6. DIFUSÃO DE QUANTIDADE DE MOVIMENTO LINEAR (QML) 1Dp

6.1 Modelo Matemático

A partir das equações de Navier-Stokes, considerando-se:

- escoamento unidimensional (1D)
- regime permanente (p)
- coordenadas cilíndricas
- escoamento plenamente desenvolvido em um duto circular (fig. 6.1) obtém-se

$$\frac{1}{r}\frac{d}{dr}\left(\mu r\frac{du}{dr}\right) = \frac{dp}{dx} = C$$
(6.1)

onde:

u = componente da velocidade \vec{V} na direção x (m/s)

- r = direção coordenada radial [raio] (m)
- μ = viscosidade absoluta do fluido, função de r (Pa.s)
- p = pressão estática do fluido (Pa)
- C = constante (Pa/m)

Figura 6.2: Esquema do problema físico

As condições de contorno são dadas por (fig. 6.2):

- Dirichlet (velocidade conhecida) em r = R:

$$u(\mathbf{R}) = 0$$
 (condição de não escorregamento) (6.2)

- Neumann (derivada conhecida) em r = 0:

$$\left(\frac{\mathrm{du}}{\mathrm{dr}}\right)_{r=0} = 0$$
 (condição de contorno de simetria) (6.3)

onde R é o raio do duto.

6.2 Variáveis de Interesse

- a) u(r), obtido da solução das eqs.(6.1) a (6.3)
- b) umax = valor máximo de u, que ocorre em r = 0
- c) Vazão que escoa no duto, definida por

$$Q = \int_{A} u dA = 2\pi \int_{0}^{R} u r dr$$
(6.4)

d) Força viscosa do fluido sobre o duto, definida por

$$F = \left(A\tau\right)_{r=R} = -2\pi RL \left[\mu\left(\frac{du}{dr}\right)\right]_{r=R}$$
(6.5)

onde A é a área, τ é a tensão, e L é o comprimento do duto.

6.3 Discretização da Equação Diferencial

Integrando-se a eq. (6.1) sobre o volume de controle P da fig.6.3, obtém-se

$$\int_{r_{w}}^{r_{e}} \left[\frac{1}{r} \frac{d}{dr} \left(\mu r \frac{du}{dr} \right) \right] dr = \int_{r_{w}}^{r_{e}} C dr$$
(6.6)

Com a variável f e multiplicando-se a eq. (6.6) por r, obtém-se

$$\int_{r_{w}}^{r_{e}} df = C \int_{r_{w}}^{r_{e}} r dr$$
(6.7)

onde

$$f = \mu r \frac{du}{dr}$$
(6.8)

Figura 6.3: Malha 1D não uniforme de nós centrados entre faces

A eq.(6.7) resulta em

$$f_{e} - f_{w} = C \frac{\left(r_{e}^{2} - r_{w}^{2}\right)}{2} = C\left(r_{e} - r_{w}\right) \frac{\left(r_{e} + r_{w}\right)}{2} = C\Delta r_{p} r_{p}$$
(6.9)

A integração analítica de $\int r dr e igual à numérica.$

Com a eq.(6.8) na eq. (6.9), chega-se a

$$\left(\mu r \frac{du}{dr}\right)_{e} - \left(\mu r \frac{du}{dr}\right)_{w} = C\Delta r_{P}r_{P}$$
(6.10)

- $\mu_e\,\,e\,\,\mu_w\,$ podem ser obtidos diretamente da função dada $\,\mu(r)\,com\,r_w\,e\,r_e$.

- r_w , r_e , $\Delta r_P e r_P$ são obtidos da malha gerada.

- As duas derivadas podem ser aproximadas com o esquema CDS-2 (fig. 2.3), resultando em

$$\left(\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{r}}\right)_{\mathrm{w}} \approx \frac{\left(\mathbf{u}_{\mathrm{P}} - \mathbf{u}_{\mathrm{W}}\right)}{\Delta \mathbf{r}_{\mathrm{w}}} \tag{6.11}$$

$$\left(\frac{\mathrm{du}}{\mathrm{dr}}\right)_{\mathrm{e}} \approx \frac{\left(\mathrm{u}_{\mathrm{E}} - \mathrm{u}_{\mathrm{P}}\right)}{\Delta \mathrm{r}_{\mathrm{e}}} \tag{6.12}$$

Com as eqs. (6.11) e (6.12) em (6.10), chega-se a

$$\mu_{e}r_{e}\frac{\left(u_{E}-u_{P}\right)}{\Delta r_{e}}-\mu_{w}r_{w}\frac{\left(u_{P}-u_{W}\right)}{\Delta r_{w}}=C\Delta r_{P}r_{P}$$
(6.13)

que na forma do sistema de equações

$$a_{p}u_{p} = a_{w}u_{W} + a_{e}u_{E} + b_{p}$$
 (6.14)

resulta em

 $coeficientes \begin{cases} a_{w} = \frac{\mu_{w} r_{w}}{\Delta r_{w}} \\ a_{e} = \frac{\mu_{e} r_{e}}{\Delta r_{e}} \\ a_{p} = a_{w} + a_{e} \end{cases}$ volumes reais P = 1 a N (6.15) termo fonte $\left\{ b_{p} = -C \Delta r_{p} r_{p} \right\}$

6.4 Aplicação das Condições de Contorno (C.C.)

A condição de contorno em r = R, dada pela eq.(6.2), pode ser aplicada com o VC fictício P = N+1 da fig. 2.5, isto é,

$$\frac{\left(u_{\rm P}+u_{\rm W}\right)}{2} = u(R) = 0$$

$$u_{\rm P} = -u_{\rm W}$$
(6.16)

ou

que, comparada à eq.(6.14), resulta em

$$a_{\rm P} = 1; \ a_{\rm w} = -1; \ a_{\rm e} = b_{\rm P} = 0 \qquad (P = N + 1)$$
 (6.17)

A C.C. em r = 0, dada pela eq.(6.3), pode ser aplicada com o VC fictício P = 0 da fig. 2.4, da seguinte forma, com CDS-2:

$$\left(\frac{\mathrm{d}u}{\mathrm{d}r}\right)_{\mathrm{r}=0} \approx \frac{\left(u_{\mathrm{E}} - u_{\mathrm{P}}\right)}{\Delta r_{\mathrm{P}}} = 0$$

ou

$$\mathbf{u}_{\mathrm{P}} = \mathbf{u}_{\mathrm{E}} \tag{6.18}$$

que, comparada à eq.(6.14), resulta em

$$a_{\rm P} = a_{\rm e} = 1; \ a_{\rm w} = b_{\rm P} = 0 \qquad ({\rm P} = 0)$$
 (6.19)

6.5 Obtenção das Variáveis Secundárias

 u_{max} pode ser obtido com a aproximação DDS-2 (downstream differencing scheme de 2^a ordem) para a eq.(6.3), resultando em

$$u_{\text{max}} = \frac{\left[(1+\lambda)^2 u_{\text{P}} - u_{\text{E}} \right]}{(2+\lambda)\lambda} \qquad (P=1)$$
(6.20)

onde

$$\lambda = 2 \frac{\Delta \mathbf{r}_{\rm e}}{\Delta \mathbf{r}_{\rm p}} \qquad (\mathbf{P} = 1) \tag{6.21}$$

Q pode ser obtido com a integração pela regra do retângulo na eq.(6.4), resultando em

$$Q = 2\pi \sum_{P=1}^{N} \left(u_{P} r_{P} \Delta r_{P} \right)$$
(6.22)

Com a aproximação dada pela eq.(6.12) na eq.(6.5), obtém-se

$$F = -2\pi RL\mu_{r=R} \frac{\left(u_{E} - u_{P}\right)}{\Delta r_{P}} \qquad (P = N)$$
(6.23)

6.6 Algoritmo

Os passos lógicos (algoritmo) para se resolver numericamente o problema definido pelas eqs.(6.1) a (6.5) são:

- 1) Ler os dados: R, C, L, N, Δr_P (P = 1 a N), função $\mu(r)$
- 2) Calcular r_e , r_w , Δr_w , Δr_e , Δr_P e r_P para todos os VC
- 3) Calcular $\mu_w e \mu_e$ com a função dada no item 1
- 4) Calcular os coeficientes e termos fontes com as eqs.(6.15),(6.17) e (6.19)

- 5) Resolver o sistema de equações (6.14) com o método TDMA, obtendo u_P para P = 0 a N+1
- 6) Calcular u_{max} , Q e F
- 7) Imprimir e visualizar os resultados

6.7 Difusão de QML 2Dp

Para um escoamento laminar tridimensional, plenamente desenvolvido, em regime permanente, fluido incompressível, propriedades constantes, num duto de seção transversal do tipo retangular, Fig. 4.5, tem-se (White, 1991)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \frac{dp}{dz} = \text{ constante} = C$$
(6.24)

onde

z = direção longitudinal do duto (m)

- μ = viscosidade absoluta do fluido (constante) (Pa.s)
- p = pressão estática do fluido (Pa)
- u = velocidade do fluido na direção z (nas direções x e y as componentes da velocidade são nulas) (m/s)

Figura 6.4: Escoamento 2D num duto retangular

 $O \text{ domínio de cálculo } \acute{e} \quad -a \leq x \leq a \quad e \quad -b \leq y \leq b.$

As condições de contorno são do tipo Dirichlet em todos os 4 contornos. Isto é, aplica-se a condição de não escorregamento nas quatro paredes do duto, ou seja:

$$u(-a,y) = u(a,y) = u(x,-b) = u(x,b) = 0$$
 (6.25)

7

As variáveis de interesse são:

a) u, da eq. (6.25) (variável dependente e primária)

b) \overline{u} , velocidade média (variável secundária e global), definida por

$$\overline{u} = \frac{1}{4ab} \int_{-b}^{b} \int_{-a}^{a} u \, dx \, dy \tag{6.26}$$

6.7.1 Solução Analítica

A solução analítica das eqs. (6.24) a (6.26) é

$$u = -\frac{16 a^{2}}{\mu \pi^{3}} \left(\frac{dp}{dz}\right) \sum_{i=1,3,5,\dots}^{\infty} (-1)^{\frac{i-1}{2}} \left[1 - \frac{\cosh(i\pi y/2a)}{\cosh(i\pi b/2a)}\right] \left[\frac{\cos(i\pi x/2a)}{i^{3}}\right]$$
(6.27)

$$\overline{u} = -\frac{a^2}{3 \mu} \left(\frac{dp}{dz}\right) \left[1 - \frac{192 a}{\pi^5 b} \sum_{i=1,3,5,...}^{\infty} \frac{\tanh(i\pi b/2a)}{i^5} \right]$$
(6.28)

6.7.2 Solução Numérica

$$\int_{y_s}^{y_n} \int_{x_w}^{x_e} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) dx \, dy = \int_{y_s}^{y_n} \int_{x_w}^{x_e} \frac{1}{\frac{\mu}{C}} \frac{dp}{dz} \, dx \, dy$$
(6.29)

Para malha uniforme em cada direção, tem-se

$$\left[\left(\frac{\partial u}{\partial x}\right)_{e} - \left(\frac{\partial u}{\partial x}\right)_{w}\right] \Delta y + \left[\left(\frac{\partial u}{\partial y}\right)_{n} - \left(\frac{\partial u}{\partial y}\right)_{s}\right] \Delta x = \frac{1}{\underbrace{\mu}} \frac{dp}{dz} \Delta x \Delta y$$

Com CDS-2, obtém-se

$$\left[\frac{\mathbf{u}_{\mathrm{E}} - \mathbf{u}_{\mathrm{P}}}{\Delta x} - \frac{\mathbf{u}_{\mathrm{P}} - \mathbf{u}_{\mathrm{W}}}{\Delta x}\right] \Delta y + \left[\frac{\mathbf{u}_{\mathrm{N}} - \mathbf{u}_{\mathrm{P}}}{\Delta y} - \frac{\mathbf{u}_{\mathrm{P}} - \mathbf{u}_{\mathrm{S}}}{\Delta y}\right] \Delta x = \frac{1}{\underbrace{\mu}} \frac{\mathrm{d}p}{\mathrm{d}z} \Delta x \ \Delta y \quad \div \Delta x \Delta y$$

ou

$$\frac{\mathbf{u}_{\mathrm{E}} + \mathbf{u}_{\mathrm{W}} - 2\mathbf{u}_{\mathrm{P}}}{\Delta x^{2}} + \frac{\mathbf{u}_{\mathrm{N}} + \mathbf{u}_{\mathrm{S}} - 2\mathbf{u}_{\mathrm{P}}}{\Delta y^{2}} = \frac{1}{\underbrace{\frac{1}{\mu} \frac{\mathrm{d}p}{\mathrm{d}z}}_{\mathrm{C}}}$$

ou comparando-se com

$$a_{P}u_{P} = a_{W}u_{W} + a_{e}u_{E} + a_{s}u_{S} + a_{n}u_{N} + b_{P}$$
(6.30)

8

chega-se a

coeficientes:
$$\begin{cases} a_{w} = a_{e} = \frac{1}{\Delta x^{2}} \\ a_{s} = a_{n} = \frac{1}{\Delta y^{2}} \\ a_{P} = a_{w} + a_{e} + a_{s} + a_{n} \end{cases}$$
 (volumes reais) (6.31)
termo fonte: $b_{P} = -\frac{1}{\mu} \frac{dp}{dz} = -C$