

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA COORDENAÇÃO DO CURSO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Ficha 2 Período Especial

Disciplina: Análise Estrutural e Térmica							Código	Código: TMEC139	
Natureza: () Obrigatória (X) Optativa) Obrigatória		(X) Semestral () Anual () Modular						
Pré-requisito:									
TMEC005	EC005				Modalidade: () Presencial () Totalmente EaD () % EaD*				
Termodinâmica TMEC001 Cálculo		Co-requisito:						116 Lab () 70 Lab	
				(X) Ensino Remoto Emergencial – ERE					
Numérico									
CH Total: 60	Padrá	ão (PD): 60	Laborato	ório (LB): 0	Campo (CP): 0	Estágio (ES): 0	Orientada (OR): 0	Prática Específica (PE): 0	
CH semanal: 04	. dure	20 (. 2). 00	Lazorak	3o (23). o					

EMENTA (Unidade Didática)

- 1. Motivação e Conceitos Fundamentais: O método de Elementos Finitos.
- 2. O Problema 1-D: Formas forte (clássica) e fraca (variacional); Equivalência de formas; Forma de Galerkin; Forma matricial (matriz de rigidez); Análise Matemática; O ponto de vista do elemento; matriz e vetor força elementares; Montagem da matriz e vetor força globais.
- 3. Os Problemas 2-D e 3-D: Condução de Calor; Elasticidade Linear; Estados de tensões planas e de deformações planas; Análise acoplada; Apresentação do código FEAP (Finite Element Analysis Program).
- 4. Elementos Isoparamétricos e Conceitos de Programação: Elemento quadrilateral bilinear; Elementos isoparamétricos; Elemento triangular linear; Polinômios de Lagrange; Elementos com número variável de nós; Quadratura Gaussiana; Subrotinas de funções de interpolação e de cálculo da rigidez elementar.
- 5. Métodos Mistos e de Penalidade: Normas de Sobolev; Melhor aproximação e estimativa de erro; Elasticidade incompressível e o escoamento de Stokes.
- 6. Problemas Transientes: Problemas parabólicos (Equação do Calor) e hiperbólicos (Elastodinâmica e Dinâmica Estrutural); Algoritmos computacionais.

Justificativa da proposta

7 semanas com aulas síncronas (total de 28h) e as demais 32h como atividades assíncronas. Adapta-se o conteúdo prático com a realização de análises práticas computacionais de problemas de condução de calor e elasticidade linear (termoelasticidade) para o modo remoto, i.e., de forma assíncrona.

PROGRAMA (itens de cada unidade didática) *

UD-1: Motivação e Conceitos Fundamentais;

UD-2: O Problema 1-D;

UD-3: Os Problemas 2-D e 3-D;

UD-4: Elementos Isoparamétricos e Conceitos de Programação;

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA COORDENAÇÃO DO CURSO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

UD-5: Análise de Erro e Métodos Mistos e de Penalidade, e

UD-6: Problemas Transientes.

OBJETIVO GERAL

Capacitar o aluno a resolver problemas físicos lineares modelados por equações diferenciais parciais, pelo método de Elementos Finitos, como por exemplo a análise de equipamentos sob solicitações térmicas e mecânicas, independentes ou combinadas.

OBJETIVOS ESPECÍFICOS

- 1. Formular matematicamente problemas de dimensionamento de estruturas mecânicas uni, bi e tridimensionais.
- 2. Conhecer os métodos numéricos disponíveis para solução dos problemas formulados matematicamente, mais especificamente o método de elementos finitos (MEF).
- 3. Capacitar o aluno a realizar a análise estrutural e térmica computacionalmente de estruturas mecânicas uni, bi e tridimensionais pelo método de elementos finitos (MEF).

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivo-dialogadas quando serão apresentados os conteúdos curriculares teóricos. Serão utilizados os seguintes recursos: aplicativo para ensino remoto (e.g., TEAMS, Skype), servidor do grupo de pesquisa do professor para troca de arquivos (acesso via SSH), disponibilização de slides, vídeos, listas de exercícios e provas, bem como softwares específicos.

Contato com o professor pelo e-mail: vargasjvcv@gmail.com

Horário de aulas (atividades síncronas em 7 semanas com um total de 28h):

3as feiras: 13:30 às 15:30 h 5as feiras: 13:30 às 15:30 h

Nr de vagas: 45 alunos

Serão realizados pelos alunos durante as 7 semanas previstas para a disciplina remotamente problemas teóricos e práticos (computacionais) propostos como listas de exercícios para solução como atividades assíncronas. Serão utilizadas 4 horas por semana para essas atividades, e na última semana 8 horas (4h em um dia e 4h em outro dia) para solução de projeto final do curso. Assim, haverá um total de 32h de atividades assíncronas. Desta maneira, serão cumpridas as 60h previstas na carga horária da disciplina.

FORMAS DE AVALIAÇÃO

Será apresentado aos alunos no primeiro dia de aula:

- * calendário das provas, com as datas, horários e objetivos que serão cobrados em cada uma delas;
- * tipo de avaliação que será realizada;
- * sistema de aprovação (médias das provas, trabalhos, etc.), e
- * Plano de aulas com as datas de todas as aulas e assuntos a serem ministrados.

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA COORDENAÇÃO DO CURSO DE ENGENHARIA MECÂNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

SISTEMA DE APROVAÇÃO:

Média aritmética de 3 provas de Análise Estrutural e Térmica, sendo 2 realizadas no horário de aula, sendo que o aluno deverá gravar um arquivo com a sua solução fotografada dos papéis em que realizou a prova no servidor da disciplina ao final da aula com a sua caligrafia até o horário previsto de término da aula, e a terceira prova será a nota composta da média das listas de exercícios (MLE) e de um projeto final para fazer em casa (PF), i.e., P3 = (MLE + PF)/2.

O aluno deverá obter a média parcial, MP = (P1+P2+P3)/3, igual ou superior a 70 para ser aprovado por média, caso contrário, deverá realizar um exame final (EF) e obter média aritmética da média parcial e nota do exame final, MF = (MP+EF)/2, igual ou superior a 50 para ser aprovado.

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

- 1. Hughes, T. J. R., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall – Livro-texto.
- 2. Zienkiewicz, O. C., Taylor, R. L., 2000, The Finite Element Method: The Basis, 5th Edition, Vol. 1, Butterworth-Heinemann.
- 3. Zienkiewicz, O. C., Taylor, R. L., 2005, The Finite Element Method for Solid and Structural Mechanics, 6th Edition, Vol. 2, Butterworth-Heinemann.

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

- 1. Zienkiewicz, O. C., Taylor, R. L., 2005, The Finite Element Method: Fluid Dynamics, 5th Edition, Vol. 3. Butterworth-Heinemann.
- 2. Reddy, J.N., Gartling, D.K., The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd Edition, CRC Press, Boca Raton, FL, 2010.
- 3. Logan, D. L., 2011, A First Course in the Finite Element Method, 5th Edition, CL Engineering.
- 4. Smith, I. M., Griffiths, D. V., Margetts, L., 2013, Programming the Finite Element Method, 5th Edition, Wiley.
- 5. Cengel, Y. A., Ghajar, A. J., Heat and Mass Transfer: Fundamentals and Applications, 5th Ed., McGraw-Hill, New York, 2015.

Professor da Disciplina:José Viriato Coelho Vargas
Contato do professor da disciplina (e-mail e telefone para contato): E-mail: vargasjvcv@gmail.com; Cel: (41) 99907-2617. Assinatura:
Chefe de Departamento ou Unidade equivalente: João Morais da Silva Neto
Assinatura:

*OBS: ao assinalar a opção % EAD, indicar a carga horária que será à distância.

APRESENTAR EM ANEXO O CRONOGRAMA DETALHADO DA DISCIPLINA: