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Abstract

This article describes the detailed steps in formulating the dynamic equation of a four-bar
mechanism in the minimal coordinate form using Lagrangian formulation. It is well-known that a
four-bar mechanism possesses one degree-of-freedom (d.o.f.), and, hence, ideally a single dynamic
equation is sufficient to completely describe the dynamics of the closed system. However, using
only single coordinate to parameterize the entire system when constructing the dynamic equation
tends to be a very tedious process, hence extra number of generalized coordinates are often
introduced in order to simplify the modeling process. In this article, we show the systematic
process of using the extra number of generalized coordinates to parameterize the configuration
of the closed system, and reducing the required coordinates to only one when formulating the
dynamic equations in this case.

1 Introduction

We first define the notations and configurations of the four-bar mechanism under consideration.
Referring to Figure 1, the four-bar mechanism consists of three moving links (input, coupler,
and output links) of lengths l1, l2, and l3, respectively, whose orientation with respect to the
horizontal are denoted by the absolute angles of µ, ® and Á. The ground, measuring from point
O to O′, has the length of l0. For i = 1, 2, 3, the masses of each moving link li is mi, and
the moment of inertia of the moving links about the axis through the center of the mass and
perpendicular to the plane of its motion is Ii. The mass centers of each link are situated at a
distance lci from the proximal joint of each link.

The purpose is to derive the Lagrangian of the system by first using all the generalized
coordinates (µ, ® and Á) and eliminate the surplus variables (® and Á) during the process of
position and velocity analysis. By doing so, the Lagrangian can then be completely expressed
in terms of µ only, and hence the equation of motion can be completely parameterized by this
(single) minimal coordinate.

2 Kinematic analysis

We here present the position and velocity analysis of the four-bar mechanism.

2.1 Position analysis

In position analysis, we begin by writing down the loop-closure equation of the four-bar mech-
anism as:

−l1 cos µ − l2 cos®+ l0 + l3 cosÁ = 0 (1)

−l1 sin µ − l2 sin®+ l3 sinÁ = 0 (2)
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Figure 1: Planar four-bar mechanism under consideration

where Eq. (1) and Eq. (2) are the loop closure constraints in the x and y coordinates, respec-
tively. In this article, we express ® and Á in terms of µ, so first rearrange the above equations
into the following form to eliminate ®:

l2 cos® = l0 − l1 cos µ + l3 cosÁ (3)

l2 sin® = −l1 sin µ + l3 sinÁ (4)

The sum of the squares of Eq. (3) and Eq. (4) yields:

k1(µ) sinÁ+ k2(µ) cosÁ+ k3(µ) = 0 (5)

where, ki (i = 1, 2, 3) are functions of µ, and

k1(µ) = −2l1l3 sin µ

k2(µ) = 2l3(l0 − l1 cos µ)

k3(µ) = l20 + l21 − l22 + l23 − 2l0l1 cos µ

Eq. (5) is the well-known Freudenstein equation, which can be solved in closed form. This allows
us to determine Á in terms of µ. To solve Eq. (5), define:

t = tan
Á

2
(6)

and correspondingly,

sinÁ =
2t

1 + t2
(7)

cosÁ =
1− t2

1 + t2
(8)

Substitute the above into Eq.(5) yields a quadratic equation in terms of t of:

(k3 − k2)t
2 + (2k1)t+ (k3 + k2) = 0 (9)

We then arrive at the solution of:

t =
−k1 ±

√
k21 + k22 − k23

k3 − k2
(10)
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Substituting Eq.(6) into Eq.(10), yields:

Á(µ) = 2 ⋅ arctan 2(−k1 ±
√
k21 + k22 − k23, k3 − k2) (11)

Dividing Eq.(4) by Eq.(3), we can then arrive at:

®(µ, Á) = arctan 2(−l1 sin µ + l3 sinÁ, l0 − l1 cos µ + l3 cosÁ) (12)

At this stage, we express ® and Á completely in terms of µ.

2.2 Velocity analysis

In velocity analysis, differentiating the loop-closure constraints in Eqs. (1) and (2) with respect
to time and expressing them in matrix form yield:

[
l1 sin µ l2 sin® −l3 sinÁ
−l1 cos µ −l2 cos® l3 cosÁ

]

︸ ︷︷ ︸
A

⎡
⎣

µ̇
®̇

Á̇

⎤
⎦ =

[
0
0

]
(13)

Since we choose µ as the independent variable, we arrange Eq. (13) into the following:

[
l2 sin® −l3 sinÁ
−l2 cos® l3 cosÁ

] [
®̇

Á̇

]
=

[ −l1 sin µ
l1 cos µ

]
µ̇ (14)

and obtain: [
®̇

Á̇

]
=

[
S1(µ, ®, Á)
S2(µ, ®, Á)

]
µ̇ (15)

where S =

[
S1(µ, ®, Á)
S2(µ, ®, Á)

]
is the nullspace of matrix A and

S1(µ, ®, Á) =
∂®
∂µ = l1 sin(Á−µ)

l2 sin(®−Á) (16)

S2(µ, ®, Á) =
∂Á
∂µ = l1 sin(®−µ)

l3 sin(®−Á) (17)

Equation (15) can then be used to determine the velocities ®̇ and Á̇ in terms of µ̇. The operator
S acts like a filter to maintain the feasible velocities of ®̇ and Á̇ such that the constraint in
Eq. (13) is not violated.

3 Lagrangian formulation

In Lagrangian formulation, the Lagrangian of the entire system is defined by the total kinetic
energy minus the total potential energy. We first determine the total kinetic energy of the
system as:

T =
1

2

(
m1∥vc1∥2 + I1µ̇

2
)

︸ ︷︷ ︸
T1

+
1

2

(
m2∥vc2∥2 + I2®̇

2
)

︸ ︷︷ ︸
T2

+
1

2

(
m3∥vc3∥2 + I3Á̇

2
)

︸ ︷︷ ︸
T3

(18)

where

∥vc1∥2 = l2c1µ̇
2

∥vc2∥2 = l21µ̇
2 + l2c2®̇

2 + 2l1lc2 cos(µ − ®)µ̇®̇

∥vc3∥2 = l2c3Á̇
2
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and Ti corresponding to the kinetic energy of link i. We then determine the potential energy of
the system as:

V = m1gyc1︸ ︷︷ ︸
V1

+m2gyc2︸ ︷︷ ︸
V2

+m3gyc3︸ ︷︷ ︸
V3

(19)

where g is the gravitational acceleration, and

yc1 = lc1 sin µ

yc2 = l1 sin µ + lc2 sin®

yc3 = lc3 sinÁ

Finally, the Lagrangian of the entire system is given by:

ℒ = T − V (20)

After some mathematical manipulation, we obtain the following Lagrangian expression:

ℒ(µ, ®, Á, µ̇, ®̇, Á̇) = J1µ̇
2 + J2®̇

2 + J3Á̇
2 + P1C1(µ, ®)µ̇®̇+G(µ, ®, Á) (21)

where

J1 =
1

2
(m1l

2
c1 + I1 +m2l

2
1)

J2 =
1

2
(m2l

2
c2 + I2)

J3 =
1

2
(m3l

2
c3 + I3)

P1 = m2l1lc2

C1(µ, ®) = cos(µ − ®)

G(µ, ®, Á) = (−m1glc1 −m2gl1) sin µ −m2glc2 sin®−m3glc3 sinÁ

At this point, we eliminate the velocity terms of ®̇ and Á̇ from Eq. (21) by using the linear
relationship in Eq. (15), and get:

ℒ(µ, ®, Á, µ̇, ®̇, Á̇) = [
J1 + J2S

2
1(µ, ®, Á) + J3S

2
2(µ, ®, Á) + P1C1(µ, ®)S1(µ, ®, Á)

]
µ̇2 +G(µ, ®, Á)

(22)
Although ® and Á are still remain in the equation, they can be expressed in terms of µ and the
Lagrangian is considered completely written in terms of µ.

4 Equation of motion

After constructing the expression of Lagrangian, we can determine the equation of motion of
the entire system by:

d

dt

(
∂ℒ
∂µ̇

)
− ∂ℒ

∂µ
= ¿ext (23)

We first determine:

∂ℒ
∂µ̇

= 2
[
J1 + J2S

2
1(µ, ®, Á) + J3S

2
2(µ, ®, Á) + P1C1(µ, ®)S1(µ, ®, Á)

]
µ̇ (24)
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Then,

d

dt

(∂ℒ
∂µ̇

)
= 2

[
J1 + J2S

2
1(µ, ®, Á) + J3S

2
2(µ, ®, Á) + P1C1(µ, ®)S1(µ, ®, Á)

]
µ̈

+ 2

[
2J2S1(µ, ®, Á)

(∂S1(µ, ®, Á)

∂µ
+

∂S1(µ, ®, Á)

∂®

∂®

∂µ
+

∂S1(µ, ®, Á)

∂Á

∂Á

∂µ

)
+

2J3S2(µ, ®, Á)
(∂S2(µ, ®, Á)

∂µ
+

∂S2(µ, ®, Á)

∂®

∂®

∂µ
+

∂S2(µ, ®, Á)

∂Á

∂Á

∂µ

)
+

P1

(
C1(µ, ®)

(∂S1(µ, ®, Á)

∂µ
+

∂S1(µ, ®, Á)

∂®

∂®

∂µ
+

∂S1(µ, ®, Á)

∂Á

∂Á

∂µ

)

+ S1(µ, ®, Á)
(∂C1(µ, ®)

∂µ
+

∂C1(µ, ®)

∂®

∂®

∂µ

))]
µ̇2 (25)

Also,

∂ℒ
∂µ

=

[
2J2S1(µ, ®, Á)

(∂S1(µ, ®, Á)

∂µ
+

∂S1(µ, ®, Á)

∂®

∂®

∂µ
+

∂S1(µ, ®, Á)

∂Á

∂Á

∂µ

)
+

2J3S2(µ, ®, Á)
(∂S2(µ, ®, Á)

∂µ
+

∂S2(µ, ®, Á)

∂®

∂®

∂µ
+

∂S2(µ, ®, Á)

∂Á

∂Á

∂µ

)
+

P1

(
C1(µ, ®)

(∂S1(µ, ®, Á)

∂µ
+

∂S1(µ, ®, Á)

∂®

∂®

∂µ
+

∂S1(µ, ®, Á)

∂Á

∂Á

∂µ

)

+ S1(µ, ®, Á)
(∂C1(µ, ®)

∂µ
+

∂C1(µ, ®)

∂®

∂®

∂µ

))]
µ̇2

+
∂G(µ, ®, Á)

∂µ
+

∂G(µ, ®, Á)

∂®

∂®

∂µ
+

∂G(µ, ®, Á)

∂Á

∂Á

∂µ
(26)

The full dynamic equation can then be written as:

2
[
J1 + J2S

2
1 + J3S

2
2 + P1C1S1

]
µ̈

+

[
2J2S1

(∂S1

∂µ
+ S1

∂S1

∂®
+ S2

∂S1

∂Á

)
+ 2J3S2

(∂S2

∂µ
+ S1

∂S2

∂®
+ S2

∂S2

∂Á

)

+ P1

(
C1

(∂S1

∂µ
+ S1

∂S1

∂®
+ S2

∂S1

∂Á

)
+ S1

(∂C1

∂µ
+ S1

∂C1

∂®

))]
µ̇

− ∂G

∂µ
− S1

∂G

∂®
− S2

∂G

∂Á
= ¿µ (27)

Or, in a compact form, it can be written as:

M(µ)µ̈ + V (µ, µ̇) = ¿µ (28)
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Table 1: Relevant numerical parameters for the four-bar linkage under consideration (given by
Wang et al. [1])

Link Lengths (m) l0 = 3.0, l1 = 1.0, l2 = 4.0, l3 = 2.5

Distance of mass centers (m) lci = li/2, i = 1, 2, 3

Link masses (kg) mi = 1.0, i = 1, 2, 3

Moment of inertias (kgm2) Ii = mil
2
i /12, i = 1, 2, 3

Initial configuration (rad) µ(0) = 1.5708, ®(0) = 0.3533, Á(0) = 1.2649

Initial velocity (rad/s) µ̇(0) = ®̇(0) = Á̇(0) = 0

Torque input (N-m) ¿µ = 6.0, ¿® = ¿Á = 0.0

Gravitational acceleration (m2/s) g = 9.8

where ¿µ is the torque applied at the joint µ, and the terms M(µ) and V (µ, µ̇) are defined
accordingly in Eq. (27), and

∂S1

∂µ
= − l1 cos(Á− µ)

l2 sin(®− Á)

∂S1

∂®
= − l1 sin(Á− µ) cos(®− Á)

l2 sin
2(®− Á)

∂S1

∂Á
= −2

l1 sin(®− µ)

−l2 + l2 cos(2®− 2Á)

∂S2

∂µ
= − l1 cos(®− µ)

l3 sin(®− Á)

∂S2

∂®
= 2

l1 sin(Á− µ)

−l3 + l3 cos(2®− 2Á)

∂S2

∂Á
=

l1 sin(®− µ) cos(®− Á)

l3 sin
2(®− Á)

∂C1

∂µ
= sin(®− µ)

∂C1

∂®
= − sin(®− µ)

∂G

∂µ
= −(m1lc1 +m2l1)g cos µ

∂G

∂®
= −m2glc2 cos®

∂G

∂Á
= −m3glc3 cosÁ

5 Forward Dynamics Simulation

We perform a simple example of forward dynamic problem using the equation of motion derived
in the previous section. The numerical parameters for the four-bar mechanism under considera-
tion are listed in Table 1, which is taken from Wang et al. [1]. In the forward dynamic problem,
an input torque profile (¿µ in this case) is actuating the system, and the task is to compute the
complete system configuration due to this input. Specifically in this case, we apply a constant
torque of ¿µ = 6.0 N-m at the joint µ.

The mechanism system is simulated using the Real-Time Windows Target1 in MATLAB/

1Real-Time Windows Target is a product by MathWorks
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Figure 2: The time evolution of the three angles (µ, ®, and Á) for the dynamics of the four-bar
mechanism under consideration in 10 s

Simulink. The fixed time-step solver of ODE5 scheme (Dormand-Prince) is employed to integrate
the equation of motion. Specifically, we use a fixed time-step of 1e-4 s and simulate the system
for a 10s duration, and the position-level time-histories of the three-joints are then plotted in
Figure 2. We see that the constant torque input causes acceleration within the system which is
reflected in the graphs.

6 Conclusion

In conclusion, we performed the position and velocity analysis for a simple four-bar mechanism
problem. Since the system has only 1 d.o.f., we show that the dynamic of the system can be
completely parameterized by only one coordinates (in this case, the input angle µ.) Finally, a
simple forward dynamic simulation was performed in the real-time setting for completeness.
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