
FEAP - - A Finite Element Analysis

Program

Version 6.3 Programmer Manual

Robert L. Taylor

Department of Civil and Environmental Engineering

University of California at Berkeley

Berkeley, California 94720-1710

E-Mail: rlt@ce.berkeley.edu

January 1998

Contents

1 Introduction 1

1.1 Setting Program Capacity and Options 1
1.2 Uses of Common and Include Statements 4

2 Data Input and Output 5

2.1 Parameters and Expressions 5
2.2 Array Outputs . 7

3 Allocating Arrays 8

4 User Functions 13

4.1 User Mesh Input Functions. 13
4.2 User Solution Command Functions. 14

5 Adding Elements 16

5.1 Non-linear Transient Solution Forms 21
5.2 Example: 2-Node Truss Element 27

5.2.1 Theory for a Truss . 28
5.3 Additional Options in Elements 32

5.3.1 Task 1 Options . 32
5.3.2 Task 3 Options . 36

5.4 Elements with History Variables 37
5.4.1 Assigning amount of storage for each element 38
5.4.2 Accessing history data for each element 38

5.5 Energy Computation . 39
5.6 A Non-linear Theory for a Truss 41

i

Chapter 1

INTRODUCTION

In this part of the FEAP manual some of the options to extend the capa-
bilities of the program are described. We begin by describing the utilities
provided in FEAP for use in data input. Options to add user commands for
mesh and command language extensions is then described and, �nally, the
method to add an element to the program is described.

1.1 Setting Program Capacity and Options

The size of problems which may be solved by FEAP depends on the amount
of memory provided in blank common as well as solution options used. The
capacity of blank common is set in the main program module, FEAP63, in
the section between the comments labeled START SOLUTION SETS and END

SOLUTION SETS. To change the size of the blank common array reassign the
value as:

parameter (mmax = 1000000)

where in the above the size of blank common is set to one million integer

words of storage. If real arrays are double precision there are only a half
million (500000) words of real data available. The size of the parameter may
not be made arbitrarily large and depends on system con�gurations for swap
and disk space.

The IPR parameter in the FEAP63 module controls the speci�cation of the
size of REAL variables. For typical UNIX and PC systems all real variables
should be double precision and IPR is set to 2. For systems in which REAL*8

1

CHAPTER 1. INTRODUCTION 2

variables are single precision with the same work length as integer variables
the IPR parameter is set to 1. Any error in setting this parameter may lead to
incorrect behavior of the program, consequently, do not reset the parameter
to single precision unless a careful assessment of compiler behavior for REAL*8
variables has been made.

By placing an alphanumeric version of each manual page in a separate
�le which has the name of the command and a .t extender (e.g., coor.t
for the mesh coordinate input command) it is possible to read each page
during execution using the HELP,name command (where name is the command
name whose manual page is to be read). For this option to work properly
it is necessary to de�ne the path name to each manual page in the FEAP63

module. For example:

file(1) = 'c:/Feap6_0/Manual/Mesh/'

file(2) = 'c:/Feap6_0/Manual/Macr/'

file(3) = 'c:/Feap6_0/Manual/Plot/'

de�nes a path for a PC system. FEAP will add the requested command
name to each of the above paths to �nd mesh, solution, or plot commands.

Normally, FEAP reads each input data line as text data and checks each
character for the presence of parameters, expressions, and constants. For very
large data sets this parsing of each instruction can consume several seconds
of compute time. If all data is normally provided as numerical data without
use of any parameters or expressions, the input time may be reduced by
setting the value of the logical variable COFLG in FEAP63 to false. FEAP will
automatically switch to parsing mode if any record contains non-numerical
data item. It is also possible to use the PARSe and NOPArse commands
to set the appropriate mode of data input.

During the input of plot commands FEAP has the option to either set
input options automatically (DEFAult mode) or to read the values or range
of contours to plot. The default mode of operation may be set in the FEAP63
module by setting the variables DEFALT and PROMPT. Setting DEFALT to true
indicates that all default options are to be set automatically. If DEFALT is set
false, a prompt for contour intervals may be requested by setting PROMPT to
true.

FEAP has options to produce encapsulated PostScript output �les in
either gray scale of in color. The default mode may be established by setting
the variable PSCOLR and PSREVS. Setting PSCOLR true indicates the PostScript

CHAPTER 1. INTRODUCTION 3

�les will be in color (unless set otherwise by the plotCOLOr command. The
PSREVS variable reverses the color sequence.

Arrays in FEAP may be dynamically allocated during execution. Thus,
it is possible to de�ne and destroy arrays as well as to increase or decrease
the size of an array. A parameter is provided to control when an array is to
be decreased in size - which causes all arrays at higher locations in the blank
common to be moved to �ll the decrease. The parameter is INCRED and an
array is decreased in size only when the new size is less than the old size by
the assigned value.

The last parameter which may be set in the FEAP63 module is the level for
displaying available commands when the HELP command is used while in
mesh, solution, or plot mode. FEAP contains a large number of commands
which are not commonly used by many users. To control the default number
of commands displayed to users the commands have been separated into four
levels: (0) Basic; (1) Intermediate; (2) Advanced; and (3) Expert. The level
to be displayed when using the HELP command is given may be set in the
integer variable HLPLEV. That is, setting:

hlplev = 1 ! Intermediate

results in commands up to the intermediate level being displayed. It is pos-
sible to raise or lower the level during execution using the command MAN-

Ual,level where level is the numerical value desired.
When developing program modules it is often desirable to have output

of speci�c quantities available (e.g., tracking the change in some parameters
during successive iterations. FEAP provides for a switch to make the outputs
active or inactive during an execution. The switch is named debug and placed
in

logical debug

common /debugs/ debug

The value of the debug is set true by the solution command DEBUg and false
by the command DEBUg,OFF. Thus, placing code fragments into modules as

if(debug) then

write(iow,*) 'LABEL',list ... ! writes to output file

c and/or

write(*,*) 'LABEL',list ... ! writes to screen

endif ! debug

CHAPTER 1. INTRODUCTION 4

This device supplements use of available debuggers on the computer.

1.2 Uses of Common and Include Statements

FEAP contains many COMMON statements which are used to pass parameters
and small array values between subprograms. For example, access to the
debugging parameter debug is facilitated through common /debugs/. Users
may either place the common statement (as well as data typing statements)
directly in the routine or may use an include statement. For debugging the
statement would be

include 'debugs.h'

which during compilation would direct the precompiler to load the current
common statement from this �le. In FEAP all include �les have the same
name as the common with an added extender .h. The only exception is for
the blank common which uses the �le name comblk.h.

Chapter 2

DATA INPUT AND OUTPUT

FEAP includes utilities to perform input and to output small arrays of data.
Users are strongly encouraged to use the input utilities but often may wish
to use their own utilities to output data.

2.1 Parameters and Expressions

The subroutines PINPUT and TINPUT are input subprograms used by FEAP
to input each data record. They permit the data to be in a free form format
with up to 255 characters on each record, as well as to employ expressions,
parameters, and numerical representations for each data item. These routines
also should be used to input data in any new program module developed.
The PINPUT routine returns data to the calling subprogram in a double
precision array. The following statements may be included as part of the
routine performing the input.

subroutine xxx(.....)

logical errck

integer ior,iow

common /iofile /ior,iow

real*8 td(5)

1 if(ior.lt.0) write(*,3000)

errck = pinput(td, 5)

5

CHAPTER 2. DATA INPUT AND OUTPUT 6

if(errck) go to 1

The parameters de�ned in the common block are:

ior - input file unit number (if negative, input

from keyboard)

iow - output file unit number

If an error occurs during input during inputs from the keyboard FEAP re-
turns a value of true for the function and a user may reinput the record if
the implied loop shown above is used. For inputs from a �le, the program
will stop and an error message indicating the type of error occurring and the
location in a �le is written to the output �le.

The input routines return data in a real*8 array td(*). If any td(i) is to
be used as an integer or real*4 quantity, it must be cast to the correct type.
That is, the following operations must be performed.

real*4 t

integer j

logical errck

errck = pinput (td, 5)

j = int(td(1)) ! Integer assignment

t = float(td(2)) ! Real*4 assignment

will perform the assignments. PINPUT may be used to input up to 16
individual expressions on one input record (each input record is, however,
limited to 255 characters).

The routine TINPUT di�ers from PINPUT by permitting text data to
also be input. It is useful for writing user commands or to input data de-
scribed by character arrays. The routine is used as

logical errck, tinput

integer nt, nn

character text(16)*16

real*8 td(16)

errck = tinput(text,nt,td,nn)

CHAPTER 2. DATA INPUT AND OUTPUT 7

The value of either the parameter nt or nn may be zero. Thus the use of

errck = tinput(text,0,td,nn)

is equivalent to

errck = pinput(td,nn)

2.2 Array Outputs

Two subprograms exist to output arrays of integer and real (double precision)
data. The routine MPRINT is used to output real data and is accessed by the
statement:

call mprint(array, nrow, ncol, ndim, label)

where array is the name of the array to print, nrow and ncol are the number
of rows and columns to output, ndim is the �rst dimension on the array, and
label is a character label which is added to the output. For example the
statements:

real*8 aa(8,6)

. . .

call mprint(aa(2,4), 2, 3, 8, 'AA')

outputs a 2�3 submatrix from the array aa starting with the entry aa(2,4).
The output entries will be ordered as the terms:

aa(2,4) aa(2,5) aa(2,6)

aa(3,4) aa(3,5) aa(3,6)

The MPRINT routine adds row and column labels as well as the character
label.

The routine IPRINT is used to output integer data and is accessed by the
statement:

call iprint(array, nrow, ncol, ndim, label)

where all parameters are identical to those for MPRINT except the array must
be of type integer.

Chapter 3

ALLOCATING ARRAYS

The blank common in FEAP is de�ned in the form

real*8 hr

integer mr

common hr(1),mr(1000)

and placed in a �le comblk.h in the INCLUDE directory. Thus, during any
solution the hr array will overlay the mr array, that is hr(2) will use the same
memory location as mr(1) and mr(2). This mechanism permits references
to positions in hr beyond 1 and mr beyond 100 only if FEAP is compiled
without strict array bound checking. The actual length of the blank com-
mon also does not need to be given explicitly in each routine as it is assigned
by the parameter statement in the main program FEAP63 module. For some
compilers indexing is di�erent for short and long arrays, thus, it is recom-
mended that some value greater than 1 (e.g., the 1000 shown above) be
used to protect against incorrect array index computations. However, using
this scheme permits direct reference to either real*8 or integer arrays in
program modules.

A subprogram PALLOC controls the allocation of all standard arrays in
FEAP and a subprogram UALLOC permits users to add their own arrays which
are to be allocated from blank common. The basic use of the routines is
provided by an instruction

setvar = palloc(number,'NAME',length,precision)

or

8

CHAPTER 3. ALLOCATING ARRAYS 9

setvar = ualloc(number,'NAME',length,precision)

Upon initial assignment of any array its values are set to zero. Thus, if the
array is to be used only once it need not be set to zero before accumulating
additional values. If the array is to be reused or resized (see below) it must
be reinitialized prior to accumulating any additional values. Use of these
subprograms controls the assignment of space in blank common so that no
con
icts occur between hr and mr arrays. Access of information in each of
the arrays is performed using a pointer which for PALLOC is in

integer np

common /pointer/ np(500)

and for UALLOC is in

integer up

common /upointer/ up(200)

These commons are saved in the include �les pointer.h and upointer.h,
respectively.

As an example for the use of the above allocation scheme consider a case
where it is desired to allocate a real (double precision array) with length
NUMNP and an integer array with length NUMEL (these parameters are con-
tained in COMMON /CDATA/ and available using an include �le cdata.h. The
arrays will be de�ned using the temporary names TEMP1 and TEMP2 which
have numerical locations 111 and 112, respectively. The two arrays are allo-
cated using the statements

setvar = palloc(111, 'TEMP1', numnp, ipr)

setvar = palloc(112, 'TEMP2', numel, 1)

These arrays are then available in any subprogram by specifying the pointer.h
and comblk.h include �les and referencing the arrays using their pointers,
e.g., in a subroutine call as:

call subname (hr(np(111)) , mr(np(112)))

CHAPTER 3. ALLOCATING ARRAYS 10

NAME Num. dim 1 dim 2 dim 3 Description
ANG 45 numnp - - Angle
D 25 250 nummat - Material parameters
F 27 ndf numnp 2 Force and Displacement
ID 31 ndf numnp 2 Equation nos.
IX 33 nen1 numel - Element connections
T 38 numnp - - Temperature
U 40 ndf numnp 3 Solution array
VEL 42 ndf numnp nt Solution rate array
X 43 ndm numnp - Coordinates

Table 3.1: Mesh Array Names, Numbers and Sizes

NAME Num. dim 1 dim 2 dim 3 Description
CMASn n+8 compro - - Consistent Mass
DAMPn n+16 compro - - Damping
JPn n+20 neq - - Pro�le pointer
LMASn n+12 neq - - Lump Mass
TANGn n maxpro - - Symmetric tangent
UTANn n+4 maxpro - - Unsymmetric tangent

Table 3.2: Solution Array Names, Numbers and Sized

Note the use of hr(*) and mr(*) for the double precision and integer refer-
ences, respectively. Also, the use of the pointers avoids a need to include the
array reference until it is be needed in a computation.

A short list of the mesh arrays available in FEAP is given in Table 3.1, for
solution arrays in Table 3.2, and for element arrays in Table 3.3. The names of
all active arrays in any analysis may be obtained using the SHOW,DICTionary
execution command.

The subprograms PALLOC and UALLOC may also be used to destroy a
previously de�ned array. This is achieved when the length of the array is
speci�ed as zero (0). For example, to destroy the arrays de�ned as TEMP1

and TEMP2 the statements

setvar = palloc(111, 'TEMP1', 0, ipr)

setvar = palloc(112, 'TEMP2', 0, 1)

CHAPTER 3. ALLOCATING ARRAYS 11

NAME Num. dim 1 dim 2 dim 3 Description
ANGL 46 nen - - Angle
LD 35 nst - - Assembly nos.
P 35 nst - - Element vector
S 36 nst nst - Element matrix
TL 39 nen - - Temperature
UL 41 ndf nen 6 Solution array
XL 44 ndm nen - Coordinates

Table 3.3: Element Array Names, Numbers and Sizes

are given. Use of these statements results in the pointers np(111) and
np(112) being set to zero and the space in the blank common released. If
any arrays have been allocated subsequent to de�ning TEMP1 and TEMP2 their
values are moved up in the blank common and their pointers are rede�ned.

A call to PALLOC or UALLOC for any previously de�ned array but with a
di�erent non-zero length causes the size of the array to be either increased
or decreased. Note that an array will not have its size decreased unless it
di�ers by more than the value speci�ed for the variable INCRD in the main
program module FEAP63.

For user de�ned arrays speci�ed in UALLOC care should be exercised in
selecting the alphanumeric NAME parameter, which is limited to 5 characters,
so that con
icts are not created with existing names (use of the SHOW,DICT
command is one way to investigate names of arrays used in an analysis) or
check the names already contained in the subprogram PALLOC.

The subroutine PGETD also may be used to retrieve internal data arrays
by NAME for use in user developed modules. For example, if a development
requires the nodal coordinate data the call

integer xpoint, xlen, xpre

logical flag

....

call pgetd ('X ',xpoint,xlen,xpre,flag)

will return the �rst word address in blank common for the coordinates as
xpoint, the length of the array as xlen, and the precision of the array as
xpre. If the retrieval is successful flag is returned as true, whereas if the

CHAPTER 3. ALLOCATING ARRAYS 12

array is not found it is false. The precision will be either one (1) or two (2)
for single or double precision (real*8) quantities, respectively. Thus, the
above coordinate call will return xpre as 2 and xlen will be the product of
the space dimension of the mesh and the total number of nodes in the mesh.
The �rst coordinate, x1, may be given as

x1 = hr(xpoint)

The use of pgetd can lead to errors for situations in which the length of
arrays changes during execution, since in these cases the value of the pointer
xpoint can change. For such cases a call to pgetd must be made prior to
each reference involving xpoint. On the other hand, reference using the
pointers de�ned in arrays NP or UP are adjusted each time an array changes
size. However, users must ensure that a calling sequence is not sensitive to a
change in pointer. One way pointer changes can still lead to errors is through
a program

call subname (hr(np(111)), mr(np(112)),)

and then change the length of the array number 111 or 112 in the subroutine.

Chapter 4

USER FUNCTIONS

Users may add their own procedures to facilitate additional mesh input fea-
tures, to add new solution commands, or to add new plot capabilities.

4.1 User Mesh Input Functions.

To add a mesh input command a subprogram with the name UMESHn, where
n has a value between 0 and 9 must be written, compiled, and linked with
the program. The basic structure of the routine UMESH1 is:

subroutine umesh1(uprt)

c User defined routine to input mesh data to FEAP

implicit none

logical uprt

include 'umac1.h' ! Contains UCT variable

c Set name 'mes1' to user defined

if(pcomp(uct,'mes1',4)) then

uct = 'xxxx' ! Set user defined command name

else

13

CHAPTER 4. USER FUNCTIONS 14

c User execution function statements follow

end if

end

The parameter UPRT is a logical parameter which is set to false when the
NOPRint mesh command is given and to true when the PRINt command is
used (default is true). The common block UMAC1 transfers the character
variable UCT for the name of the command. The default names are MESn

where n is the same as the routine name number. Assignment of a unique
character name (which must not con
ict with names already assigned for
mesh input commands) should be used to replace the xxxx shown.

When FEAP begins execution it scans all of the UMESHn routines and
replaces the command names mes1, etc., by the user furnished names. Thus,
when the command HELP is issued while in interactive MESH mode, the user
name will appear in the list instead of the default name (note, FEAP does
not always display all available commands. To see all commands issue the
command MANUal,3 and then the HELP command).

The ability to get array names as shown in Chapter 3 can be used to
develop user routines for input of coordinates, element connections, etc. With
this facility it is possible to develop an ability to directly input data prepared
by other programs which may be in a format which is not compatible with
the requirements of standard FEAP mesh commands.

4.2 User Solution Command Functions.

In a similar manner, users may add solution commands to the program by
adding a routine with the name UMACRn where n ranges from 0 to 9.

subroutine umacr0(lct,ctl,uprt)

c User macro statement function

implicit none

logical uprt

character lct*15

CHAPTER 4. USER FUNCTIONS 15

real*8 ctl(3)

include 'umac1.h' ! Contains the variable UCT

c Set command word

if(pcomp(uct,'mac0',4)) then

uct = 'xxxx'

else

c User command statements are placed here

endif

end

The parameters LCT and CTL are used to pass the second word of a solution
command and the three parameter values read, respectively. Again the name
xxxx should be selected to not con
ict with existing solution command names
and will appear whenever HELP is issued instead of the default value of mac0.

Chapter 5

ADDING ELEMENTS

FEAP permits users to add their own element modules to the program by
writing a single subprogram called

subroutine elmtnn(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

where nn may have values between 01 and 50. Each element subprogram
must be added before loading the FEAP library since dummy subprograms
are included in the library to avoid unsatis�ed externals. The basic structure
for an element routine is shown in Figures 5.1 and 5.2.

Information is provided to the element subprogram through data passed
as arguments and data passed in common blocks. The data passed as ar-
guments consists of eleven (11) items which are brie
y described in Table
5.11. Some of the options for additional data passed through common blocks
is shown in Figure 5.3. Also, in Figure 5.4 the reference to common blocks
using include statements is shown. In the prototype routine the number of
nodes on an element (nen) which is used to dimension ul is passed in the
labeled common /cdata/. Additional discussion is given below on use of
some of the other data passed through the common blocks.

Each element can carry out tasks according the value of the task param-
eter isw. A list of currently available tasks is shown in Table 5.2. It is not
necessary that all options be coded. However, to use the features available

1Note in Table 5.1 that FEAP transfers the values for most of the solution parameters
at time tn+a, where a denotes a value between 0 and 1. The value of a is 1 (i.e., values
are reported for time tn+1) unless generalized midpoint integration methods are used. For
the present we will assume a is 1.

16

CHAPTER 5. ADDING ELEMENTS 17

subroutine elmtnn(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

c Prototype FEAP Element Routine: nn = 01 to 50

implicit none

c Common blocks: See Figure 5.2.

integer ndf,ndm,nst,isw

integer ix(nen1,1)

real*8 d(*),ul(ndf,*),xl(ndm,*),tl(*),s(nst,nst),r(nst)

if(isw.eq.0 .and. ior.lt.0) then

c Output element description

write(*,*) ' Elmt 1: Element description'

elseif(isw.eq.1) then

c Input/output of property data after command: 'mate'

c d(*) stores information for each material set

c Return: nh1 = number of nh1/nh2 words/element

c Return: nh3 = number of nh3 words/element

elseif(isw.eq.2) then

c Check element for errors. Negative jacobian, etc.

Figure 5.1: FEAP Element Subprogram. Part 1

CHAPTER 5. ADDING ELEMENTS 18

elseif(isw.eq.3) then

c Return: Element coefficient matrix and residual

c s(nst,nst) element coefficient matrix

c r(ndf,nen) element residual

c hr(nh1) history data base: previous time step

c hr(nh2) history data base: current time step

c hr(nh3) history data base: time independent

elseif(isw.eq.4) then

c Output element quantities (e.g., stresses)

elseif(isw.eq.5) then

c Return: Element mass matrix

c s(nst,nst) consistent matrix

c r(ndf,nen) diagonal matrix

elseif(isw.eq.6) then

c Compute residual only

c r(ndf,nen) element residual

elseif(isw.eq.7) then

c Return: Surface loading for element

c s(nst,nst) coefficient matrix

c r(ndf,nst) nodal forces

elseif(isw.eq.8) then

c Compute stress projections to nodes (diagonal)

c hr(np) projection weight: wt(numnp)

c hr(np+numnp) projection values: vl(numnp,8)

c (default: project 8 quantities)

endif

end

Figure 5.2: FEAP Element Subprogram. Part 2

CHAPTER 5. ADDING ELEMENTS 19

Parameter Description
d(*) Element data parameters

(Moduli, body loads, etc.)
ul(ndf,nen,j) Element nodal solution parameters

nen is number of nodes on an element (max)

j = 1: Displacement u
(k)
n+a

j = 2: Increment u
(k)
n+a � un

j = 3: Increment u
(k)
n+1 � u

(k�1)
n+1

j = 4: Rate v
(k)
n+a

j = 5: Rate a(k)n+a

j = 6: Rate vn
xl(ndf,nen) Element nodal reference coordinates
ix(nen) Element global node numbers
tl(nen) Element nodal temperature values
s(nst,nst) Element matrix (e.g., sti�ness, mass)
r(ndf,nen) Element vector (e.g., residual, mass)

may also be used as r(nst)
ndf Number unknowns (max) per node
ndm Space dimension of mesh
nst Size of element arrays S and R

N.B. Normally nst = ndf*nen
isw Task parameter to control computation

See prototype element in Figure 5.1

Table 5.1: Arguments of FEAP Element Subprogram

CHAPTER 5. ADDING ELEMENTS 20

character*4 o,head

common /bdata/ o,head(20)

integer numnp,numel,nummat,nen,neq,ipr

common /cdata/ numnp,numel,nummat,nen,neq,ipr

real*8 dm

integer n,ma,mct,iel,nel

common /eldata/ dm,n,ma,mct,iel,nel

real*8 bpr, ctan

common /eltran/ bpr(3),ctan(3)

integer nh1,nh2,nh3

common /hdata/ nh1,nh2,nh3

integer ior,iow

common /iofile/ ior,iow

integer nph

real*8 erav

common /prstrs/ nph,ner,erav

real*8 hr

common hr(1000)

Figure 5.3: FEAP Element Common Blocks

CHAPTER 5. ADDING ELEMENTS 21

include 'bdata.h'

include 'cdata.h'

include 'eldata.h'

include 'eltran.h'

include 'hdata.h'

include 'iofile.h'

include 'prstrs.h'

include 'blkcom.h'

Figure 5.4: FEAP Element Common Blocks using Includes

in FEAP it is necessary to program at least the tasks 0 to 6, 8, and 10. If
elements have variables which need to be saved between time steps history
variables may be de�ned as described in Section 5.x and tasks 12 and 14
may be necessary. Finally, if special plotting options are desired it may be
necessary to program task 20 (note that contours for element variables such
as stress, strain, etc. are developed from task 8).

5.1 Non-linear Transient Solution Forms

Before describing the steps in developing an element we summarize �rst the
basic structure of the algorithms employed by FEAP to solve problems. Each
problem to be solved using an ELMTnn routine is established in a standard
�nite element form as described in standard references (e.g., The Finite El-

ement Method, 4th ed., by O.C. Zienkiewicz and R.L. Taylor, McGraw-Hill,
London, 1989 (vol 1), 1991 (vol 2)). Here it is assumed this step leads to a
set of non-linear ordinary di�erential equations expressed in terms of nodal
displacements, velocities, and accelerations given by ui(t), _ui(t), and �ui(t),
respectively. We denote the di�erential equation for node-i as the residual
equation:

Ri(ui(t); _ui(t); �ui(t); t) = 0

To solve for the nodal displacements,velocities and accelerations it is nec-
essary to introduce an algorithm to integrate the nodal quantities in time,
specify a constitutive relation, and develop an algorithm to solve a (possibly)
non-linear problem.

In FEAP, the integration method for nodal quantities is taken as a one

CHAPTER 5. ADDING ELEMENTS 22

Task Description Access Command
0 Output label SHOW,ELEM

1 Input d(*) parameters Mesh:MATE,n
2 Check elements Soln:CHECk
3 Compute tangent/residual Soln:TANG

Store in S/r UTAN

4 Output element variables Soln:STRE
5 Compute cons/lump mass Soln:MASS

Store in S/r MASS,LUMP

6 Compute residual Soln:FORM,REAC
Plot:REAC

7 Surface load/tangents Mesh:SLOAd
8 Nodal projections Soln:STRE,NODE

Plot:STRE,PSTR
9 Damping Soln:DAMP
10 Augmented Lagrangian update Soln:AUGM
11 Error estimator Soln:ERRO
12 History update Soln:TIME
13 Energy/momentum Soln:TPLO,ENER
14 Initialize history BATCh,INTEr
15 Body force Mesh:BODY
16 { {
17 Set after activation Soln:ACTI
18 Set after deactivation Soln:DEAC
19 { {
20 Element plotting Plot:PELM

Table 5.2: Task Options for FEAP Element Subprogram

CHAPTER 5. ADDING ELEMENTS 23

step algorithm with each quantity de�ned only at discrete times tn. Accord-
ingly, we have displacements ui(tn) with velocities and accelerations denoted
as

_ui(tn) � vi(tn)

and
�ui(tn) � ai(tn)

A typical example for an integration algorithm for these discrete quantities
is Newmark's method where

ui(tn+1) = ui(tn) + �tvi(tn) + �t2 [(
1

2
� �) ai(tn) + � ai(tn+1)]

and
vi(tn+1) = vi(tn) + �t [(1 �
) ai(tn) +
 ai(tn+1)]

with u, v, and a being the set of displacements, velocities, and accelerations
at node-i, respectively.

A Newton method is commonly adopted to solve a non-linear (or linear)
problem. To implement a Newton method it is necessary to linearize the
residual equation. For FEAP, the Newton equation may be written as

R
(k+1)
i = R

(k)
i +

@Ri

@�j

j(k) d�
(k)
j = 0

where �j is one of the variables at time tn+1 (e.g., uj(tn+1)). We de�ne

S
(k)
ij = �

@Ri

@�j

j(k)

and solve
S
(k)
ij d�

(k)
j = R

(k)
i

The solution is updated using

�
(k+1)
j = �

(k)
j + d�

(k)
j

In the above (k) is the iteration number for the Newton algorithm. To start
the solution for each step, FEAP sets

�
(0)
j (tn+1) = �j(tn)

CHAPTER 5. ADDING ELEMENTS 24

where a quantity without the (k) superscript represents a converged value.
For a linear problem, Newton's method converges in one iteration. Com-
puting the residual after one iteration must yield a zero value to within the
roundo� of the computer used. For non-linear problems, a properly imple-
mented Newton's method must exhibit a quadratic asymptotic rate of con-

vergence. Failure of the above performance for linear and non-linear cases
implies a programming error in an implementation or lack of a consistently
linearized algorithm (i.e., Sij is not an exact derivative of the residual).

In a non-linear problem, Newmark's method may be parameterized in
terms of increments of displacement, velocity, or acceleration. From the
Newmark formulas, the relations

dui = ��t2 dai

and
dvi =
�t dai

de�ne the relationships between the increments. Note that only scalar mul-
tipliers involving �,
, and �t are involved between the di�erent measures.

The tangent matrix for the transient problem using Newmark's method
may be expressed in terms of the incremental displacement, velocity, or accel-
eration. As an example, consider the case where the solution is parameterized
in terms of increments of the displacements (i.e., �j is the displacement vec-
tor uj). For this case, the tangent matrix is (we do not show dependence on
the iteration (k) for simplicity of notation)

Sij duj = �
@Ri

@uj

duj �
@Ri

@vk

@vk

@uj

duj �
@Ri

@ak

@ak

@uj

duj

Note that from the Newmark formulas

@ak

@uj

=
1

��t2
�kj ;

@vk

@uj

=
@vk

@al

@al

@uj

=

��t
�kj

in which �kj is the Kronnecker delta identity matrix for the k,j nodal pair .
From the residual we observe that

Kij = �
@Ri

@uj

; Cij = �
@Ri

@vj

; Mij = �
@Ri

@aj

de�ne the tangent sti�ness, damping, and mass, respectively. Thus, for the
Newmark algorithm the total tangent matrix in terms of the incremental

CHAPTER 5. ADDING ELEMENTS 25

displacements is

Sij = Kij +

��t
Cij +

1

��t2
Mij

For other choices of increments, the tangent may be written in the general
form

Sij = c1Kij + c2Cij + c3Mij

where the ci are scalar quantities involving the integration parameters of the
method selected and �t. Thus, any one step integrator may be considered
and will a�ect only the speci�cation of the constants in the tangent.

In FEAP the element tangent matrix, Sij, is stored as a two dimensional
array which is dimensioned as s(nst,nst), where nst is the product of ndf
and nen, with ndf the maximum number of degree-of-freedoms at any node

in the problem and nen the maximum number of nodes on any element. The
ordering of the unknowns into nst must be carefully aligned in order for
FEAP to properly assemble each element matrix into the global tangent.
The ordering is such that sub-matrices are de�ned for each node attached to
the element. Thus

S =

2
664
S11 S12 S13 ��
S21 S22 S23 ��
S31 S32 S33 ��
�� �� �� ��

3
775

where Sij is the sub-matrix for nodal pairs i; j. Each of the sub-matrices is
a square matrix of the size of the maximum number of degree-of-freedoms in
the problem which is passed to the subprogram as ndf. Thus,

Sij =

2
664
S
ij
11 S

ij
12 S

ij
13 ��

S
ij
21 S

ij
22 S

ij
23 ��

S
ij
31 S

ij
32 S

ij
33 ��

�� �� �� S
ij
ndf;ndf

3
775

in which Sij
ab is an array coe�cient for nodal pair i; j for the degree-of-freedom

pair a; b.
In FEAP, the element residual may be stored as one dimensional array

which is dimensioned r(nst) with entries stored in the same order as the
rows of the element tangent matrix or as a two dimensional array which is

CHAPTER 5. ADDING ELEMENTS 26

dimensioned as r(ndf,nen). The one dimensional form of the residual is
given as

R =

2
6664
R1

R2

R3
...

3
7775

where the entries in each submatrix are given as

Ri =

2
666664

Ri
1

Ri
2

Ri
3
...

Ri
ndf

3
777775

The two dimensional form places the entries Ri as columns. Accordingly,

R =
�
R1 R2 R3 � � �

�

The two forms for de�ning the residual r are equivalent based on the Fortran
ordering of information into double subscript arrays.

If ndf is larger than needed for the element and residual the unused
positions need not be de�ned (the tangent array s and the residual r are set
to zero before each element routine is called).

The arrays xl(i,j), ul(i,j,1), ul(i,j,4) and ul(i,j,5) (described in
Table 5.1) are used to obtain the nodal coordinates, displacements,velocities
and accelerations, respectively. When FEAP solves a problem without tran-
sient loading (e.g., inertial loading as mass times acceleration) the velocities
and accelerations are set to zero prior to calling the element subroutine.
Consequently, in programming the steps to compute the residual r the in-
ertia terms have no e�ect for static or quasi-static problems and may be
included (generally there are very few additional operations involved to add
these terms). The programming of the tangent array, however, must dis-
tinguish between cases in which transient (e.g., inertial) loads are present
and those in which they are omitted. The di�erent cases are implemented in
FEAP by making appropriate assignments to the ci parameters. To facilitate
the programming of the tangent array returned in s for the various cases,
a parameter array ctan(3) is passed to the subprogram in labeled common

CHAPTER 5. ADDING ELEMENTS 27

Parameter Description
ctan(1) c1: Multiplier of s matrix for ul(i,j,1) terms

(e.g., sti�ness matrix multiplier)
ctan(2) c2: Multiplier of s matrix for ul(i,j,4) terms

(e.g., damping matrix multiplier)
ctan(3) c3: Multiplier of s matrix for ul(i,j,5) terms

(e.g., damping matrix multiplier)

Table 5.3: Tangent Parameters

eltran. When the task parameter isw is 3, the values in the ctan array are
interpreted according to Table 5.3.

Thus, in solid mechanics applications the tangent matrix is de�ned in an
element routine as

S = ctan(1)K + ctan(2)C + ctan(3)M

where K is the sti�ness matrix, C is the damping matrix, andM is the mass
matrix. For non-linear applications these matrices normally are computed
with respect to the current values of the available solution parameters. The
values provided in the ctan array are set by FEAP according to the active
transient solution option. For a static option both ctan(2) and ctan(3)

are zero. For options integrating �rst order di�erential equations in time
only ctan(3) will be zero. For options integrating second order di�erential
equations in time all the parameters are non-zero.

5.2 Example: 2-Node Truss Element

An element routine carries out tasks according to the value assigned to the
parameter isw as indicated in Table 5.2 To describe basic steps to program
the various tasks de�ned by isw, we consider next the problem of a 2-node,
linear elastic truss element for small deformation applications. The element
is described in su�cient generality to permit solution of both two and three
dimensional truss problems.

CHAPTER 5. ADDING ELEMENTS 28

5.2.1 Theory for a Truss

The governing equations for a typical truss member element, shown in Figure
5.5, are the balance of momentum equation:

@(A�ss)

@s
+ Abs = �A �us

the strain-displacement equation for small deformations:

�ss =
@us

@s

and a constitutive equation. For example, considering a linear elastic material
the constitutive equation may be written as

�ss = E �ss

Boundary and initial conditions must also be speci�ed to obtain a well posed
problem; however, our emphasis here is the derivation of the element arrays
associated with the above di�erential equations. In the above:

� s is the coordinate along the truss member axis,

� bs is a loading in direction s per unit length,

� A is the truss cross-section area,

� � is the mass density per unit volume,

� us is a displacement in direction s,

� _vs is an acceleration in direction s (v = _u),

� �ss is a strain along the truss member axis, and

� �ss is the stress on a truss cross section.

The equations may also be deduced from the variational equation

�� =

Z
L

��ss �ssAds +
dX

i=1

Z
L

�ui �A _vi ds �
dX

i=1

Z
L

�ui bi ds + ��ext

��ext contains the boundary and loading terms not associated with an ele-
ment. Where, in addition to previously de�ned quantities, we de�ne:

CHAPTER 5. ADDING ELEMENTS 29

1

2

x

x

x

1

2

3

u

u

u

u

u

u

1

1

1

2

2

2

2

2

3

1

3

1

Figure 5.5: 2-Node Truss Element

� d is the spatial dimension of the truss (1, 2, or 3),

� xi are the Cartesian coordinates in the d directions.

� L is the length of the truss member,

� �ui is a virtual displacement in direction xi,

� _vi is an acceleration in direction xi (v = _u),

� bi is a loading in direction xi per unit length, and

� ��ss is a virtual strain along the truss axis.

For a straight truss member the displacement along the axis, us may be
expressed in terms of the components in the directions xi as

us = l � u(s ; t) =
dX

i=1

li ui(s ; t)

where t is time, u is the displacement vector with components ui, l is a unix
vector along the axis of the member with direction cosines li de�ned by

li =
@xi

@s
=

xi2 � xi1

L

CHAPTER 5. ADDING ELEMENTS 30

L2 =
dX

i=1

(xi2 � xi1)
2

and xi1, xi2 are the coordinates of nodes 1 and 2, respectively. The displace-
ment components are interpolated on the 2-node truss member as

ui(s ; t) = (1 � �) ui1(t) + � ui2(t) ; � =
s

L

in which ui1, ui2 are the displacements at nodes 1 and 2. The virtual dis-
placements are obtained from the above by replacing ui by �ui, etc. The
truss strain is

�ss =
@us

@s
=

dX
i=1

li
@ui

@s

Using the interpolations for the displacement components yields

�ss =
1

L2

dX
i=1

�xi�ui

where
�xi = xi2 � xi1 = li L

and
�ui = ui2 � ui1

Thus, in matrix form the strain is

�ss =
1

L2

dX
i=1

�
��xi �xi

� �ui1

ui2

�

Using the above displacement interpolations, the variational equation for
the truss may be expressed in matrix form as

�� =
�
�ui1 �ui2

��Z
L

1

L2

�
��xi
�xi

�
�ssAds+

Z
L

�
1� �

�

�
�A

�
1� � �

�
ds

�
�ui1

�ui2

�

�

Z
L

�
1� �

�

�
bids

�
+ ��ext

CHAPTER 5. ADDING ELEMENTS 31

FEAP constructs the �nite element arrays from the element residuals which
are obtained from the negative of the terms multiplying the nodal displace-
ments. Accordingly,

Ri =

�
Ri1

Ri2

�
=

Z
L

�
1 � �

�

�
bi ds

�

Z
L

1

L2

�
��xi
�xi

�
�ssAds �

Z
L

�
1 � �

�

�
�A

�
1 � � �

�
ds

�
�ui1

�ui2

�

is the residual for the i-coordinate direction. For constant properties and
loading over an element length (note that for this case the stress will also
be constant since strains are constant on the element), the above may be
integrated to yield

Ri =

�
Ri1

Ri2

�
=

1

2
bi L

�
1
1

�
�

�ssA

L

�
��xi
�xi

�
�

�AL

6

�
2 1
1 2

� �
�ui1

�ui2

�
(5.1)

For the present we assume the material model is a linear elastic in which
the stress is related to strain through

�ss = E �ss

where E is the Young's modulus.
Based on a linear elastic material, the term in the residual involving �ss

may be written as

�ssA

L

�
��xi
�xi

�
=

E A

L3

�
��xi
�xi

� dX
j=1

�
��xj �xj

� �uj1

uj2

�

For the linear elastic material, a sti�ness matrix may be expressed as

Kij =
E A

L3

�
��xi
�xi

� �
��xj �xj

�
=

�
kij �kij
�kij kij

�

where

kij =
E A

L3
�xi�xj

CHAPTER 5. ADDING ELEMENTS 32

The residual may now be written using a sti�ness and mass matrix as

Ri =

�
Ri1

Ri2

�
=

1

2
bi L

�
1
1

�
�

dX
j=1

�
kij �kij
�kij kij

� �
uj1

uj2

�
�

�
m11 m12

m21 m22

� �
�ui1

�ui2

�

(5.2)

with

m11 = m22 =
�AL

3
; m12 = m21 =

�AL

6

For non-linear material behavior the residual must be computed using Equa-
tion 5.1 with the stress replaced by the value computed from the constitutive
equation.

The integration method for nodal quantities is taken as Newmark's method
described in Section 5.1. The residual and tangent matrix for a Newton type
method are now available and may be inserted into R and S after noting
that for the truss that the damping matrix C is zero. The residual may be
programmed directly from Equation 5.1 and an implementation using the
two dimensional form r(ndf,nen) is shown in Figure 5.6.

Similarly, using the results from Section 5.1, the tangent matrix for the
truss may be programmed as indicated in Figures 5.7 and 5.8.

5.3 Additional Options in Elements

FEAP permits some additional options to be included within element tasks.

5.3.1 Task 1 Options

Often it is necessary to use several element types to perform an analysis.
For example it may be necessary to use both truss and frame (bending re-
sistant) elements to perform an analysis. As developed in Section 5.2, the
truss element has one degree of freedom for each spatial dimension, whereas,
the frame element must have additional unknowns to represent the bending
behavior. For nodes connected only to truss elements it is not necessary to
have the additional degrees-of-freedom active and a user would be required
to specify restraint conditions for these nodes and degrees-of-freedom. By in-
serting the following lines of code into the truss element routine for the isw =

1 task FEAP will automatically eliminate any unneeded degrees-of-freedom.

CHAPTER 5. ADDING ELEMENTS 33

if(isw.eq.3 .or. isw.eq.6) then

c Compute element length

L2= 0.0d0

do i = 1,ndm

L2 = L2 + (xl(i,2) - xl(i,1))**2

end do

L = sqrt(L2)

c Compute strain-displacement matrix

Lr = 1.d0/L2

eps = 0.0d0

do i = 1,ndm

bb(i,1) = -(xl(i,2) - xl(i,1))*Lr

bb(i,2) = -bb(i,1)

eps = eps + bb(i,2)*(ul(i,2,1) - ul(i,1,1))

end do

c Compute mass terms

cmd = rhoA*L/3.0d0

cmo = cmd*0.5d0

c Form body/inertia force vector (dm = prop. ld.)

sigA = EA*eps*L

body = 0.5d0*L*dm

do i = 1,ndm

r(i,1) = body*d(6+i) - bb(i,1)*sigA

& - cmd*ul(i,1,5) - cmo*ul(i,2,5)

r(i,2) = body*d(6+i) - bb(i,2)*sigA

& - cmo*ul(i,1,5) - cmd*ul(i,2,5)

end do

Figure 5.6: Element residual for two node truss

CHAPTER 5. ADDING ELEMENTS 34

if(isw.eq.3) then

c Compute element length

L2= 0.0d0

do i = 1,ndm

L2 = L2 + (xl(i,2) - xl(i,1))**2

end do

L = sqrt(L2)

c Form stiffness multiplier

dd = ctan(1)*EA*L

c Compute strain-displacement matrix

Lr = 1.d0/L2

do i = 1,ndm

bb(i,1) = -(xl(i,2) - xl(i,1))*Lr

bb(i,2) = -bb(i,1)

db(i,1) = dd*bb(i,1)

db(i,2) = -db(i,1)

end do

Figure 5.7: Truss Tangent Matrix. Part 1

CHAPTER 5. ADDING ELEMENTS 35

c Compute stiffness terms (N.B. ndm < or = ndf)

i1 = 0

do ii = 1,2

j1 = 0

do jj = 1,2

do i = 1,ndm

do j = 1,ndm

s(i+i1,j+j1) = db(i,ii)*bb(j,jj)

end do

end do

j1 = j1 + ndf

end do

i1 = i1 + ndf

end do

c Compute mass terms and correct for inertial effects

cmd = ctan(3)*rhoA*L/3.0d0

cmo = cmd*0.5d0

do i = 1,ndm

j = i + ndf

s(i,i) = s(i,i) + cmd

s(i,j) = s(i,j) + cmo

s(j,i) = s(j,i) + cmo

s(j,j) = s(j,j) + cmd

end do

endif

Figure 5.8: Truss Tangent Matrix. Part 2

CHAPTER 5. ADDING ELEMENTS 36

Routine Name Description
PLTLN2 2-node line element
PLTRI3 3-node triangular element
PLQUD4 4-node quadrilateral element
PLTRI6 6-node triangular element
PLTET4 4-node tetrahedron element
PLBRK8 8-node brick element

Table 5.4: Element Plot De�nition Subprograms

do i = ndm+1,ndf

ix(i) = 0

end do ! i

Note that for isw = 1 the ix parameter is not used to pass the nodal con-
nection array but is used to return the list of unused degrees-of-freedom.

Utility routines are also provided to assist users in providing the necessary
list of nodes needed to properly draw the mesh each element type during plot
outputs. The names of the routines are listed in Table 5.4 and each routine
is called as

call plname (iel)

where iel is an integer parameter de�ned in common eldata. If no call
to a subprogram is included each element is assumed to be a 4 to 9 node
quadrilateral and default drawing order will be assigned. Users may construct
their own drawing order also by following the steps employed in one of the
routines de�ned in Table 5.4.

5.3.2 Task 3 Options

The TPLOt solution command includes an option to save speci�c element
quantities (e.g., stress,strain, etc.). This option is implemented for user ele-
ments by including the common

real*8 tt

common /elplot/ tt(100)

CHAPTER 5. ADDING ELEMENTS 37

and then inserting the statement

tt(i) = value

at an appropriate location in the isw = 3 task.
For example if it were desired to save the force and strain in the truss

element the statements

tt(1) = EA*eps ! Element axial force

tt(2) = eps ! Element axial strain

could be placed anywhere after the stress and strain are de�ned. These values
would be output by using a solution command sequence such as

batch

tplot

end

stress,nn,1 ! saves force for element nn

stress,nn,2 ! saves strain for element nn

show ! writes tplot items to output file

5.4 Elements with History Variables

FEAP provides options for each element to manage variables which must be
saved during the solution. These are history variables and are separated into
three groups: (a) Variables associated with the last converged solution time
tn; (b) Variables associated with the current solution time tn+1; and variables
which are not associated to any particular time. All history variables are
associated with the allocation name H which has a pointer value 49. Users are
not permitted direct access to the data stored as H (of course, it is possible to
access from hr(np(49)) but this should not normally be attempted!). Before
calling the element routine for each element, FEAP transfers the required
history variable to a local storage for each type. Users may then access the
history data for each element and if necessary update values and return them
FEAP. Only for speci�c actions will the local history data be transferred back
to the appropriate H locations. The element history data associated with tn
starts at the pointer value of NH1 for the double precision array HR in the
blank common; similarly data for tn+1 starts at pointer value of NH2, and
that not associated with a time at NH3. The three pointers are passed to
each element routine in the labeled common

CHAPTER 5. ADDING ELEMENTS 38

integer nh1,nh2,nh3

common /hdata/ nh1,nh2,nh3

5.4.1 Assigning amount of storage for each element

The speci�cation for the amount of history information to be associated with
each material set is controlled in the isw = 1 task of an element routine. For
each material type speci�ed within the element routine a value for the length
of the NH1 and the NH3 data must be provided (the amount of NH2 data will
be the same as for NH1). This is accomplished by setting the variables nh1
and nh2 in common hdata (see above) to the required values. That is, the
statements required are:

if(isw .eq. 1) then

. . .

nh1 = 6

nh3 = 10

. . .

reserves 6 words of NH1 and NH2 data and 10 words of NH3 data for each
element with the current material number. Care should be taken to minimize
the number of history variables since, for very large problems, the memory
requirements can become large, thus reducing the size of problem that FEAP
can solve.

5.4.2 Accessing history data for each element

As noted above the data for each element is contained in arrays whose �rst
word in the blank is located at hr(nh1), hr(nh2), and hr(nh3) for the tn,
tn+1, and that not associated with time, respectively (note that there are
values for each only if the nh1 or nh3 were set during the isw = 1 task. Any
other allocated data follows immediately after each �rst word It is a users
responsibility to manage what is retained in each variable type; however, the
order of placing the tn and tn+1 data into the NH1 and NH2 arrays should be
identical. There are no provisions to store integer history variables separately
from double precision quantities. It is necessary to cast the integer data as
double precision and move to the history location. For example, using the
statement

CHAPTER 5. ADDING ELEMENTS 39

hr(nh3+5) = dble(ivarbl)

saves the value for the integer variable ivarbl in the sixth word of the NH3

element history array. At a subsequent iteration for this element the value
of the integer would be recovered as

ivarbl = int(hr(nh3+5))

While this wastes storage for integer variables, experience indicates there
is little need to save many integer quantities and, thus, it was not deemed
necessary to provide for integer history variables separately.

Although users may de�ne new values for any of the hr(nh1), hr(nh1),
or hr(nh1) types the new quantities will only be returned to the H history
for the element for isw tasks where residuals are being formed for a solution
step (i.e., solution command FORM, TANG,,1, or UTAN,,1 and for history
reinitialization during a time update (i.e., solution command, TIME). These
access the task options isw equal to 3 or 6 and 14, respectively.

If a user adds a new option for which it is desired to save the history
variables, it is necessary to set the variables hflgu and h3flgu to true as
required, if no update is wanted the variables should be set to false. These
parameters are located in

logical hflgu,h3flgu

common /hdatam/ hflgu,h3flgu

5.5 Energy Computation

FEAP elements provide an option to accumulate the total momenta and en-
ergy during the solution process. The values are accumulated in the array
EPL(20) when the switch parameter isw is 13 and written to a �le named
Pxxxx.ene (where xxxx is extracted from the problem input �lename) when-
ever the solution command TIME is used. The array EPL(2) is in the com-
mon block named ptdat6 which has the structure:

real*8 epl

integer iepl, neplts

common /ptdat6/ epl(20),iepl(2,20),neplts

CHAPTER 5. ADDING ELEMENTS 40

Component Description
EPL(1) - EPL(3) Linear momenta
EPL(4) - EPL(7) Angular momenta
EPL(8) Kinetic energy
EPL(9) Stored energy
EPL(10) Work by external loads

Table 5.5: Momenta and Energy Assignments

For problems in solid mechanics the linear momenta are stored as follows:
The linear momenta are computed as:

p =

Z

� v d

the angular momenta as:

pi =

Z

(I ! + x � p) d

the kinetic energy

K =

Z

� v � v d

the stored energy as

U =

Z

W (C) d

and the work by external loads as

V =

Z
�

(x�X) � Fext d�

The value of the displacement and velocity at the current time tn+1 are
passed in ul(i,j,1) and ul(i,j,4), respectively. Note that this is true no
matter which time integration algorithm is speci�ed.

CHAPTER 5. ADDING ELEMENTS 41

5.6 A Non-linear Theory for a Truss

A simple non-linear theory for a two or three dimensional truss which may
undergo large displacements for which the strains remain small may be de-
veloped by de�ning the axial strain approximation in each member as

�ss =
@us

@s
+

1

2

d�1X
j=1

�
@unj

@s

�2

where unj is a displacement component normal to the axis of the member.
The virtual strain from a linearization of the strain is given as

��ss =
@�us

@s
+

d�1X
j=1

�
@�unj

@s

� �
@unj

@s

�

An algorithm to de�ne the two orthogonal unit vectors which are normal to
the member may be constructed by taking

v = ek

where k is a direction for which a minimum value of the direction cosine li
exists (for a 2-dimensional problem de�ned in the x1, x2 plane v may be
taken as e3). Now,

n1 =
v � l

j v � l j

and

n2 = l� n1

Using these vectors the two normal components of the displacement are given
by

unj(s ; t) = nj � u(s ; t) =
dX

i=1

nji ui(s ; t)

and the derivative by

@unj

@s
=

dX
i=1

nji

@ui

@s

CHAPTER 5. ADDING ELEMENTS 42

Collecting terms and combining with previously de�ned quantities the
virtual strain may be written as

��ss =
@�u

@s
�
�
g
�

where

g = l +
d�1X
j=1

@unj

@s
nj

After di�erentiation of the displacement �eld the discrete form of the
virtual strain is given by

��ss =
1

L

�
�u1 �u2

�
�

�
� g

g

�

Substituting the above virtual strain expression into the weak form gives
the modi�ed residual expression

Ri =
1

2
bi L

�
1
1

�
� �ssA

�
� gi
gi

�
� �A

L

6

�
2 1
1 2

� �
�ui1

�ui2

�
(5.3)

The tangent tensor is obtained by linearizing the residual as shown pre-
viously. The only part which is di�erent is the term with �ss. Noting that

d�ss =
�
g
�
�
@du

@s

and

d ��ss =
@�u

@s
� (n1
 n1 + n2
 n2) �

@du

@s

If the ni are constructed as column vectors then the tensor product becomes
a matrix de�ned as

G = n1
 n1 + n2
 n2 = n1 n
T
1 + n2 n

T
2

With these de�nitions, the tangent matrix for the non-linear problem is given
as

Kij =
EA

L

�
� gi
gi

� �
� gj gj

�
+

�ssA

L2

�
Gij � Gij

� Gij Gij

�

CHAPTER 5. ADDING ELEMENTS 43

Notice that for the linear problem

gi =
�xi
L

thus, the only di�erence between the linear and non-linear problem is the
de�nition of �ss in terms of displacements, the modi�cation for geometric ef-
fects for the gi and the second term on the tangent matrix which is sometimes
called the geometric sti�ness part.

