (plane that includes the incident ray and the surface normal). It is also useful to 

approximate radiation problems by defining wavelength bands (e.g., solar collectors or 

cavities). Finally, attention should be dedicated to radiant energy transfer within media that 

absorb, emit, and scatter thermal radiation, i.e., the medium around the system under analysis 

participates of the radiation transfer processes, which could and commonly occur in 

combination with the other modes of heat transfer (conduction and convection), such as in 

atmospheric phenomena that are of paramount importance in biological and engineering 

problems. The physical details of such aspects could be found in the prolific thermal radiation 

technical literature [21, 22, 26]. 

 

Example 1.2) Consider the solar collector and water storage tank system shown in Fig. 1.8. 

What is the radiation net heat transfer rate on the collector surface exposed to the sun, cQ , as a 

function of the collector temperature, cT , and system operating and design parameters? In the 

analysis, assume that the heat loss by convection on the collector surface is negligible in 

comparison to cQ . Derive mathematical expressions to calculate the water temperature in the 

tank, tT , when water is not being consumed, and the collector (or serpentine) water output 

temperature, sp cT T= , based on sun exposed collector area, cA , radiation heat flux, I , collector 

emissivity, c , ambient (or sky) temperature, 0T , collector water mass flow rate, spm , liquid 

water specific heat, wc , tank walls global heat transfer coefficient, U, and tank walls heat 

transfer area, tA .  

Solution 

 

i) Based on Fig. 1.6, using the gray surface model, Eq. (1.24), Kirchhoff’s law, and considering 

surface i as the collector surface, the collector net radiation heat transfer rate is calculated as 

follows: 

 

( ) ( )
c

4 4c
c c c c c c c c

c
B

Q
H T 1 H H T

A
 = −   + −  =  −
       
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( )4 4c
c 0 c

c

Q
I T T

A
=  +  −       

 

( )  c
4
0

4
cccc ATTIQ −−=       

 

 

 
 

Figure 1.8. Schematic diagram of a solar collector and water storage tank system. 

 

ii) A balance of energy in the solar collector shown in Fig. 1.8 states that: 

 

c sp w t sp w cQ m c T m c T+ =       

 

c sp w c tQ m c (T T )= −        

 

iii) A balance of energy in the water storage tank shown in Fig. 1.8 states that: 

 

t 0 t sp w c tUA (T T ) m c (T T ) 0− + − =       

therefore 

 

t 0 sp w c
t

sp w t

UA T m c T
T

m c UA

+
=

+
      

 

iv) Combining i) and ii), tT  and cT  are related as follows: 

 

( ) 4 4
c c c 0 c sp w c tI T T A m c (T T ) −  − = −       

 

v) Therefore, combining iii) and iv), cT  is determined by the following nonlinear equation: 

 

 

 

 
 

Make up water 

Utility water 

Water storage tank 
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( )  t 0 sp w c4 4
c c c c 0 c sp w c

sp w t

UA T m c T
f (T ) I T T A m c T 0

m c UA

 + 
=  −  − − − = 

+  

   

 

for a given set of operating and design parameters. After cT  is known, tT  is calculated through 

step iii). 

 

Comment: 

Note that, considering a set of operating and design parameters, a sensitivity (or parametric) 

analysis can be conducted to investigate their impact on resulting tank and collector 

temperatures (Problem 1.3). ■ 

 

1.4. THE SECOND LAW OF THERMODYNAMICS 

 

 Although the first law of thermodynamics allowed for understanding energy 

transformations and how to size engineering systems, scientists also noted that not all processes 

that comply with the energy conservation principle in fact are possible. For example, 

spontaneous processes are a special class of processes that happen in one particular direction, 

not in the inverse direction, although energy could be conserved. 

The Joule expansion is a classic example in thermodynamics that consists of a thermally 

isolated container with two compartments separated by a valve (or partition). Initially, a volume 

of gas is maintained on one side and the other side is evacuated, then the valve is opened so that 

the gas flows to the other side filling the entire container. The gas internal energy is unaltered 

in the process. The inverse process would require compressing the gas from one side to the 

other, which would not happen spontaneously. Further, that would not lead to the original 

thermodynamic state, because compression would increase the gas internal energy. The return 

to the original state would only be possible by cooling the compartment, thus heating the 

surroundings irreversibly. 

 In all processes briefly discussed in the previous paragraph, energy was conserved, but 

the first law did not allow for the distinction between the processes that can happen from those 

that cannot. In simple cases, such as the spontaneous cooling of a hot body placed in contact 

with a colder environment, it is well known that the body would cool down to eventually reach 

equilibrium with the temperature of the surroundings, and the inverse process would not happen 

spontaneously, although the first law could be satisfied. However, when there is a combination 

of systems interacting energetically, a clear orientation is needed to predict what will result. For 

that, several scientists proposed the second law of thermodynamics as the principle to provide 

that guidance [12]. 

 

1.4.1. Thermodynamic reservoir 

 

For a full understanding of the second law statements, initially, it is necessary to review 

the concept of a reservoir in thermodynamics. A reservoir is a particular system in which a 

specific property remains unchanged despite the energy interactions experienced with other 

surrounding systems, such as temperature, pressure, and concentration. If temperature remains 

constant, then it is defined as a thermal reservoir. For example, the planet’s atmosphere, oceans, 

large metal blocks, pure substances undergoing a change of phase at constant temperature and 

pressure. 

 

1.4.2. Irreversibility 
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 Consider a system undergoing a process starting at a known thermodynamic state. The 

process is defined as irreversible if, after the process finishes, the system and the surroundings 

original states cannot be reestablished. Otherwise, the process is defined as reversible. 

 In the irreversible process, the system could return to its original state, but the 

surroundings state would no longer be its original state. Processes that include heat transfer 

from a hot to a cold body; unconstrained expansion of a gas or liquid; friction; electric 

resistance; plastic deformation, and other spontaneous events, are irreversible. In sum, all actual 

processes are irreversible.  

 There are four such processes that are of particular interest for the study of thermal 

machines: i) Heat transfer; ii) Friction (mechanical and fluid); iii) Throttling, and iv) Mixing.  

 

i) Heat transfer: this is possibly the most paradoxical one. Essentially, heat transfer happens 

spontaneously from a higher to a lower temperature, which is the basis for one of the 2nd Law 

of thermodynamics statements proposed by Clausius [11, 12]. Work input would be necessary 

for heat transfer to occur from a lower to a higher temperature, such as in a heat pump, that is 

presented and discussed in Chapter 9. Note that, during a pure heat transfer process, no work is 

produced between the two temperature levels, and the potential work increases as the 

temperature gradient increases, thus the work loss increases as well. Hence, it is desirable to 

reduce temperature differences to a minimum across heat exchangers, but they cannot be zero, 

otherwise no heat transfer will occur. On the other hand, heat transfer rates by conduction, 

convection and radiation increase as temperature differences increase. As a result, a balance of 

such tradeoffs is mandatory for adequate heat exchanger design to avoid loss of efficiency in 

actual systems;  

 

ii) Friction: for didactical purposes, friction is usually separated in mechanical and fluid. The 

former refers to heat dissipation caused by mechanical work done by rotating shafts and other 

moving parts (e.g., translational actuators). It is evident that the same amount of dissipated heat 

added to the component would not result in shaft rotation, i.e., the process is not reversible. 

Similarly, the expansion of a fluid in a cylinder or through a turbine experiences internal friction 

that dissipates a portion of the fluid energy that is therefore not transformed into work, whereas 

the fluid heats up, which in turn reduces the work output; 

 

iii) Throttling: in this process a fluid expands from a high to low pressure location through a 

narrow opening (e.g., an orifice, a leakage from a high-pressure pipe). Since no work is done 

in the process and heat transfer is negligible, considering a control volume that encompasses 

the high (inlet) and low (outlet) pressure locations, the first law of thermodynamics for open 

systems, i.e., Eq. (1.11), and steady state operation, CVE
0

t


=


, establishes that in outh h= , and 

shows that the process is isenthalpic, namely a Joule-Thompson expansion [13]. Clearly, the 

flow could not happen from the low to high pressure location, i.e., the process is irreversible, 

and potential work that could have resulted from the expansion through a piston or turbine 

indicates such loss (or irreversibility), which increases as the pressure gradient increases. 

However, throttling is necessary in some thermal machines components (e.g., refrigeration 

systems). 

 

iv) Mixing: for several purposes, two or more fluids can be mixed, but cannot be unmixed 

without energy expenditure, therefore irreversible. The higher the temperature mismatch among 

streams, pressure and concentration gradients, the higher the loss of potential work that is 

brought by the participant fluids. Examples are the mixtures of fuel and air for combustion, and 

the mixture of absorbent and refrigerant fluids in heat driven refrigerators. 



 23 

 

 In the field of thermal machines, irreversibilities are usually classified as external and 

internal. The former happens across the system boundaries, e.g., in a power system, heat 

transfer at the high- and low-temperature ends, mechanical friction in rotating shafts, and 

electrical losses. The latter happens inside the system boundaries, mostly due to fluid friction 

in all components, throttling and mixing. 

The effects that make real processes irreversible are termed irreversibilities. They are 

also known as nonidealities or thermodynamic losses, that make actual (irreversible) processes 

depart from reversible processes that establish the limit of ideal operation. Therefore, the 

quantification and possible minimization of such unavoidable effects is highly desirable in 

systems engineering design and operation. 

 

1.4.3. Closed systems 

 

In the history of thermodynamics, many experiments were conceived of systems 

operating cyclically in contact with one temperature reservoir. Examples are Rumford’s 

experiments that linked the cannon-boring mechanical work to the continuous creation of heat, 

and Joule’s measurements of the mechanical equivalent of heat [27]. Among the tested systems 

were paddles in a pool of water on one end of a vertical shaft with the other end in the air linked 

and spun by a rope driven by a weight which resulted in water temperature increase. All such 

experiments showed that the tested systems received work and rejected heat, never the opposite.  

 

1.4.3.1. The 2nd Law of thermodynamics for a cycle 

 

 As a result of the experimental observations, Max Planck [28] and Lord Kelvin [12] in 

different moments proposed the following second law statement: “It is impossible to construct 

an engine which will work in a complete cycle and produce no effect except the raising of a 

weight and the cooling of a heat-reservoir”, which would be the inverse of Joule’s paddle wheel 

experiment. 

 Alternatively, Rudolf Clausius [11] proposed a statement of the second law as follows: 

“It is impossible for any system to operate in such a way that the sole result would be an 

energy transfer by heat from a cooler to a hotter body”. 

 In fact, the Clausius and Kelvin–Planck statements are equivalent. The demonstration 

by showing that the violation of each statement implies the violation of the other is proposed 

as an exercise (Problem 1.4). 

 Based on the Kelvin-Planck statement, the cycle net work should not be positive. 

Therefore, the 2nd Law of thermodynamics for a cycle in contact with one temperature reservoir 

reads as follows: 

 

W 0       (1.34) 

 

in which, the 1st Law of thermodynamics for the cycle states that: 

 

W Q =        (1.35) 

 

Therefore, the 2nd Law of thermodynamics for a cycle in contact with one temperature reservoir 

also stated that: 
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Q 0       (1.36) 

 

In a cycle, the system initial and end states are the same, and the equal sign in Eqs. 

(1.34) and (1.36) means that the net work and heat exchanged with the surroundings are equal 

to zero, thus both the system and the surroundings original states are the same. As a result, the 

equal sign in Eqs. (1.34) and (1.36) means that the cycle is reversible. When W Q 0 =   
, the inequality shows that system internal irreversibilities (e.g., friction) convert the work input 

into internal energy that is rejected by heat transfer to the surroundings, thus the cycle is 

irreversible. 

 Next, the analysis is extended to cycles operating in contact with two reservoirs. 

Historically, Sadi Carnot introduced the concept of the reversible cycle in 1824 [13] for a closed 

system while in communication with two temperature reservoirs. Carnot idealized a heat engine 

cycle that would be in perfect thermal contact with the two reservoirs, i.e., the heat engine 

extremities temperatures matched the two reservoirs temperatures. Such assumption implied in 

very large heat exchangers areas or infinitely slow processes to allow for thermal equilibrium. 

Hence, the Carnot cycle established the ceiling limit for the heat engine thermal efficiency.  

 The initial question to be answered is how the Kelvin–Planck statement affects the signs 

of the two heat transfer interactions of a general (reversible or irreversible) cycle (1), which is 

schematically shown in Fig. 1.9 (left). Without loss of generality, assume that (1)W 0  (heat 

engine), but a similar analysis could be done for (1)W 0  (Problem 1.5). There are three 

possible alternatives: i) I IIQ 0 and Q 0  ; ii) I IIQ 0 and Q 0  , and iii) I IIQ Q 0  , i.e., 

with opposite signs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Schematic diagram of closed systems that execute a cycle in contact with two 

(left) and one (right) temperature reservoirs. 

 

 The 1st Law of thermodynamics for a cycle states that I II (1)Q Q W+ = . The first 

alternative, i.e., I IIQ 0 and Q 0  , leads to (1)W 0 , which does not comply with the initial 

condition (1)W 0  (heat engine), thus it is ruled out. 

 Cycle (2) in Fig. 1.9 (right) is also assumed to be general (reversible or irreversible), 

and in contact with only one thermal reservoir, therefore (2)Q 0 , according to Eq. (1.36). The 

thermal reservoirs in Fig. 1.9 only exchange heat, and one possibility is to assume that 

II (2)Q Q= − , since IIQ 0  in the second alternative. Hence, the II(T )  reservoir operates 

I(T )  

II(T )  

(1)  (2)  

IIQ  

IQ  

(2)Q  

(1)W  (2)W  
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cyclically, according to the 1st Law of thermodynamics for a cycle, since II (2)Q Q 0+ = . In 

conclusion, cycles (1), (2) and II(T )  together operate cyclically in contact with the I(T )  thermal 

reservoir, thus the 2nd Law of thermodynamics for a cycle in contact with one temperature 

reservoir, Eq. (1.36), establishes that IQ 0 , then the second alternative is also ruled out. 

 As a result, the analysis demonstrated that the third alternative is the only one that 

complies with the 2nd Law of thermodynamics. In sum, for a system to operate cyclically in 

contact with two thermal reservoirs, IQ  and IIQ  must have opposite signs, i.e., I IIQ Q 0  . 

Hence, in any system executing a power cycle in contact with two temperature reservoirs, only 

a portion of the absorbed heat from the hot reservoir is converted to work, and the other part 

has to be rejected to the cold reservoir, indicating that the thermal efficiency must be less than 

100%. Note that this conclusion was obtained without any consideration regarding the cycle 

internal processes (ideal or not), and substances in the system (e.g., working fluid), therefore 

applies to all power cycles. Well before the Kelvin-Planck and Clausius statements of the 2nd 

Law of thermodynamics, Sadi Carnot postulated that all power cycles absorb heat, but must 

also reject heat to a heat sink, thus efficiency is below 100% [29].  

 Next, in the schematic diagram shown in Fig. 1.10, two closed systems are drawn, on 

the left a general cycle (reversible or irreversible) and on the right a Carnot cycle (reversible). 

The two cycles are in contact with the same two temperature reservoirs, I(T )  and II(T ) . Let 

IQ 0  and IIQ 0 , since W 0  is also assumed. Accordingly, one possible configuration for 

the Carnot cycle is to take I ICQ Q 0+ = . Hence, the I(T )  temperature reservoir operates 

cyclically, so that cycles (1), (C) and I(T )  together operate cyclically in contact with II(T )  

thermal reservoir, thus the 2nd Law of thermodynamics for a cycle in contact with one 

temperature reservoir, Eq. (1.36), establishes that  

 

II IICQ Q 0+        (1.37) 

 

 Rearranging Eq. (1.37) and dividing by I ICQ Q= −  which are positive numbers, the 

following result is obtained: 

 

IICII

I IC

QQ

Q Q

−

−

 or II II

I I rev

Q Q

Q Q

 − −
  
 

    (1.38) 

 

from which, it is concluded that the positive ratio II

I

Q

Q

−
 of the general cycle (reversible or 

irreversible) cannot be smaller than the positive ratio II

I rev

Q

Q

 −
 
 

 of the reversible cycle that 

operates in contact with two temperature reservoirs. Such limiting case is defined by the equal 

sign in Eq. (1.38).  

 In fact, the inequality shown in Eq. (1.38) is the 2nd Law of thermodynamics for a cycle 

in contact with two temperature reservoirs. As it was discussed previously in the text, the 

smallest limiting value for the positive ratio II

I rev

Q

Q

 −
 
 

 was obtained without any consideration 

regarding the cycle internal processes, and substances in the system (e.g., working fluid), thus 
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is only a function of the temperatures of the two separate and distinct thermal reservoirs, I(T )  

and II(T ) , as follows: 

 

II
I II

I rev

Q
f (T ,  T )

Q

 −
= 

 
    (1.39) 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Schematic diagram of closed systems that execute a cycle in contact with two 

temperature reservoirs: left – general (reversible or irreversible), and right – ideal (reversible). 

 

 Although Eq. (1.39) reveals that II

I rev

Q

Q

 −
 
 

 depends only on IT  and IIT , 1 2f (T ,  T )  is 

not known. However, considering three distinct reservoirs, I(T ) , II(T )  and III(T ) , with IT  > IIT  

> IIIT , two other closed systems could operate cyclically between I(T )  and III(T )  with IQ 0  

and IIIQ 0 , and II(T )  and III(T )  with IIQ 0−   and IIIQ 0 . In like manner to Eq. (1.39), 

for the newly proposed two cycles it is possible to write: 

 

III
I III

I rev

Q
f (T ,  T )

Q

 −
= 

 

 and III
II III

II rev

Q
f (T ,  T )

Q

 −
= 

− 

  (1.40) 

 

 In Eq. (1.40), note that dividing the first by the second equation, II

I rev

Q

Q

 −
 
 

 is obtained, 

which is combined with Eq. (1.39). The result is as follows: 

 

II I III
I II

I II IIIrev

Q f (T ,  T )
f (T ,  T )

Q f (T ,  T )

 −
= = 

 

    (1.41) 

 

 Since II

I rev

Q

Q

 −
 
 

 does not depend on IIIT , then I IIf (T ,  T )  is given by: 

 

I
I II

II

g(T )
f (T ,  T )

g(T )
=       (1.42) 

 

I(T )  

II(T )  

(1)  (C)  

IIQ  

IQ  

IICQ  

(1)W  (C)W  

ICQ  
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 Noting that IQ  and IIQ  are the heat exchanges with I(T )  and II(T )  reservoirs, 

respectively, the functions 
1

I I(T ) g (T )− =  and 
1

II II(T ) g (T )− =  are utilized instead of Ig(T )  

and IIg(T ) . Therefore, Eq. (1.39) is rewritten as follows: 

 

II II

I Irev

Q (T )

Q (T )

 − 
= 
 

 or II II

I Irev

Q T

Q T

 −
= 

 

    (1.43) 

 

 Equation (1.43) is the foundation of the Kelvin and Rankine scales, i.e., a 

thermodynamic temperature scale, T   , which does not depend on any substance properties. 

Thus, any two temperatures ratio on the Kelvin or Rankine scales is equal to the two heat 

exchanges at those temperatures ratio, in a closed system executing a reversible cycle in contact 

with the two thermal reservoirs. Hence, for the Kelvin or Rankine scales, Eq. (1.43) can be 

generalized with respect to a reference heat reservoir that absorbs 0Q  at 0T  as follows: 

 

0
0 rev

Q
T T

Q

 
=  

 

     (1.43) 

 

in which IIQ Q 0= −   and 0 IQ Q 0=   are positive numbers, as stated previously in the text. 

Since Q 0 , and the constant 0T  was assigned the value 273.16 K (Kelvin scale) to the 

temperature at the triple point of water, and 491.69 R (Rankine scale) [30], T 0 . The constant 

0T  is the temperature at which water in the solid, liquid, and vapor phases are in equilibrium. 

As Q 0→ , T 0→ , which is called absolute zero, i.e., the lowest T value in both the Kelvin 

and Rankine absolute temperature scales. 

 Finally, combining Eq. (1.43) and Eq. (1.38), the 2nd Law of thermodynamics for a cycle 

executed by a closed system in contact with two temperature reservoirs is rewritten using the 

concept of the thermodynamic temperature scale, as follows: 

 

I II

I II

Q Q
0

T T
+       (1.44) 

 

 Similarly, for a cycle executed by a closed system in contact with one temperature 

reservoir, using Eq. (1.36), replacing the heat transfer integral by IQ , and dividing by the 

absolute temperature of the thermal reservoir, the result is given by: 

 

I

I

Q
0

T
      (1.45) 

 

 By means of mathematical induction, for a closed system in contact with N temperature 

reservoirs, it is possible to write: 

 

NI II III

I II III N

QQ Q Q
0

T T T T
+ + + +   or 

N

k

kk 1

Q
0

T
=

   (1.46) 
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 Next, an infinite number of thermal reservoirs in contact with the closed system, N→
, and with each boundary point crossed by a heat transfer exchange Q  is considered. As a 

result, for a continuous variation of the system boundary temperature, Eq. (1.46) is rewritten as 

follows [13]: 

 
Q

0
T


      (1.47) 

 

which is known as Clausius inequality [15, 31]. 

The equal sign in Eq. (1.47) accounts for reversible cycles, following the same reasoning 

presented after Eq. (1.38), so that: 

 

revQ
0

T


=      (1.48) 

 

Recall that a cycle is a special process that starts and ends in the same thermodynamic 

state, thus for any property, such as temperature, for example, dT 0= . Hence, the function 

revealed by Eq. (1.48) could be understood as a thermodynamic property as follows: 

 

revQ
dS

T


=       (1.49) 

 

which was named entropy, S, by Clausius in 1865, noting that Rankine proposed the name 

thermodynamic function in his previous work [13]. 

 

1.4.3.2. The 2nd Law of thermodynamics for a process 

 

 Consider a general process from state 1 to state 2, the change in the property entropy is 

calculated by integrating Eq. (1.49) from state 1 to state 2 as follows: 

 
2 2

rev
2 1

1 1

Q
S S dS

T


− = =       (1.50) 

 

 Next, consider the cycle showed in Fig. 1.11, with an irreversible and a reversible 

process, for paths 1 2→ , and 2 1→ , respectively. Applying Eqs. (1.49) and (1.50), the result is 

as follows: 

 
2 1

rev

1 2

QQ Q
0

T T T

 
= +       (1.50) 

2

2 1
1

Q
S S

T


−        (1.51) 

 In Equation (1.50), the value of the first term on the left hand side of the inequality 

depends on the path of process 1 2→ , therefore it is not a property and was named entropy 

transfer [13], which is always smaller than the entropy change, 2 1S S− , as shown in Eq. (1.51), 

i.e., the second law of thermodynamics for a process. Rearranging the terms in Eq. (1.51), the 
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entropy generation or entropy production, genS , appears as a quantity that is always positive, as 

follows: 

 
2

gen 2 1
1

Q
S S S 0

T


= − −      (1.52) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Illustrative temperature versus entropy diagram of a closed system that executes 

a cycle between states 1 and 2, with 1 2→  being an irreversible process, and 2 1→  a 

reversible process. 

 

 Note that the entropy generation of a process allows for measuring the distance that any 

real (irreversible) process 1 2→  is from the corresponding ideal (reversible) one. In fact, Eq. 

(1.52) is the most popular form of the second law of thermodynamics for a closed system 

executing a process, and gave the foundation for scientists and engineers to propose the method 

of entropy generation minimization for engineering systems [32]. 

 

Example 1.3) Consider a chemical reactor closed system. Based on the second law of 

thermodynamics for a closed system, state the physical condition for a chemical reaction to 

occur spontaneously.  

 

Solution 

 

Assume that state 1 is the instant when the reactor is fed with reactants, and state 2 is the instant 

when the spontaneous reaction is completed and the products are fully formed. No work is done, 

and the heat of reaction, 2 1H H H = −  (enthalpy of products minus enthalpy of reactants), 

accounts for the total heat exchanged in the process, then Eq. (1.52) states that:  

 

2 1

S

H
S S 0

T



− −         

or multiplying by T 

 

G H T S 0 =  −          

 

where G  is the reaction Gibbs free energy change that must be negative for the reaction to 

happen spontaneously, since the process is irreversible. ■ 

 

1.4.4. Open systems 

 

T 

S 

1 

2 
reversible 
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 The derivation of the second law of thermodynamics for an open system executing a 

process follows similar steps of the same derivation presented in section 1.3.2. for the first law. 

Therefore, based on the process from t to t t+  of a closed system which is transformed into 

an open system (or control volume) as follows: 

 

closed open in open inS (t) S (t) S S (t) (s m) t= + = +      (1.53) 

 

closed open out open outS (t t) S (t t) S S (t t) (s m) t+ = + + = + +    (1.54) 

 

 The entropy generated in the process for t to t t+  is defined as genS  and calculated 

with Eq. (1.52), as follows: 

 

gen open open out in

Q
S S (t t) S (t) t (ms) t (ms) t 0

T
 = + − −  +  −     (1.55) 

 

 Finally, dividing Eq. (1.55) by t , taking the limit when t 0 → , assuming n heat 

transfer interactions, with outn  outlets and inn  inlets, for the control volume shown in Fig. 1.2, 

the following result is obtained: 

 

out inn nn
CV i

gen,CV i i
i 1 i 1 i 1i

dS Q
S (ms) (ms) 0

dt T= = =

= − + −       (1.56) 

 

1.5. EXERGY ANALYSIS 

 

In section 1.4, it was argued that the first law did not allow for the distinction between 

the processes that can happen from those that cannot, mainly for a combination of systems 

interacting energetically. The second law of thermodynamics was then proposed to fulfill such 

a need. Hence, it makes sense to couple the first and second law analyses aiming at realistic 

mechanical system design. As a result, the combination of the first and second law of 

thermodynamics allows for the definition of a physical quantity named exergy, which is capable 

of evaluating the maximum useful work produced by a system that undergoes an ideal process 

from a given thermodynamic state to a state of equilibrium with the environment, i.e., with no 

entropy generation. Hence, exergy and energy have the same units, but it is essential to 

distinguish the two concepts. Traditional engineering methods use only energy for system 

design. Energy flows in and out of a system through mass flow, heat transfer and work, and is 

conserved. Exergy is a completely different concept.  

Quantitatively, exergy represents the ability to do work - the useful work content - of 

various streams (mass, heat, work) flowing through the system. As a result, exergy allows 

common-based comparison of interactions that are quite different in a physical sense. An 

important benefit is that by considering the exergy currents into and out of the system, it is 

possible to determine the extent to which the system destroys exergy. Therefore, in any process, 

exergy is always destroyed, partially or totally (2nd law of thermodynamics). In sum, exergy is 

a measure of the departure of a given state with respect to the ambient state. 

In a closed system, the nonflow exergy,  , of a mass is given by: 

 

( ) ( )0 0 0 0 0E E T S S P V V = − − − + −    (1.57) 
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where subscript 0 refers to the ambient state, also known as the restrict dead state [13, 32]. 

 Next, considering the control volume shown in Fig. 1.2, it should be noted that CVQ  

represents the net heat transfer rate across the system boundary, so that, it could be split into n 

possible heat transfer interactions, one of them being 0Q , the heat transfer rate with the ambient 

temperature reservoir at 0T . Note also that the system volume could vary due to the interaction 

with the ambient, either doing work on (volume increase) or receiving work (volume decrease) 

from the environment, 0P  dV/dt . To obtain the useful work (or exergy) rate produced by the 

system, WE , Eq. (1.10) – 1st law should be added to Eq. (1.56) – 2nd law multiplied by 0T . 

Note that 0Q  cancels out in the process. The end result is as follows [13]: 

 

( )
i

n
0 0

W CV 0 Q x x 0 gen

i 1 in out

d E T S p VdV
E W P E m e m e T  S

dt dt =

− +
= − = − + + − −      (1.58) 

 

in which, the first term after the second equal sign is the CV accumulation of nonflow exergy, 

the second term the heat transfer exergy rate with 
i

0
Q i

i

T
E 1 Q

T

 
= − 
 

, the third term the flow 

exergy input rate, the fourth term the flow exergy output rate, the fifth term the destroyed exergy 

rate D 0 genE T  S= , and 
2 2

x 0 0 0e (h v / 2 gz) (h v / 2 gz) T (s s )= + + − + + − −  the specific flow 

exergy, J kg-1, with respect to the ambient. 

 From Equation (1.58) it is now possible to evaluate the maximum useful work that could 

be produced by the system. That would happen when the system undergoes an ideal process, 

i.e., when it is reversible, so that Eq. (1.58) delivers ( )W rev
E . In such case, genS 0= , and the fifth 

term after the second equal sign in Eq. (1.58) is also zero, D 0 genE T  S 0= = , i.e., no exergy 

destruction rate. 

 

Example 1.4) For a power plant steady flow operation with the classical Rankine cycle between 

a high temperature HT  and the ambient at 0T , derive expressions to evaluate the exergy 

destruction rate in each of the four components (boiler, turbine, condenser and pump). Consider 

states 1 (pump inlet/condenser outlet), 2 (boiler inlet/pump outlet), 3 (turbine inlet/boiler outlet) 

and 4 (condenser inlet/turbine outlet). The pumping power, input heat transfer rate, turbine 

power and heat rejection rate to the ambient are pW , HQ , tW , and 0Q , respectively, and 

assumed to be positive numbers for simplicity in this example with each component processing 

a single water stream wm . 

 

Solution 

 

The steady flow exergy destruction rate in each component is obtained from Eq. (1.58) by 

making ( )0 0d E T S p V / dt 0− + =  (no variations with respect to time), as follows: 

 

1. Boiler: 
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HQ w x,2 x,3 D,boiler0 E m  (e e ) E= + − − , which is rewritten to show that 

HD,boiler Q w x,2 x,3E E m  (e e )= + −  

 

2. Turbine: 

 

tW t w x,3 x,4 D,turbineE W m  (e e ) E= = − − , which is rewritten to show that 

D,turbine w x,3 x,4 tE m  (e e ) W= − −  

 

3. Condenser: 

 

w x,4 x,1 D,condenser0 m  (e  e ) E= − − , which is rewritten to show that 

D,condenser w x,4 x,1E m  (e  e )= −  

 

4. Pump: 

 

pW p w x,1 x,2 D,pumpE W m  (e e ) E= − = − − , which is rewritten to show that 

D,pump w x,1 x,2 pE m  (e e ) W= − +  

 

Comments: 

 

1. In the pump, exergy is supplied to the circuit as pump power, so that the input flow exergy, 

w x,1m e , is increased to enter the boiler. However, the power to pump an incompressible liquid 

is small, thus its exergy destruction rate, being negligible in comparison to the turbine exergy 

destruction rate; 

2. The power plant exergy input rate is 
H

0
Q H

H

T
E 1 Q

T

 
= − 
 

 and the net exergy output rate is 

t pW W− , so that the plant second law (or rational) efficiency is 

H

t p

II

Q

W W

E

−
 = , and 

3. Each component destroyed exergy rate allows for the establishment of an irreversibility 

ranking among the cycle components. As a result, exergy analysis pinpoints which part of a 

global system requires improvement so that global efficiency is augmented. ■ 

 

 Since there are no possible ideal process in the universe, the maximum useful work that 

could be produced by the system will never be achieved. However, it is reasonable to state that 

the best possible system would be the one in which the exergy destruction is minimum, namely, 

the “unavoidable exergy destruction”. Therefore, in practice, systems that operate destroying 

more exergy than they could, at the unavoidable exergy destruction level, represent the waste 

of exergy sources, such as from oil, natural gas, coal. 

 In sum, exergy analysis allows for finding ways to avoid exergy destruction. For that, 

the method determines the location, type, and “true” magnitude of wasted fuel resources. 

 The strategy is to search for the optimum allocation of resources and efforts. The method 

consists of minimizing exergy destruction or irreversibility. In modern thermodynamics, the 

method is known as Entropy Generation Minimization (EGM), or Thermodynamic 
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Optimization (TO) [5, 13, 32], through the combination of thermodynamics with principles of 

heat transfer, fluid mechanics, and other transport phenomena. Thermal machines and any other 

real device or installation could then be mathematically modeled and optimized by: i) 

Elaborating a realistic model that includes detailed geometric (design) and operating 

parameters; ii) Writing the system or process entropy generation rate (objective function) 

equation as a function of all parameters, and iii) Minimizing entropy generation with respect to 

one or more parameters of interest. Several physical or general constraints need to be 

recognized and established for the strict optimization problem formulation [33], e.g., finite 

sizes, finite periods, material types, shapes. 

 The following chapters in this book discuss and apply the methodology to thermal 

machines. Additionally, the objective function that was selected in the previous paragraph as 

the entropy generation rate could be changed to other of specific interest for the analysis, or 

even other objective functions included in the optimization problem formulation to treat the 

problem as one of multi-objective optimization [34]. 

 

1.6. EXERGOECONOMIC ANALYSIS 

 

The combination of exergetic analysis and economic principles, namely, 

exergoeconomic (or thermoeconomic) analysis was proposed to provide information not 

available through exergetic and economic analyses solely, but crucial to the design and 

operation of a physically and economically effective system [5]. In this section, the 

fundamentals of exergoeconomic analysis are presented and discussed. 

The conventional economic analysis, also known as techno-economic analysis (TEA) 

[35], provides a methodology to predict how a product, service or process will succeed 

economically in the market. Capital cost, operating cost, and revenue are estimated according 

to technical and financial input parameters [5, 35], which are then varied using modeling and 

simulation to quantify their impact on economic performance through parametric analyses in 

graphs and diagrams. 

The main goals of industrial cost accounting usually are: i) Finding the actual product 

or service cost; ii) Providing a rationale for products or services pricing; iii) Allocating and 

controlling expenses, and iv) Supplying reliable information for decision making. Steady state 

operation is usually utilized to formulate a system total cost balance as follows [5]: 

 
CI OM

P,tot F,tot tot totC C Z Z= + +     (1.59) 

 

in which P,totC  is the product total, F,totC  the fuel, 
CI

totZ  the capital investment, and 
OM

totZ  the 

operating and maintenance cost rates. Exergy containing streams (matter, power or heat 

transfer) cost rates are usually represented by C , and Z  all other cost rates. 
CI

totZ  and 
OM

totZ  are 

estimated based on the annual capital investment and operating/maintenance cost divided by 

the number of system operating hours (days or seconds) per year, respectively. In fact, usually, 

the capital investment and operating/maintenance costs are combined as follows: 

 
CI OM

tot totZ Z Z= +       (1.60) 

 

1.6.1. Exergetic costs 

 

 Exergy measures the true thermodynamic value of matter and energy transfers into and 

out of a system. Costs must be associated with things that have value. Exergy is used as a basis 
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for assigning costs in thermal (or industrial) systems in general. The exergetic costs are defined 

starting from exergy transfer rates associated with system interactions, as follows: 

 

Matter flow rate: inE  (input) and outE  (output)   (1.61) 

 

Power: W  and Heat transfer rate: QE     (1.62) 

 

in in in in in inC c E c (m  e )= =  ; out out out out out outC c E c (m  e )= =   (1.63) 

 

W WC c W=  ; Q Q QC c E=       (1.64) 

 

 

in which inc , outc , Wc  and Qc  are the average costs per unit of exergy, 1$ kJ− . 

 

1.6.2. Assignment of exergetic costs 

 

Cost balances for each component must be conducted. For the any (kth) system 

component the sum of cost rates of all outgoing exergy streams equals the sum of cost rates of 

all incoming exergy streams plus capital investments and operating and maintenance expenses. 

For example, in a component that receives heat and generates power, the result is as follows: 

 

out,k w,k q,k in,k k

out in

C C C C Z+ = + +      (1.65) 

 

in which the total cost of the outgoing exergy currents is equal to the total expenditure to get 

these streams. 

 Equation (1.65) represent the exergetic costs account, and could be rewritten as follows: 

 

( ) ( )out out w,k k q,k q,k in in kk k
out in

c E c W c E c E Z+ = + +    (1.66) 

 

in which, subscript k refers to the system component k under analysis (control volume). In the 

analysis, it is assumed that all costs per unit of exergy entering the system are known, and the 

unknowns are the output costs (matter, power or heat). 

 In Equation (1.66), all terms must be positive. Ex: compressor, the work would pass to 

the right hand side, or if the component rejects heat to the environment, the term would go to 

the left hand side (remember the thermodynamic sign conventions). 

 

(IN PREPARATION FROM HERE TO THE END!) 

 

Example 1.5) ANÁLISE EXERGOECONÔMICA DE UM INCINERADOR DE RESÍDUOS 

SÓLIDOS URBANOS (RSU) – COMPLETA. 

 

Solution 
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/* Incinerador 

****************************************** 

 

Hipóteses: 

 

1. Regime permanente 

2. Rejeição de calor desprezível, variações de energia cinética e potencial desprezíveis 

3. Perdas de carga desprezíveis nas tubulações 

4. Produtos da combustão podem ser modelados como ar sendo gás ideal 

 

Análise: 

 

*/ 

 

 

// balanço de massa 

 

z = 1 //  fracao molar CH4 

 

x = 0 //  fracao molar diesel 

 

y = 0.5 //  fracao molar MSW 

 

ndotmsw = 0.5/3600 // kmol de msw/s 

 

ndotch4 = (1 - y) * (1 - x) * z * (ndotch4 + ndotmsw) // kmol de ch4/s 

 

M_CH4 = 16 // Mol de CH4 - kg/kmol 
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M_msw = 99.72 // Mol de RSU - kg/kmol 

 

rac = 17.24 

 

mdot1 = mdotch + mdotar - mdot2 // kg/s 

 

mdotar = rac * mdotch // kg/s 

 

mdotch4 = ndotch4 * M_CH4  // CH4 mass flow rate - kg/s 

 

mdotmsw = ndotmsw * M_msw // MSW mass flow rate - kg/s 

 

mdotch = mdotch4 + mdotmsw // hybrid fuel mass flow rate - kg/s 

 

mdot2 = 0.04*mdotmsw 

 

// poder calorifico inferior do RSU 

 

LHVmsw = 1300 * 4.189  // kJ/kg 

 

// poder calorifico inferior do CH4 

 

LHVch4 = 11940 * 4.189 // kJ/kg 

 

qcomb = mdotmsw * LHVmsw + mdotch4 * LHVch4 

 

// Balanço de energia 

 

// q0 = 0 

 

- q0 + qcomb = Wdot_fan + mdot1 * hprod + mdot2 * c_ash * T1 // 1a Lei Termodinamica 

 

c_ash = 0.73 // calor específico da cinza kJ/(kg.K) 

 

T1 = T_h("Air", hprod) 

 

// condicoes ambientais 

 

T0 = 298  // K 

 

// Dimensionamento do incinerador 

 

hext = 1  // coef conv natural externa 

 

hint = 500 // coef conv forcada e radiacao interna 

 

tp = 0.1  // m - espessura de parede isolada 

 

kiso = 1  // W/mK - condutividade isolante 
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D = 1  // m - diametro do incinerador 

 

// pi = 3.14159 

 

// hinc = 2 // m - altura do incinerador 

 

uinv = 1/hext + tp/kiso + 1/hint 

 

u = 1/uinv  // W/m2K - coef global transf calor 

 

area = pi * D * D / 2 + pi * D * hinc  

 

q0 = u * area * (T1 - T0) / 1000 // perda de calor 

 

V_inc = pi * D * D * hinc / 4  // Volume do incinerador - m3 

 

V_inc = 1.571  // Volume fixo do incinerador - m3 

 

// Analise exergetica do incinerador 

  

h0_air = h_T("Air",T0) 

 

sprod = s_Tp("Air",T1,p1) 

 

p0 = 1.01325 // bar 

 

p1 = p0 // bar 

 

Delta_p = (p1 - p0) * 1e5 // Air pressure rise (N/m2) 

 

rho_air = 1.225  // air density @ 25 oC (kg/m3) 

 

Wdot_fan = - (mdotar * Delta_p / rho_air) / 1e3 // Fan power (kW) 

 

s0 = s_Tp("Air",T0,p0) 

 

ex1 = (hprod - h0_air) - T0 * (sprod - s0) // exergia específica dos produtos da combustão 

 

ex2 = c_ash * (T1 - T0) - T0 * (c_ash * LN(T1/T0)) // Ash spec exergy (kJ/kg) 

 

Edot1 = mdot1 * ex1  // Incinerator products exergy rate (kW) 

 

Edot2 = mdot2 * ex2  // Incinerator ashes exergy rate (kW) 

 

Edot_qinc = (-q0 + qcomb) * (1 - T0/T1) // Fuel input exergy rate (kW) 

 

Wdot_fan = Edot_qinc - Edot1 - Edot2 - ED_inc  // Calculate destroyed exergy rate by the 

incinerator (kW) 

 

// Analise termoeconomica 
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// First, evaluate exergetic costs (R$/kJ) 

 

c_ch4_m3 = 4.50  // natural gas cost (R$/m3) 

 

rho_ch4 = 0.657 // NG density (kg/m3) 

 

c_ch4_kg = c_ch4_m3/rho_ch4  // NG cost (R$/kg) 

 

fm_ch4 = mdotch4 / mdotch // NG mass fraction in the fuel  (kg_ch4/kg_fuel) 

 

fm_MSW = 1 - fm_ch4  // MSW mass fraction in the fuel (kg_MSW/kg_fuel) 

 

c_ch4 = c_ch4_kg / LHVch4  //  NG exergetic cost (R$/kg) 

 

c_msw_kg = - 3.5  // MSW treatment cost (R$/kg) 

 

c_msw = c_msw_kg / LHVmsw  // MSW exergetic cost (R$/kJ) 

 

c_F = fm_ch4 * c_ch4 + fm_MSW * c_msw // Hybrid fuel exergetic cost (R$/kJ) 

 

// Next, evaluate nonexergetic costs (R$/kJ)  

 

P_inc = 150e3  // Incinerator price for processing 50 kg/h of MSW 

 

tlife_inc = 10 // Expected incinerator life time (years) 

 

Z_CI_inc = P_inc / tlife_inc  // Incinerator capital investment cost rate (R$/year) 

 

Sal_1op = 6e3  // Salary of 1 operator (R$/month) 

 

N_op = 1  // Number of incinerator operators  

 

Parts_replac = 2e3 // Parts replacement cost rate (R$/month) 

 

Z_OM_inc = N_op * Sal_1op * 12 + Parts_replac * 12  // Incinerator OM cost rate (R$/year) 

 

// Exergoeconomic equation 

 

c_elect = 0.78 / 3600  // Electricity cost (R$/kJ) 

 

c_1 * (Edot1 + Edot2) * conv_s_ano  = c_F * Edot_qinc * conv_s_ano - c_elect * Wdot_fan * 

conv_s_ano+ Z_CI_inc + Z_OM_inc 

 

conv_s_ano = 3600 * 24 * 365  // Number of seconds/year 

 

C_1 = c_1 * (Edot1 + Edot2) * conv_s_ano // Products cost per year (R$/year) 
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Exergoeconomic metrics 

 

Exergy destruction + non-exergetic cost rates 

 

k D,k D,k kZ C C   Z= +  

 

Relative cost 

 

( ) ( ) ( )k P,k F,k F,k k k k F,k P,kr c c c 1 Z c E= − = −  +   

 

Exergoeconomic factor 

 

( ) ( ) ( )k k k F,k D,kf 100% Z Z   c E= +   

 

Relation between product and fuel exergy rates 

 

( )k P,k F,k100% E E =   

 

Exergy destruction ratio 

 

( )D,k D,k F,toty 100% E E=   

 

EXERGOECONOMIC STRATEGY 

Priorities for component analysis/optimization:  

1) First, choose to analyze the component with the greater sum ŻkĊD,k.  

2) Among those above, improve the component with a high-cost relative difference, rk.  

3) Verify, with the exergoeconomic factor, fk, if the component requires better efficiency 

or lower costs. 

4)  Investigate the component with relatively low exergetic efficiency (εk) or high exergy 

destruction rate (ĖD), or high exergy destruction ratio (yD). 

 

 

(CHAPTER 1 ENDS HERE!) 
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