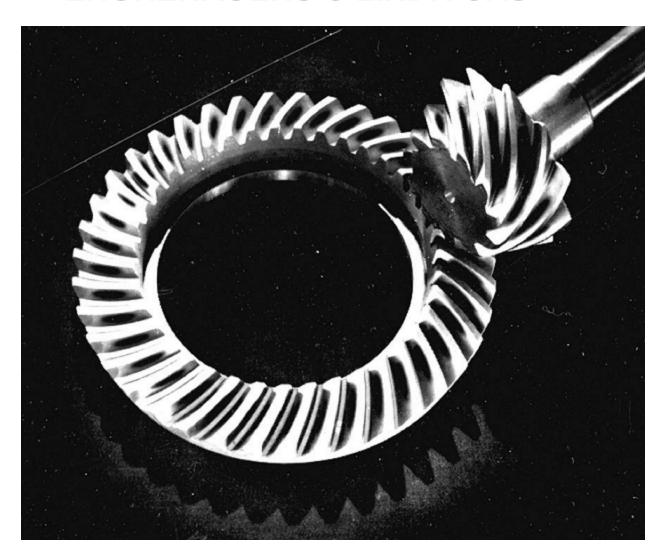
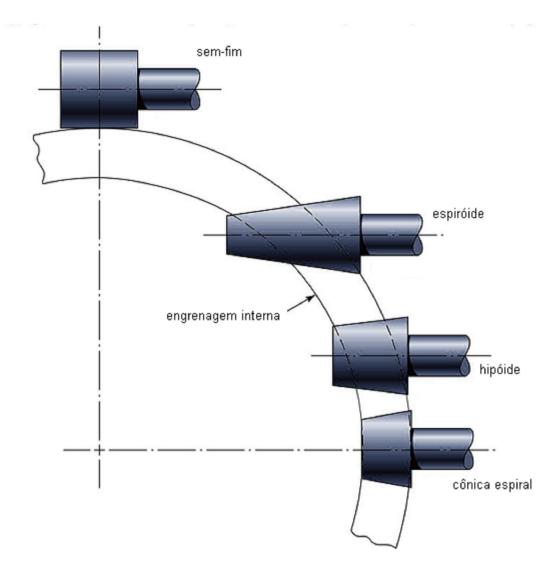

PROJETO DE ENGRENAGENS - CÔNICAS E SEM-FIM

Prof. Alexandre Augusto Pescador Sardá


- Engrenagens cônicas de dentes retos;
- •Engrenagens cônicas espirais;
- Engrenagens cônicas zerol;
- Engrenagens hiperbolóides;
- •Engrenagens espiróides.


Engrenagens cônicas espirais

Corte de dentes de engrenagens cônicas espirais sobre a cremalheira de topo básica

Engrenagens hiperbolóides

Comparação de engrenagens entre eixos cônicos e inversos do tipo cônico

EQUAÇÃO FUNDAMENTAL PARA TENSÃO DE CONTATO

$$\sigma_{c} = \sigma_{H} = \begin{cases} C_{p} \sqrt{\frac{W^{t}}{F d_{p} I}} K_{0} K_{v} K_{m} C_{s} C_{xc} \\ Z_{E} \sqrt{\frac{1000 W^{t}}{b d Z_{1}}} K_{A} K_{v} K_{H\beta} Z_{x} Z_{xc} \end{cases}$$
 Sistema inglês

EQUAÇÃO PARA VALOR (RESISTÊNCIA) PERMISSÍVEL DE CONTATO

$$\left| \left(\sigma_c \right)_{all} = \frac{S_c C_L C_H}{S_H K_T K_R} \right|$$

Sistema inglês

$$\sigma_{HP} = \frac{\sigma_{H \text{ lim}}}{S_H} \frac{Z_N Z_W}{K_\theta Y_Z}$$

EQUAÇÃO FUNDAMENTAL PARA TENSÃO DE FLEXÃO

$$S_{t} = \frac{W^{t}}{F} P_{d} K_{0} K_{v} \frac{K_{s} K_{m}}{K_{x} Y_{J}}$$

Sistema inglês

$$\sigma_F = \frac{1000W^t}{b} \frac{K_A K_v}{m_{et}} \frac{Y_x K_{H\beta}}{Y_{\beta} Y_J}$$

SI

EQUAÇÃO PARA TENSÃO DE FLEXÃO PERMISSÍVEL

$$s_{wt} = \frac{s_{at} K_L}{S_F K_T K_R}$$
 Sistema inglês

$$\left| \sigma_{FP} = \frac{\sigma_{F \lim} Y_{NT}}{S_F K_{\theta} Z_Z} \right| \quad \text{SI}$$

• Fator de sobrecarga K_o (K_A) – Fonte – Shigley pp. 734

	Caráter da carga na máquina acionada				
Caráter do acionador principal	Uniforme	Choques leves	Choques médios	Choques intensos	
Uniforme	1,00	1,25	1,50	1,75 ou maior	
Choques leves	1,10	1,35	1,60	1,85 ou maior	
Choques médios	1,25	1,50	1,75	2,00 ou maior	
Choques intensos	1,50	1,75	2,00	2,25 ou maior	

• Fator de segurança S_H e S_F: ajustes de resistência

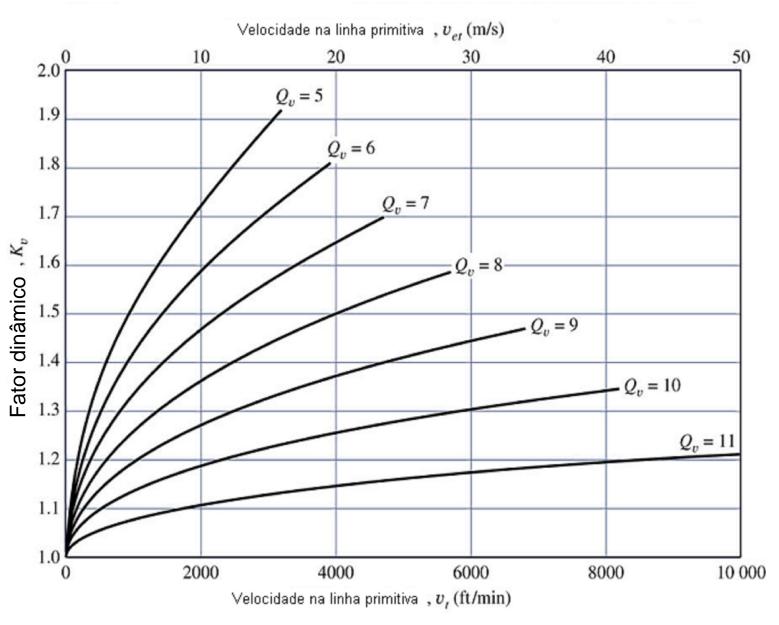
• Fator dinâmico K_v : leva em consideração o efeito da qualidade dos dentes de engrenagem na velocidade e na carga. Número de precisão de transmissão descreve a acurácia com que perfis de dentes são espaçados ao longo do círculo primitivo.

$$K_{v} = \begin{cases} \left(\frac{A + \sqrt{v_{t}}}{A}\right)^{B} & \text{V em m/s} \\ \left(\frac{A + \sqrt{200v_{et}}}{A}\right)^{B} & \text{V em ft/min} \\ \hline v_{et} = 5,236 \cdot 10^{-5} d_{1}n_{1} \end{cases}$$

V em m/s

$$v_{t} = \frac{\pi d_{p} n_{p}}{12}$$

A = 50 + 56(1 - B)


$$v_{et} = 5,236 \cdot 10^{-5} d_1 n_1$$

$$B = 0.25(12 - Q_{v})^{2/3}$$

$$v_{t \max} = \left[A + \left(Q_v - 3 \right) \right]^2$$

Sistema inglês

$$v_{te \max} = \frac{[A + (Q_v - 3)]^2}{200}$$

Fator dinâmico K_v

• Fator de tamanho para Resistência à Formação de Cavidades - C_s (Z_x)

$$C_s = \begin{cases} 0.5 & F < 0.5 \text{ in} \\ 0.125F + 0.4375 & 0.5 \le F \le 4.5 \text{ in} \\ 1 & F > 4.5 \text{ in} \end{cases}$$

Sistema inglês

$$Z_X = \begin{cases} 0.5 & b < 12.7 \, mm \\ 0.00492 \, b + 0.4375 & 12.7 \le b \le 114.3 \, mm \\ 1 & b > 114.3 \, mm \end{cases}$$

SI

Fator de tamanho para flexão - K_s (Y_X)

$$C_s = \begin{cases} 0.4867 + 0.2132/P_d & 0.5 \le P_d < 16in^{-1} \\ 1 & P_d > 16in^{-1} \end{cases}$$

Sistema inglês

$$Y_X = \begin{cases} 0.5 & m_{et} < 1.6 \, mm \\ 0.4867 + 0.008339 \, m_{et} & 1.6 \le m_{et} \le 50 \, mm \end{cases}$$

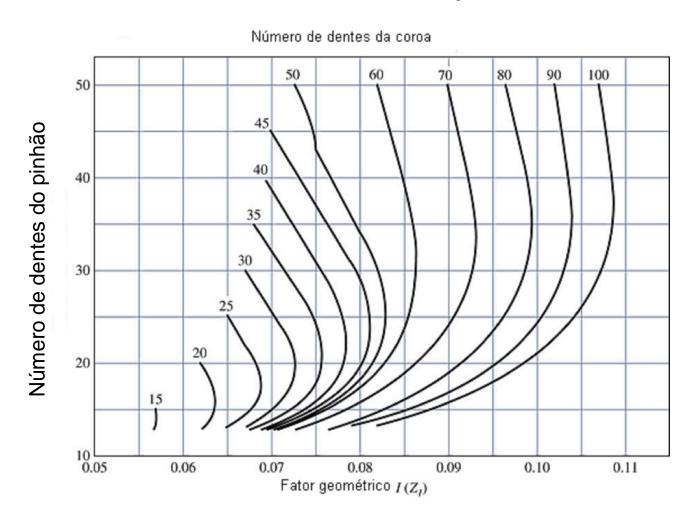
SI

Fator de distribuição de carga - K_m (K_{Hβ})

$$K_m = K_{mb} + 0.0036F^2$$
 Sistema inglês

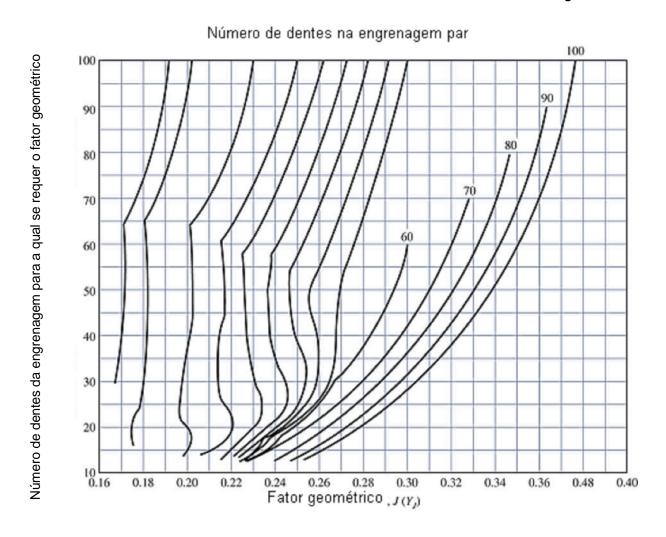
$$K_{H\beta} = K_{mb} + 5.6 \cdot 10^{-6} b^2$$
 SI

$$K_{mb} = \begin{cases} 1,0 & ambos \ os \ membros \ montados \ entre \ mancais \\ 1,10 & um \ membro \ entre \ mancais \\ 1,25 & nenhum \ membro \ montado \ entre \ mancais \end{cases}$$


• Fator de coroamento para resistência à formação de cavidades - $C_{xc}\left(Z_{xc}\right)$

$$C_{xc} = Z_{xc} = \begin{cases} 1.5 & dentes coroados apropriadamente \\ 2.0 & ou dentes maiores não - coroados \end{cases}$$

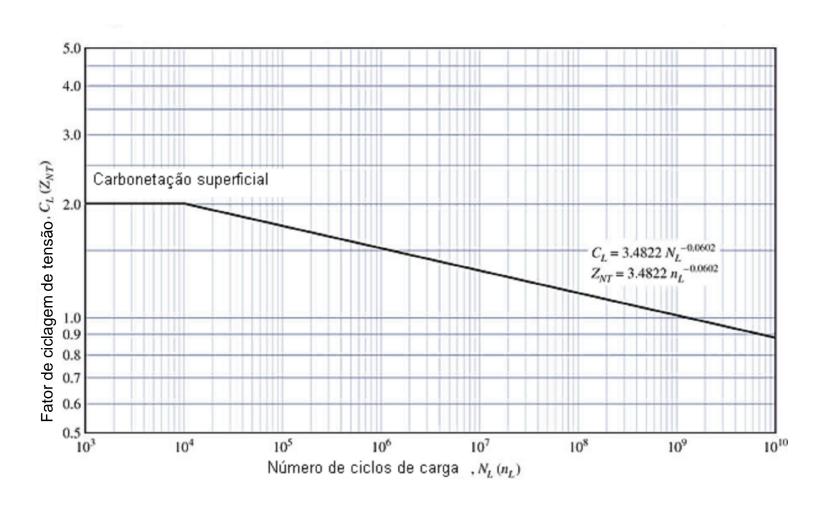
• Fator de Curvatura ao Longo do Comprimento para Resistência à Flexão - K_x (Y_{β})


 $K_x = Y_\beta = 1,0$ para engrenagens cônicas de dentes retos

• Fator Geométrico para Resistência à Formação de Cavidades - I (Z_I)

Fator de geometria de contato $I(Z_I)$ para engrenagens cônicas de dentes retos coniflex, com um ângulo de pressão normal de 20° e um ângulo entre eixos de 90° (Fonte ANSI/AGMA 2003-B97; Shigley)

• Fator Geométrico para Resistência à Flexão - J (Y_J)


Fator de flexão $J(Y_J)$ para engrenagens cônicas de dentes retos coniflex, com um ângulo de pressão normal de 20° e um ângulo entre eixos de 90° (Fonte ANSI/AGMA 2003-B97, Shigley)

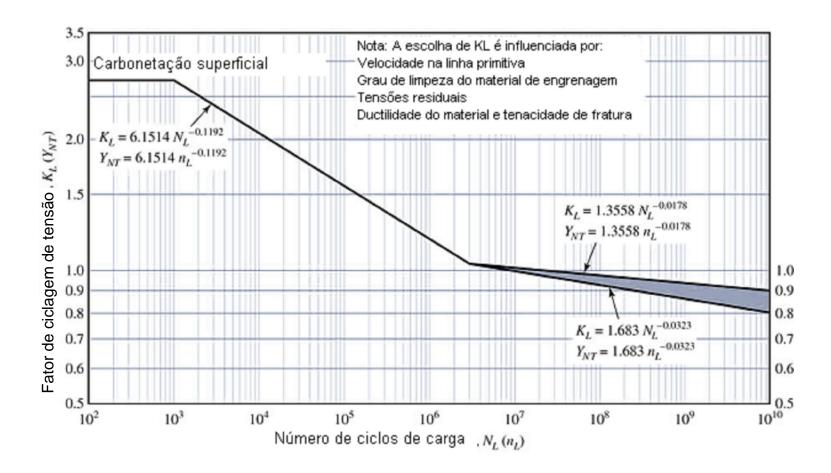
• Fator de Ciclagem de Tensão para Resistência à Formação de Cavidades - $C_L(Z_{NT})$

$$C_L = \begin{cases} 2.0 & 10^3 \le N_L \le 10^4 \\ 3.4822N_L^{-0.0602} & 10^4 \le N_L \le 10^{10} \end{cases}$$
 Sistema inglês

$$Z_{NT} = \begin{cases} 2.0 & 10^3 \le n_L \le 10^4 \\ 3.4822n_L^{-0.0602} & 10^4 \le n_L \le 10^{10} \end{cases}$$
 SI

• Fator de Ciclagem de Tensão para Resistência à Formação de Cavidades - $C_L(Z_{NT})$

Fator de Ciclagem de Tensão para Resistência à Flexão K_L (Y_{NT})


$$K_{L} = \begin{cases} 2.7 & 10^{2} \leq N_{L} < 10^{3} \\ 6.1514N_{L}^{-0.1182} & 10^{3} \leq N_{L} < 3 \cdot 10^{6} \\ 1.6831N_{L}^{-0.0323} & 3 \cdot 10^{6} \leq N_{L} < 3 \cdot 10^{10} & geral \\ 1.3558N_{L}^{-0.0178} & 3 \cdot 10^{6} \leq N_{L} < 3 \cdot 10^{10} & crítico \end{cases}$$

Sistema inglês

$$Y_{NT} = \begin{cases} 2.7 & 10^2 \le n_L < 10^3 \\ 6.1514n_L^{-0.1182} & 10^3 \le n_L < 3 \cdot 10^6 \\ 1.6831n_L^{-0.0323} & 3 \cdot 10^6 \le n_L < 3 \cdot 10^{10} & geral \\ 1.3558n_L^{-0.0178} & 3 \cdot 10^6 \le n_L < 3 \cdot 10^{10} & crítico \end{cases}$$

SI

Fator de Ciclagem de Tensão para Resistência à Flexão K_L (Y_{NT})

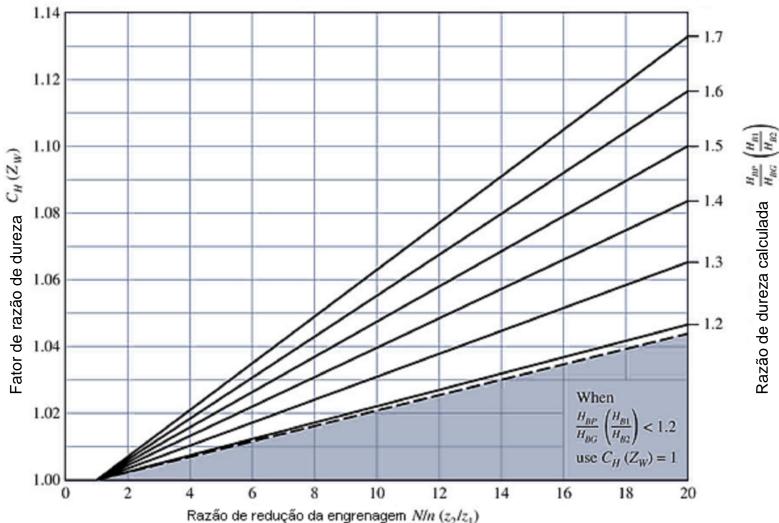
Fator de ciclagem de tensão para a resist|ência à flexão K_L(Y_{NT}) de engrenagens cônicas de aço endurecido superficialmente, por carbonetação (Fonte ANSI/AGMA 2003-B97, Shigley)

Fator de Razão de Dureza C_H (Z_W)

$$C_H = 1.0 + B_1(N/n - 1.0)$$

$$B_1 = 0,00898 \left(\frac{H_{BP}}{H_{BG}} \right) - 0,00829$$

$$Z_W = 1.0 + B_1(z_1/z_2 - 1.0)$$


$$B_1 = 0,00898 \left(\frac{H_{B1}}{H_{B2}} \right) - 0,00829$$

• Válidas quando, onde $N(z_1)$ é o número de dentes da coroa e $n(z_2)$ o número de dentes do pinhão:

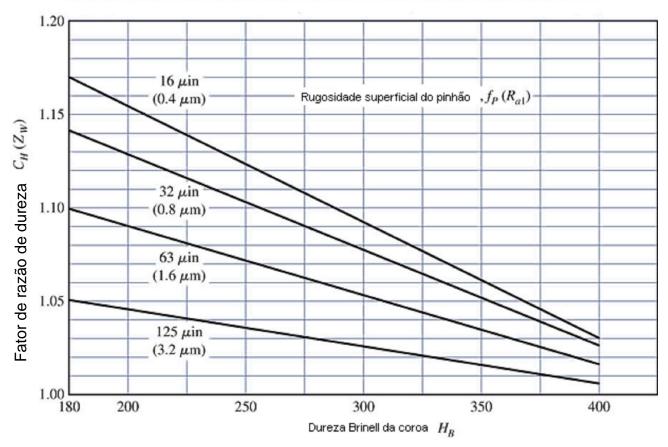
$$1,2 \le \frac{H_{BP}}{H_{BG}} \le 1,7$$

$$1,2 \le \frac{H_{B1}}{H_{B2}} \le 1,7$$

Fator de Razão de Dureza C_H (Z_W)

Razão de redução da engrenagem $Nln(z_2/z_1)$ Fator de razão de dureza para pinhão e coroa endurecidas por completo (Fonte ANSI/AGMA 2003-B97, Shigley)

• Para um pinhão endurecido superficialmente (48 HRC ou mais) roda uma coroa endurecida inteiramente (180< H_B <400), um efeito de encruamento ocorre. O fator C_H (Z_W) varia com a rugosidade superficial do pinhão $f_P(R_{a1})$ e com a dureza da engrenagem par.


$$C_H = 1.0 + B_2 (450 - H_{BG})$$

$$B_2 = 0.00075 \exp(-0.0122 f_P)$$

$$Z_W = 1.0 + B_2 (450 - H_{B2})$$

$$B_2 = 0.00075 \exp(-0.52 f_P)$$

• Para um pinhão endurecido superficialmente (48 HRC ou mais) roda uma coroa endurecida inteiramente (180< H_B <400), um efeito de encruamento ocorre. O fator C_H (Z_W) varia com a rugosidade superficial do pinhão $f_P(R_{a1})$ e com a dureza da engrenagem par.

Fator de razão de dureza para pinhão endurecidos superficialmente (Fonte ANSI/AGMA 2003-B97, Shigley)

Fator de Temperatura - K_T (K_θ)

$$K_T = \begin{cases} 1.0 & 32^{\circ} F \le t \le 250^{\circ} F \\ (460+t)/710 & t > 250^{\circ} F \end{cases}$$

Sistema inglês

$$K_{\theta} = \begin{cases} 1,0 & 0^{\circ} C \le \theta \le 120^{\circ} C \\ (273+t)/393 & \theta > 120^{\circ} C \end{cases}$$

SI

Fatores de Confiabilidade - C_R (Z_Z) e K_R (Y_Z)

$$|Y_Z = K_R = \begin{cases} 0.50 - 0.25 \log(1 - R) & 0.99 \le R \le 0.999 \\ 0.70 - 0.15 \log(1 - R) & 0.90 \le R < 0.99 \end{cases}$$

$$\begin{vmatrix} C_R = \sqrt{K_R} \\ Z_Z = \sqrt{Y_Z} \end{vmatrix}$$

	Fatores de confiabilidade para o aço		
Requerimentos da aplicação	$C_R(Z_Z)$	$K_R(y_Z)$	
Menos de uma falha a cada 10000	1,22	1,50	
Menos de uma falha a cada 1000	1,12	1,25	
Menos de uma falha a cada 100	1,00	1,00	
Menos de uma falha a cada 10	0,92	0,85	
Menos de uma falha a cada 2	0,84	0,70	

• Coeficiente elástico para Resistência à Formação de Cavidades - C_P (Z_F)

$$C_{p} = \left\{ \frac{1}{\pi \left[(1 - v_{P}^{2}) / E_{P} + (1 - v_{G}^{2}) / E_{G} \right]} \right\}^{\frac{1}{2}}$$

$$Z_{E} = \left\{ \frac{1}{\pi \left[\left(1 - v_{1}^{2} \right) / E_{1} + \left(1 - v_{2}^{2} \right) / E_{2} \right]} \right\}^{\frac{1}{2}}$$

Tabela 15-4 Valor de tensão de contato admissível para engrenagens de aço, s_{ac} ($\sigma_{H lim}$)

Designação do material	Tratamentos térmicos	Dureza superficial mínima*	Valor admi S _{ac} (ه Grau 1 [†]	ssível da tensão d _{H lim}) Ibf/in² (N/m Grau 2 [†]	de cont m²) Gre
Aço	Endurecimento completo [†]	Figura 15-12	Figura 15-12	Figura 15-12	
	Endurecimento por chama ou indução [§]	50 HRC	175 000 (1210)	190 000 (1310)	
	Carbonização e endurecimento superficial [§]	2003-B97 Tabela 8	200 000 (1380)	225 000 (1550)	250 (17
AISI 4140	Nitretação [§]	84,5 HR15N		145 000 (1000)	
Nitralloy 135M	Nitretação [§]	90,0 HR15N		160 000 (1100)	

Fonte: ANSI/AGMA 2003-B97.

Tabela 15-6 Valores admissíveis de tensão de flexão para engrenagens de aço, s_{at} (σ_{Flim})

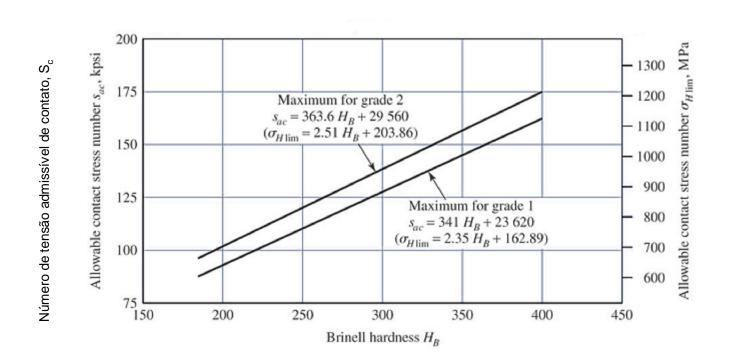
Designação do material	Tratamento térmico	Dureza superficial mínima		tensão de flexão ((σ _{ε lim}) lbf/in² (N/m Grau 2*	
Aço	Endurecimento por completo	Figura 15-13	Figura 15-13	Figura 15-13	
	Endurecimento por chama ou indução Raízes não-endurecidas Raízes endurecidas	50 HRC	15 000 (85) 22 500 (154)	13 500 (95)	
	Carbonização e endurecimento superficial [†]	2003-B97 Tabela 8	30 000 (205)	35 000 (240)	40 000 [
AISI 4140	Nitretação ^{t, ‡}	84,5 HR15N		22 000 (150)	
Nitralloy 135M	Nitretação ^{†, †}	90,0 HR15N		24 000 (165)	

Fonte: ANSI/AGMA 2003-B97.

^{*} Ver ANSI/AGMA 2003-B97, Tabelas 8-11, para fatores metalúrgicos para cada grau de tensão de engrenagens de aço.

† Os valores de tensão admissíveis indicados podem ser utilizados com as profundidades de endurecimento prescritas em 21.1, ANSI/AGMA 2003-B97.

† A capacidade de sobrecarga de engrenagens nitretadas é pequena. Uma vez que a forma da curva S-N efetiva é plana, a sensibilidade a choques deve ser invest antes de se seguir com o projeto.


Tabela 15-5 Valor da tensão de contato admissível para engrenagens de ferro, s_{ac} ($\sigma_{H lim}$)

Material	Designação do material ASTM	ISO	Tratamento térmico	Mínimo típico Dureza superficial	Valor da tensão de contato admiss (o _{H lim}) Ibf/in² (N/n
Ferro fundido	ASTM A48 Classe 30 Classe 40	ISO/DR 185 Grau 200 Grau 300	Como fundido Como fundido	175 HB 200 HB	50 000 (345) 65 000 (450)
Ferro dúctil (nodular)	ASTM A536 Grau 80-55-06 Grau 120-90-02	ISO/DIS 1083 Grau 600-370-03 Grau 800-480-02	Temperado e revenido	180 HB 300 HB	94 000 (650) 135 000 (930)

Fonte: ANSI/AGMA 2003-B97.

Valor da tensão de flexão admissível para engrenagens de ferro, s_{at} ($\sigma_{\rm F\,lim}$)

Designation of the second of t	gnação do mater ASTM	ial ISO	Tratamento térmico	Dureza superficial mínima típica	Valor da tensão de flexão (admissível), s _{at} (_{F lim}) Ibf/in² (N/mm²)
hindido	ASTM A48 Classe 30 Classe 40	ISO/DR 185 Grau 200 Grau 300	Como fundido Como fundido	175 HB 200 HB	4500 (30) 6500 (45)
indicate)	ASTM A536 Grau 80-55-06 Grau 120-90-02	ISO/DIS 1083 Grau 600-370-03 Grau 800-480-02	Temperado e revenido	180 HB 300 HB	10 000 (70) 13 500 (95)

Valor da tensão de contato admissível para engrenagens de aço endurecidas por completo, S_{ac} (σ_{Hlim}) (Fonte ANSI/AGMA 2003-B97, Shigley)

$$\sigma_{H \text{ lim}} = 2,35 H_B + 162,89 MPa$$

$$\sigma_{H \, \text{lim}} = 2,51 H_B + 203,86 MPa$$

grau 1

grau 2

TENSÃO DE FLEXÃO ADMISSÍVEL

Valor da tensão de flexão admissível para aços endurecidos por inteiro (Fonte ANSI/AGMA 2003-B97, Shigley)

$$s_{at} = 44H_B + 2100 \, psi$$

grau 1

$$\sigma_{F \lim} = 0.30H_B + 14.48MPa$$

$$s_{at} = 48H_B + 5980 \, psi$$

grau 2

$$\sigma_{F \text{ lim}} = 0.33 H_B + 41.24 MPa$$

CARREGAMENTO REVERSO

AGMA recomenda utilizar 70% da resistência admissível nos casos em que a carga é completamente reversa.

EXEMPLO 15.1 – Shigley – pp. 744.

Um par de engrenagens mitrais de dentes retos idênticas, têm um passo diametral de 5 na extremidade posterior, uma largura de face de 1,10 in e um ângulo de pressçao normal de 20°; as engrenagens são feitas de aço grau 1, endurecidas por inteiro, com dureza de núcleo e superfície de 180 Brinell. Tais engrenagens não tem coroamento e são pretendidas para uso industrial em geral. Elas têm um número de qualidade Q_v=7. É provável que a aplicação pretendida venha a requerer montagem externas das mesmas. Utilize um fator de segurança igual a 1, 10⁷ ciclos de vida, com confiabilidade de 0,99.

- a) Para uma velocidade de 600 rpm, encontre a capacidade desse par de engrenagens de transmitir potência, com base na resistência à flexão AGMA;
- b) Para as mesmas condições (a), encontre a capacidade desse par de engrenagens de transmitir potência, com base na resistência ao desgaste AGMA.
- c) Para uma confiabilidade de 0,995 , uma vida da coroa de 10^9 revoluções e um fator de seguranã $S_F = S_H = 1,5$, determine a capacidade de transmitir potência, para esse conjunto de engrenagens, utilizando as resistências AGMA.

Cálculo do diâmetro primitivo e da velocidade tangencial:

$$d_P = \frac{N_P}{P_D} = \frac{25}{5} = 5,0 in = 127,0 mm$$

$$V = v_t = \frac{\pi d_p n_p}{12} = \frac{\pi (127,0) \cdot 600}{60} = 3989,8 \, mm/s = 3,99 \, m/s$$

Fator de velocidade:

$$K_{v} = \begin{cases} \left(\frac{A + \sqrt{v_{t}}}{A}\right)^{B} \\ \left(\frac{A + \sqrt{200v_{et}}}{A}\right)^{B} \end{cases}$$

$$B = 0.25(12 - Q_{v})^{\frac{2}{3}}$$

$$B = 0.25(12 - 7)^{\frac{2}{3}} = 0.731$$

$$B = 0.25(12 - Q_v)^{2/3}$$

$$B = 0.25(12 - 7)^{2/3} = 0.731$$

$$A = 50 + 56(1 - B) = 50 + 56(1 - 0.731) = 65.064$$

$$K_{v} = \left(\frac{65,06 + \sqrt{200 \cdot 3,99}}{65,06}\right)^{0,731} = 1,30$$

Velocidade máxima:

$$v_{te \text{ max}} = \frac{\left[A + (Q_v - 3)\right]^2}{200} = \frac{\left[65,06 + (Q_v - 3)\right]^2}{200} = 23,84 \, m/s$$

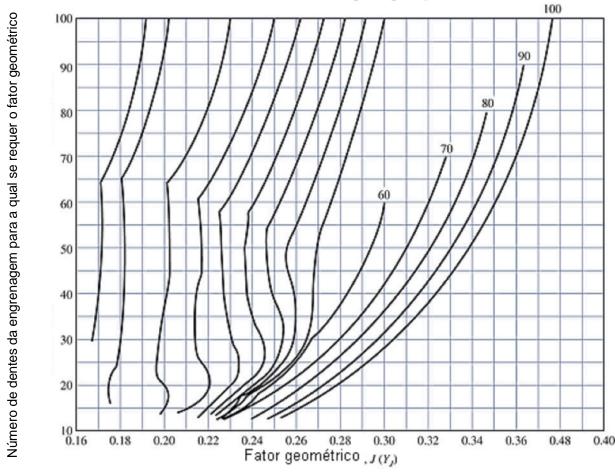
$$|v_t < v_{te \max}|$$

Assim, K_v é válido.

Fator de sobrecarga: carregamento uniforme-uniforme, Tabela 15-2, $K_A=1,00$;

Fator de segurança: $S_F=1,0$, $S_H=1,0$;

Fator de distribuição de carga - K_m (K_{Hβ})

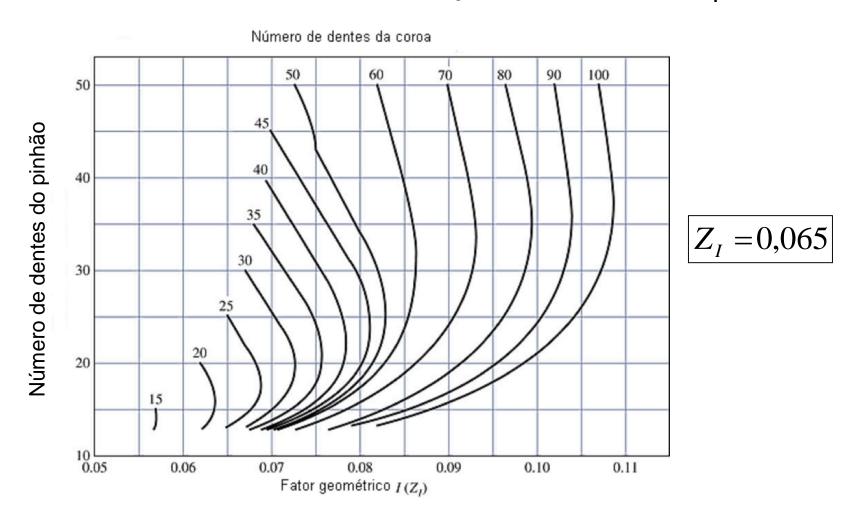

$$K_{H\beta} = K_{mb} + 5.6 \cdot 10^{-6} b^2$$

$$K_{mb} = \begin{cases} 1,0 & ambos os membros montados entre mancais \\ 1,10 & um membro entre mancais \\ 1,25 & nenhum membro montado entre mancais \end{cases}$$

$$K_{H\beta} = 1,25 + 5,6 \cdot 10^{-6} (27,94mm)^2 = 1,254$$

• Fator Geométrico para Resistência à Flexão - J (Y」)

Número de dentes na engrenagem par


$$(Y_J)_P = 0.216$$
$$(Y_J)_G = 0.216$$

$$(Y_J)_G = 0.216$$

• Fator de Curvatura ao Longo do Comprimento para Resistência à Flexão - K_x (Y_β)

 $K_x = Y_\beta = 1.0$ para engrenagens cônicas de dentes retos

• Fator Geométrico para Resistência à Formação de Cavidades - I (Z_I)

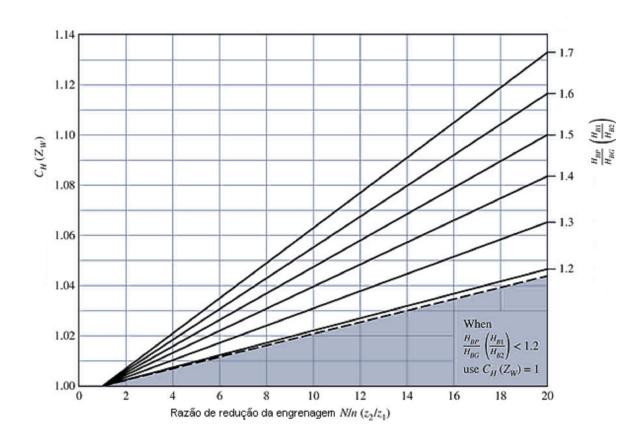
Fator de Ciclagem de Tensão para Resistência à Flexão K_L (Y_{NT})

$$Y_{NT} = \begin{cases} 2.7 & 10^{2} \leq n_{L} < 10^{3} \\ 6.1514n_{L}^{-0.1182} & 10^{3} \leq n_{L} < 3.10^{6} \\ 1.6831n_{L}^{-0.0323} & 3.10^{6} \leq n_{L} < 3.10^{10} & geral \\ 1.3558n_{L}^{-0.0178} & 3.10^{6} \leq n_{L} < 3.10^{10} & crítico \end{cases}$$

$$Y_{NT} = 1,6831(10^7)^{-0.0323}$$
 $3.10^6 \le n_L < 3.10^{10}$

$$Y_{NT} = 1$$

• Fator de Ciclagem de Tensão para Resistência à Formação de Cavidades - $C_L(Z_{NT})$


$$Z_{NT} = \begin{cases} 2.0 & 10^3 \le n_L \le 10^4 \\ 3.4822n_L^{-0.0602} & 10^4 \le n_L \le 10^{10} \end{cases}$$

$$Z_{NT} = 3,4822 n_L^{-0,0602} 10^4 \le n_L \le 10^{10}$$

$$Z_{NT} = 3,4822(10^7)^{-0,0602} = 1,32$$

• Fator de Razão de Dureza C_H (Z_W)

$$Z_W = 1$$

Fator de Temperatura - K_T (K_θ)

$$K_{\theta} = \begin{cases} 1,0 & 0^{\circ} C \le \theta \le 120^{\circ} C \\ (273+t)/393 & \theta > 120^{\circ} C \end{cases}$$

$$K_{\theta} = 1$$

• Fator de Curvatura ao Longo do Comprimento para Resistência à Flexão - K_x (Y_β)

 $K_x = Y_\beta = 1,0$ para engrenagens cônicas de dentes retos

• Fatores de Confiabilidade - C_R (Z_Z) e K_R (Y_Z)

$$Y_Z = \begin{cases} 0.50 - 0.25 \log(1 - R) & 0.99 \le R \le 0.999 \\ 0.70 - 0.15 \log(1 - R) & 0.90 \le R < 0.99 \end{cases}$$

$$|Y_Z = 0.50 - 0.25 \log(1 - 0.99) = 1|$$

$$Z_Z = \sqrt{Y_Z} = 1$$

Fatores de Tamanho para flexão - Y_X

$$Y_X = \begin{cases} 0,50 & m_{et} \le 1,6 \, mm \\ 0,4867 + 0,008339 m_{et} & 1,6 \le m_{et} \le 50 \, mm \end{cases}$$

$$Y_X = 0,4867 + 0,008339 \left(\frac{127}{25}\right) = 0,529$$

a) Flexão

$$\sigma_{F \text{lim}} = 0.30(180) + 14.48 MPa = 68.48 MPa$$

$$\sigma_F = \frac{1000W^t}{b} \frac{K_A K_v}{m_{et}} \frac{Y_x K_{H\beta}}{Y_{\beta} Y_J}$$

$$\sigma_F = \frac{1000W^t}{27,94} \frac{1,0(1,30)}{127/25} \frac{0,529(1,254)}{1,0(0,216)} = 28,12W^t$$

Mas

$$\sigma_{FP} = \frac{\sigma_{F \text{lim}} Y_{NT}}{S_F K_{\theta} Z_Z} = \frac{68,48(1)}{1(1)1} = 68,48 MPa$$

Igualando-se

$$\sigma_{FP} = \sigma_{F}$$

$$28,12W^{t} = 68,48MPa$$

$$28,12W^{t} = 68,48MPa$$

$$W^{t} = 2,43 \, kN$$

$$W^t = \frac{60000H}{\pi \, d \, n}$$

$$H = \frac{W^{t}\pi d n}{60000} = \frac{2,43\pi(127)600}{60000} = 9,69 \, kW$$

b) Desgaste

$$\sigma_{H \text{ lim}} = 2,35 H_B + 162,89 MPa$$

$$\sigma_{H \text{ lim}} = 2,35(180) + 162,89MPa = 585,9MPa$$

$$\sigma_c = \sigma_H = Z_E \sqrt{\frac{1000W^t}{b d Z_1}} K_A K_v K_{H\beta} Z_x Z_{xc}$$

$$\sigma_{HP} = \frac{\sigma_{H \text{ lim}}}{S_H} \frac{Z_N Z_W}{K_{\theta} Y_Z} = \frac{\sigma_{H \text{ lim}}}{1} \frac{1(1)}{1(1)} = 585,9 MPa$$

• Fator de tamanho para Resistência à Formação de Cavidades - C_s (Z_x)

$$Z_X = \begin{cases} 0.5 & b < 12.7 mm \\ 0.00492b + 0.4375 & 12.7 \le b \le 114.3 mm \\ 1 & b > 114.3 mm \end{cases}$$

$$Z_X = 0.00492(27.94) + 0.4375 = 0.575$$

$$\sigma_c = \sigma_H = 191 \sqrt{\frac{1000W^t}{28,49(127)0,065}} 1,0(1,30)1,254(0,575)(2)$$

$$\sigma_c = \sigma_H = 191\sqrt{7,97 \cdot W^t}$$

$$191\sqrt{7,97W^t} = 585,9$$

$$W^{t} = 1,18 \, kN$$

$$H = \frac{W^{t}\pi d n}{60000} = \frac{1{,}18\pi (127)600}{60000} = 4{,}71kW$$

Potência estimada para o par de engrenagem

$$H = \min(4,71;9,69)kW$$

- c) Para uma vida de 10^9 ciclos, R=0,995, S_F=S_H=1,5
- Fator de Ciclagem de Tensão para Resistência à Flexão K_L (Y_{NT})

$$Y_{NT} = \begin{cases} 2.7 & 10^2 \le n_L < 10^3 \\ 6.1514n_L^{-0.1182} & 10^3 \le n_L < 3 \cdot 10^6 \\ 1.6831n_L^{-0.0323} & 3 \cdot 10^6 \le n_L < 3 \cdot 10^{10} & geral \\ 1.3558n_L^{-0.0178} & 3 \cdot 10^6 \le n_L < 3 \cdot 10^{10} & crítico \end{cases}$$

$$Y_{NT} = 1,6831(10^9)^{-0.0323} = 0.861$$

Fatores de Confiabilidade - C_R (Z_Z) e K_R (Y_Z)

$$Y_Z = \begin{cases} 0,50 - 0,25 \log(1 - R) & 0,99 \le R \le 0,999 \\ 0,70 - 0,15 \log(1 - R) & 0,90 \le R < 0,99 \end{cases}$$

$$Y_Z = 0.50 - 0.25 \log(1 - 0.995) = 1.075$$

$$Z_Z = \sqrt{Y_Z} = 1,037$$

• Fator de Ciclagem de Tensão para Resistência à Formação de Cavidades - $C_L(Z_{NT})$

$$Z_{NT} = \begin{cases} 2.0 & 10^3 \le n_L \le 10^4 \\ 3.4822n_L^{-0.0602} & 10^4 \le n_L \le 10^{10} \end{cases}$$

$$Z_{NT} = 3,4822 n_L^{-0,0602} 10^4 \le n_L \le 10^{10}$$

$$Z_{NT} = 3,4822(10^9)^{-0,0602} = 1,00$$

Flexão

$$\sigma_{F \text{lim}} = 0.30(180) + 14.48 MPa = 68.48 MPa$$

$$\sigma_F = \frac{1000W^t}{b} \frac{K_A K_v}{m_{et}} \frac{Y_x K_{H\beta}}{Y_{\beta} Y_J}$$

$$\sigma_F = \frac{1000W^t}{27,94} \frac{1,0(1,30)}{127/25} \frac{0,529(1,254)}{1,0(0,216)} = 28,12W^t$$

Mas

$$\sigma_{FP} = \frac{\sigma_{F \text{lim}} Y_{NT}}{S_F K_{\theta} Z_Z} = \frac{68,48(0,861)}{1,5(1)1,037} = 37,9 \, MPa$$

$$28,12W^{t} = 37,9MPa$$

$$W^t = 1,34 \, kN$$

$$H = \frac{W^{t}\pi d n}{60000} = \frac{1,34\pi(127)600}{60000} = 5,37 \, kW$$

Desgaste

$$\sigma_c = \sigma_H = Z_E \sqrt{\frac{1000W^t}{b d Z_1} K_A K_v K_{H\beta} Z_x Z_{xc}}$$

$$\sigma_{HP} = \frac{\sigma_{H \text{ lim}}}{S_H} \frac{Z_N Z_W}{K_\theta Y_Z} = \frac{585,9}{1,5} \frac{1(1)}{1(1,075)} = 363,34 MPa$$

$$191\sqrt{7,97W^{t}} = 363,34 \qquad W^{t} = 0,454kW$$

$$H = \frac{W^{t}\pi d n}{60000} = \frac{0,454\pi(127)600}{60000} = 1,81kW$$

REFERÊNCIAS

SHIGLEY, J.E., MISCHKE, C.R., BUDYNAS, R.G., *Projeto de Engenharia mecânica, 7ª edição, Bookman.*