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106 COMPUTING APPLICATIONS

HIGH RESOLUTION AEROSPACE 
APPLICATIONS USING THE NASA 
COLUMBIA SUPERCOMPUTER

Dimitri J. Mavriplis1

Michael J. Aftosmis2

Marsha Berger3

Abstract

This paper focuses on the parallel performance of two
high-performance aerodynamic simulation packages on
the newly installed NASA Columbia supercomputer. These
packages include both a high-fidelity, unstructured, Rey-
nolds-averaged Navier–Stokes solver, and a fully-auto-
mated inviscid flow package for cut-cell Cartesian grids. The
complementary combination of these two simulation codes
enables high-fidelity characterization of aerospace vehicle
design performance over the entire flight envelope through
extensive parametric analysis and detailed simulation of
critical regions of the flight envelope. Both packages are
industrial-level codes designed for complex geometry and
incorporate customized multigrid solution algorithms. The
performance of these codes on Columbia is examined
using both MPI and OpenMP and using both the NUMAlink
and InfiniBand interconnect fabrics. Numerical results
demonstrate good scalability on up to 2016 CPUs using the
NUMAlink4 interconnect, with measured computational
rates in the vicinity of 3 TFLOP/s, while InfiniBand showed
some performance degradation at high CPU counts, partic-
ularly with multigrid. Nonetheless, the results are encourag-
ing enough to indicate that larger test cases using combined
MPI/OpenMP communication should scale well on even
more processors.

Key words: NASA Columbia, SGI Altix, scalability, hybrid
programming, unstructured, computational fluid dynamics,
OpenMP
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1 Introduction

Computational fluid dynamics (CFD) techniques have
been developed and applied to aerospace analysis and
design problems since the advent of the supercomputer.
However, in spite of several decades of continuous improve-
ments in algorithms and hardware, and despite the wide-
spread acceptance and use of CFD as an indispensable tool
in the aerospace vehicle design process, computational
methods are still employed in a very limited fashion in the
design process. The full potential of these methods in
delivering more optimal designs and in accelerating the
design cycle has yet to be approached. Computational
methods for aerodynamic analysis are only reliable within
a narrow range of flight conditions, where no significant
flow separation occurs. This is due in part to the extreme
accuracy requirements of the aerodynamic design prob-
lem, where, for example, changes of less than 1% in the
drag coefficient of a flight vehicle can determine commer-
cial success or failure. Additionally, the physics of flight
aerodynamics is one which encompasses a wide range of
scales, from thin boundary layers in the millimeter range,
up to full aircraft length scales. As a result, computational
analyses are generally used in conjunction with experi-
mental methods and only over a restricted range of the
flight envelope, where they have been essentially cali-
brated. A recent series of workshops sponsored by the Amer-
ican Institute of Aeronautics and Astronautics (AIAA) has
determined that the accuracy achieved by CFD methods
for aerodynamic applications is substantially inferior to
that delivered by state-of-the-art wind-tunnel testing, and
improvements in accuracy will require, among various
items, substantially higher grid resolution than is generally
considered practical in the current environment (AIAA
2003).

While the analysis problem in itself is difficult, the
computational design problem, in which one is interested
in modifying the geometry in order to improve some
design objective of the vehicle, is much more formidable.
One the one hand, the number of design variables, which
are the degrees of freedom used to modify and define the
optimized geometry, can be extremely large in number
(10000 to 100000) and the sensitivity of the numerical
flow field to these design variables must be computed in
order to drive the optimization problem. On the other
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107NASA COLUMBIA SUPERCOMPUTER

hand, once a new “optimal” design has been constructed,
it must be validated throughout the entire flight envelope.
This includes not only the full range of aerodynamic flight
conditions, but also all possible control surface deflec-
tions and power settings. Generating this aero-performance
database not only provides all details of vehicle perform-
ance, but also opens up new possibilities for the engineer.
For example, when coupled with a six-degree-of-freedom
(6-DOF) integrator, the vehicle can be “flown” through
the database by guidance and control (G&C) system design-
ers to explore issues of stability and control, or G&C system
design (Murman, Aftosmis and Nemec 2004). Alterna-
tively, a complete unsteady simulation of a maneuvering
vehicle may be undertaken. Ultimately, the vehicle’s
suitability for various mission profiles or other trajecto-
ries can also be evaluated by full end-to-end mission sim-
ulations (Salas 2004).

Our approach to this seemingly intractable problem
relies on the use of a variable fidelity model, where a high
fidelity model which solves the Reynolds-averaged Navier–
Stokes equations (NSU3D) is used to perform the analy-
sis at the most important flight conditions, as well as to
drive a high-fidelity design optimization procedure, and a
lower fidelity model based on inviscid flow analysis on
adapted Cartesian meshes (Cart3D) is used to validate the
new design over a broad range of flight conditions, using an
automated parameter sweep database generation approach.
In addition to this variable fidelity approach, other ena-
bling factors include the use of custom developed state-
of-the-art optimal solution techniques and large scale par-
allel hardware. Both NSU3D and Cart3D employ multi-
grid methods, specially developed for each application,
which deliver convergence rates which are insensitive to
the number of degrees of freedom in the problem. Finally,
the use of state-of-the-art large-scale parallel hardware
enables improved accuracy in all phases of the process by
relying on high resolution meshes, generally employing
one or two orders of magnitude higher resolution than
current-day standard practices.

2 The NASA Columbia Supercomputer

Figure 1 shows a snapshot of NASA’s Columbia super-
computer located at Ames Research Center in Moffett
Field CA. This platform is a supercluster array of 20 SGI
Altix 3700 nodes. Each node has 512 Intel Itanium2 proc-
essors clocked at either 1.5 or 1.6GHz, and each CPU has
2Gb of local memory. Each processor supports up to four
memory-load operations per clock-cycle from L2 cache
to the floating-point registers, and is thus capable of
delivering up to 4 FLOPS per cycle to the user.

Of the 20 nodes in the system, Columbia 1–12 are Altix
3700 systems, while Columbia 13–20 are actually 3700BX2
architectures. Processor bricks in the 3700BX2’s are con-

nected using SGI’s proprietary NUMAlink4 interconnect
with a peak bandwidth rated at 6.4Gb/s. The work described
here was performed on four of these 3700BX2 nodes
(c17–c20). These 2048 CPUs are all clocked at 1.6GHz
and each has 9Mb of L3 cache. While the 1Tb of local
memory on each 512 CPU node of the Columbia system
is cache-coherent and globally shared, cache-coherency
is not maintained between nodes. As a result standard
OpenMP codes are currently limited to 512 CPUs.

The entire supercluster is connected using both Infini-
Band and 10Gigabit Ethernet (10 Gig-E) networks. The
InfiniBand provides low-latency routing among the nodes
for system-wide MPI communication, while the 10Gig-E
provides user access and I/O.

The large MPI simulations presented here exercised
both the NUMAlink and InfiniBand interconnects. While
the NUMAlink can directly support MPI on each of the
2048 processors in the “Vortex” system (c17–c20), the
same is not true of the InfiniBand connection fabric. As
discussed by Biswas et al. (2005), a limitation in the
number of MPI connections available to the InfiniBand
cards installed on each 512 node restricts the maximum
number of MPI processes per node to

(1)

where n (  2) is the number of Altix nodes, NIbcards = 8
per node and Nconnections = 64K per card. In practical terms,
this implies that a pure MPI code run on 4 nodes of
Columbia can have no more than 418 processes per node,

Fig. 1 The 10,240 processor Columbia Supercomputer
located at NASA Ames Research Center, Moffett Field
CA.

#MPIIB
NIBcards Nconnections×

n 1–
-----------------------------------------------≤
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108 COMPUTING APPLICATIONS

or 1672 for 4 nodes. Other resource constraints on the
Columbia InfiniBand setup reduce this number to 1524
MPI processes. If more MPI connections are attempted,
the system will give a warning message, and then drop
down to the 10Gig-E network for communication. Thus,
when using the InfiniBand network, hybrid style applica-
tions are required (e.g. use 2 OpenMP threads for each
MPI processes) when using large numbers of CPUs in
several boxes. This is an important point when consider-
ing runs on greater than 2048 CPUs. The NUMAlink
spans at most 4 boxes, and InfiniBand is the only high-
speed interconnect spanning the entire machine. As a
result, any plan to use more than 2048 CPUs requires the
use of InfiniBand, and therefore will demand hybrid
communication to scale to larger problem sizes.

3 High-Fidelity Analysis Model

Our high-fidelity model (the NSU3D code) solves the
Reynolds-averaged Navier–Stokes (RANS) equations on
unstructured hybrid meshes. This code has been under
development for over ten years (Mavriplis and Venka-
takrishnan 1996, 1997; Mavriplis and Pirzadeh 1999),
and is currently used in production mode in the aerody-
namic design departments of several aircraft manufactur-
ers. This solver has also been a participant in the two
recent drag prediction workshops (DPW), sponsored by
AIAA, where the predictive ability of various research,
production, and commercial CFD codes were evaluated
on standard aircraft configurations (AIAA 2003). By
solving the Navier–Stokes equations, NSU3D enables
the simulation of viscous flow effects, including bound-
ary layers and wakes, which are not included in the invis-
cid flow model used by Cart3D. The effects of turbulence
for steady-state analyses are incorporated through the
solution of a standard one-equation turbulence model
(Spalart and Allmaras 1994), which is solved in a cou-
pled manner along with the flow equations.

The use of unstructured meshes provides the required
flexibility for discretizing complex airframe geometries,
which may include deflected control surfaces, deployed
flaps for landing and take-off (Mavriplis and Pirzadeh
1999), and engine nacelle integration problems (AIAA
2003). While the solver can handle a variety of element
types, high-aspect-ratio prismatic elements are generally
used in regions close to the aircraft surfaces, where thin
boundary layers and wakes prevail, and isotropic tetrahe-
dral elements are used in outer regions, with pyramidal
elements used in transition regions. Because of the high
accuracy requirements of aircraft design (drag coefficient
values are usually required to 1 part in 10000: i.e. 1 drag
count), and because of the sensitivity of important flow
physics such as flow separation to the behavior of the
boundary layer, it is common practice in aerodynamic sim-

ulations to fully resolve the turbulent boundary layer right
down to the very small scale of the laminar sub-layer.
This is in contrast to many other CFD applications, where
a large part of the boundary layer is approximated using
“wall function” boundary conditions. For typical aerody-
namic Reynolds numbers (  5 million), fully resolving
the boundary layer requires the use of grid cells with a
normal height at the wall of 10–6 wing chords, where a
wing chord corresponds to the streamwise dimension of
the wing. In order for the aerodynamic simulation prob-
lem to remain tractable, anisotropic resolution must be
employed in boundary layer regions by using chordwise
and spanwise grid spacings which are several orders of
magnitude larger than the normal spacing, but neverthe-
less adequate for capturing the gradients in these respec-
tive directions (see detailed insert in Figure 13(a)).

While the added cost of computing the physical vis-
cous terms and solving the turbulence modeling equation
is relatively modest (25 to 50%), RANS simulations are
generally found to be 50 to 100 times more expensive for
equivalent accuracy in terms of overall computational
time compared to inviscid flow (Euler) simulations such
as Cart3D, due mainly to the added resolution required to
resolve the viscous regions, and the increased stiffness
associated with the highly anisotropic mesh resolution
employed in these regions (Mavriplis 1998). This makes
the use of RANS solvers difficult for rapidly populating
large databases within the context of a broad parameter
study. However, due to the more complete modeling of the
flow physics, RANS solvers are best suited for use in
highly accurate single point analyses, and in design optimi-
zation studies.

The NSU3D code employs a second-order accurate
discretization, where the unknowns are stored at the grid
points. The six degrees of freedom at each grid point con-
sist of the density, three-dimensional momentum vector,
energy, and turbulence variable. For the convective
terms, the discretization relies on a control volume for-
mulation, achieving second order-accuracy through an
extended neighbor-of-neighbors stencil, while the discrete
viscous terms are obtained using a nearest neighbor finite-
volume formulation (Mavriplis and Venkatakrishnan 1996).

Using the method of lines, these spatially discretized
equations are advanced in time until the steady-state is
obtained. Convergence is accelerated through the use of
an implicit agglomeration multigrid algorithm (Mavriplis
and Venkatakrishnan 1996; Mavriplis 1998). The idea of
a multigrid method is to accelerate the solution of a fine
grid problem by computing corrections using coarser grid
levels, where computation costs are lower, and errors
propagate more rapidly. For unstructured meshes, the
construction of a complete sequence of coarser mesh lev-
els, given an initial fine level, represents a non-trivial
task. The agglomeration multigrid approach constructs

≥
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109NASA COLUMBIA SUPERCOMPUTER

coarse grid levels by agglomerating or grouping together
neighboring fine grid control volumes, each of which is
associated with a grid point, as depicted in Figure 2(a).
This is accomplished through the use of a graph algo-
rithm, and the resulting merged control volumes on the
coarse level form a smaller set of larger more complex-
shaped control-volumes, as shown in Figure 2(b). This
procedure is applied recursively, in order to generate a
complete sequence of fine to coarse grid levels. Figure 3

illustrates the resulting coarse grid levels for a three-
dimensional aircraft configuration. In the flow solution
phase, each multigrid cycle begins with several time
steps on the finest level, after which the problem is trans-
fered to the next coarser level, and the process is repeated
recursively until the coarsest level of the sequence is
reached, at which point the corrections are interpolated
back to the finest level, and the process is repeated. The
simplest strategy consists of performing one or more

Fig. 2 Illustration of agglomeration process for coarse level construction in multigrid algorithm. Median dual con-
trol volumes are associated with grid points. (a) Agglomeration proceeds by identifying a seed point and merging all
neighboring control volume points with this seed point. (b) Resulting coarse level agglomerated control volumes are
larger and more irregular in shape.

Fig. 3 First (a) and third (b) agglomerated multigrid levels for unstructured grid over aircraft configuration.
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time steps on each grid level in the coarsening phase, and
no time steps on the refinement phase. This is denoted as
the multigrid V-cycle, and is depicted in Figure 4(a). An
alternate cycle, denoted as the multigrid W-cycle, is a
recursive procedure which performs additional visits to
the coarser mesh levels, as shown in Figure 4(b). The
multigrid W-cycle has been found to produce superior
convergence rates and to be more robust, and is thus used
exclusively in the NSU3D calculations.

Rather than performing simple explicit time steps on
each grid level within the multigrid sequence, the use of
local implicit solvers at each grid point provides a more
efficient solution mechanism. This mandates the inver-
sion of dense 6 × 6 block matrices at each grid point at
each iteration. However, in regions of high mesh stretch-
ing such as in the boundary layer regions, solution effi-
ciency degrades because of the stiffness induced by the
extreme grid anisotropy. This can be overcome be resort-
ing to an implicit line solver in such regions. Using a
graph algorithm, the edges of the mesh which connect
closely coupled grid points (usually in the normal direc-
tion) in boundary layer regions, are grouped together into
a set of non-intersecting lines. Figure 5 illustrates the con-
struction of the line set for a two-dimensional mesh with
appreciable stretching in near-wall and wake regions. The
discrete governing equations are then solved implicitly

along these lines, using a block tridiagonal LU-decompo-
sition algorithm for each line. In isotropic regions of the
mesh, the line structure reduces to a single point, and the
point-implicit scheme described above is recovered. This
line-implicit driven agglomeration multigrid algorithm
has been shown to produce convergence rates which are
both insensitive to the degree of mesh resolution, and to
the degree of mesh stretching (Mavriplis 1998).

The NSU3D code achieves parallelism through domain
decomposition. The adjacency graph of each fine and
coarse agglomerated grid level of the multigrid sequence
is fed to the METIS partitioner (Karypis and Kumar 1995)
which returns the partitioning information. Each grid
level is partitioned independently, and coarse and fine
grid partitions are then matched up together based on the
degree of overlap between the respective partitions, using
a non-optimal greedy-type algorithm. This approach may
result in more inter-processor communication when trans-
ferring variables between coarse and fine multigrid levels
than a fully nested approach – where the coarse level par-
titions are inferred from the fine level partitions. How-
ever, experiments indicate that it is more important to
optimize the intra-level partitioning process versus inter-
level partitioning, since the work required in transferring
variables between levels is minimal compared with the
work performed by the implicit solver within each level.

Fig. 4 (a) Illustration of multigrid V-cycle. T denotes time step on a particular grid level, R denotes restriction (fine
to coarse) transfer, and P denotes prolongation (coarse to fine) transfer. Grid 1 is the coarsest level and Grid 4
denotes the finest level in this depiction. (b) Illustration of the recursive nature of the multigrid W-cycle which per-
forms additional visits to the coarser grid levels. Restriction and prolongation operation symbols have been omitted
for clarity.
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For each partitioned level, the edges of the mesh which
straddle two adjacent processors are assigned to one of the
processors, and a “ghost vertex” is constructed in this proc-
essor, which corresponds to the vertex originally accessed
by the edge in the adjacent processor (c.f. Figure 6(a)).
During a residual evaluation, the fluxes are computed
along edges and accumulated to the vertices. The flux

contributions accumulated at the ghost vertices must then
be added to the flux contributions at their corresponding
physical vertex locations in order to obtain the complete
residual at these points. This phase incurs interprocessor
communication. In an explicit (or point implicit) scheme,
the updates at all points can then be computed without any
interprocessor communication once the residuals at all

Fig. 5 (a) Illustration of two-dimensional unstructured grid with high stretching in near body and wake regions and
(b) resulting set of lines used for implicit line solver.

Fig. 6 (a) Illustration of creation of internal edges and ghost points at inter-processor boundaries. (b) Illustration of
line edge contraction and creation of weighted graph for mesh partitioning. V and E values denote vertex and edge
weights respectively.
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points have been calculated. The newly updated values
are then communicated to the ghost points, and the proc-
ess is repeated.

The use of line solvers complicates the parallel imple-
mentation, since the block tridiagonal line solver is an
inherently sequential algorithm. The partitioning procedure
is thus modified to avoid breaking the implicit lines across
inter-partition boundaries. This is achieved by contract-
ing the adjacency graph along the implicit lines, effec-
tively collapsing each line to a single point in the graph
as shown in Figure 6(b). Using the appropriate vertex and
edge weights which result from the contraction process,
this new weighted graph is fed to the METIS partitioner,
resulting in a set of partitions which never breaks an implicit
line structure.

The NSU3D solver employs a hybrid MPI/OpenMP
approach for parallel execution. In general, each partition
is associated with an individual processor, and inter-
processor communication can be performed using MPI
alone, using OpenMP alone, or using a hybrid approach
where each MPI process is responsible for several parti-
tions/processors, which communicate among themselves
using OpenMP. For MPI-alone cases, communication is
executed by packing messages from all ghost points on a
given processor that are to be sent to another processor
into a buffer that is then sent as a single message. This
standard approach to inter-processor communication has
the effect of reducing latency overheads by creating fewer
larger messages.

For shared memory architectures using OpenMP, the
multiple partitions are run simultaneously using one
thread per partition, and parallelization is achieved at the
partition loop level. In such cases, a potentially more effi-
cient communication strategy is to simply copy (or copy-
add) the values from the individual ghost points into the
locations which correspond to their real images, since the
memory on different partitions is addressable from any
other partition.

For hybrid MPI/OpenMP cases, each MPI process is
responsible for various partitions, which are executed in
parallel using one OpenMP thread per partition. Commu-
nication between partitions shared under a single MPI
process proceeds as in the pure OpenMP case. In order to
communicate between partitions owned by different MPI
processes, two programming models have been consid-
ered. A communication strategy which can be executed
entirely in parallel consists of having individual threads
perform MPI calls to send and receive messages to and
from other threads living on other MPI processes, as illus-
trated in Figure 7(a). In this case, the MPI calls must spec-
ify the process identifier (id number) as well as the thread
id to which the message is being sent (or received). While
the specification of a process id is a standard procedure
within an MPI call, the specification of a thread id can be

implemented using the MPI send-recv tag (Gropp, Lusk
and Skjellum 1994). An alternate approach, illustrated in
Figure 7(b), consists of having all threads pack their mes-
sages destined for other threads of a particular remote
MPI process into a single buffer, and then having the MPI
process (i.e. the master thread alone) send and receive the
message using MPI. The received messages can then be
unpacked or scattered to the appropriate local sub-
domains. This packing and unpacking of messages can be
done in a thread-parallel fashion. However, the MPI sends
and receives are executed only by the master thread, and
these operations may become sequential bottlenecks since
all other threads remain idle during this phase. One way to
mitigate this effect is to overlap OpenMP and MPI com-
munication. Using non-blocking sends and receives, the
master thread first issues all the MPI receive calls, fol-
lowed by all the MPI send calls. After this, while the MPI
messages are in transit, the OpenMP communication rou-
tines are executed by all threads, after which, the master
thread waits until all MPI messages are received. Thread-
parallel unpacking of the MPI messages then proceeds as
usual. This approach also results in a smaller number of
larger messages being issued by the MPI routines, which
may be beneficial for reducing latency on the network
supporting the MPI calls. On the other hand, there is
always a (thread-) sequential portion of communication in
this approach, which may degrade performance depend-
ing on the degree of communication overlap achieved.

Previous experience has shown that the thread parallel
approach to communication scales poorly as a result of
the MPI calls “locking” and thus executing serially at the
thread level (Mavriplis 2000). Thus, the master thread
communication strategy is used exclusively in this work.

Within each partition, single-processor performance is
enhanced using local reordering techniques. For cache-
based scalar processors, such as the Intel Itanium on the
NASA Columbia machine, the grid data is reordered for
cache locality using a reverse Cuthill McKee type algo-
rithm. For vector processors, coloring algorithms are
used to enable vectorization of the basic loop over mesh
edges, which accumulate computed values to the grid
points. Because the line solver is inherently scalar, the
lines are sorted based on their length, and grouped into
sets of 64 lines of similar length, over which vectoriza-
tion may then take place at each stage in the line solver
algorithm. These techniques have been demonstrated on
the CRAY SV-1 and NEC SX-6.

4 Optimization and Parametric Studies 
for Performance Prediction

The outcome of design optimization is a modified vehi-
cle whose performance is known only at the design
points. Even with data from several additional cases as
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provided by NSU3D, this only provides a small portal
into understanding overall vehicle performance. Current
research into automated parametric studies is aimed at
broadening this snapshot of vehicle performance by rap-
idly producing the entire performance database for a new
design as delivered by the shape optimizer. These para-
metric studies consider not only a range of flight conditions,
but also include all possible control surface deflections
and power settings.

Large numbers of aerodynamic and shape parameters
can easily result in aero-performance databases with 104–
106 entries. Automatically computing this performance
envelope is the goal of NASA’s Cart3D analysis package
(Aftosmis, Berger and Melton 1998; Aftosmis, Berger and
Adomavicius 2000; Murman, Aftosmis and Nemec 2004).
This package permits parametric sweeps of not only flight
conditions (Mach number, angle-of-attack and sideslip), but

also deployment of control surfaces. The geometry comes
into the system as a set of watertight solids, either directly
from the optimizer or from a CAD system. These solids
are automatically triangulated and positioned for the desired
control surface deflections (Aftosmis, Berger and Melton
1998; Haimes and Aftosmis 2002; Murman et al. 2003).
With the new analysis model in-hand, the embedded-
boundary Cartesian method automatically produces a com-
putational mesh to support the CFD runs (Aftosmis, Berger
and Melton 1998; Murman, Aftosmis and Nemec 2004).

The parameter studies consider changes in both the
geometry (control surface deflection) and “wind parame-
ters” (Mach, angle-of-attack, sideslip). A typical analysis
may consider three “configuration-space” parameters (e.g.
aileron, elevator and rudder deflections) and examine
three “wind-space” parameters (Mach number, angle-of-
attack, and sideslip angle). In this six-dimensional para-

Fig. 7 (a) Illustration of thread to thread MPI communication for a two-level hybrid MPI-OpenMP implementation. (b)
Illustration of master–thread controlled MPI communication for a two-level hybrid MPI OpenMP implementation.
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metric space, ten values of each parameter would require
106 CFD simulations; 1000 wind-space cases for each of
the 1000 instances of the configuration in the config-
space. The job control scripts arrange the jobs hierarchi-
cally such that different instances of the geometry are at
the top level with wind parameters below. For a particu-
lar instance of the geometry, the jobs exploring variation
in the wind-space all run using the same mesh and geometry
files. This approaches amortizes the cost of preparing the
surface and meshing each instance of the geometry over
the hundreds or thousands of runs done on that particular
instance of the geometry. On Columbia’s Itanium2 CPUs
the Cartesian mesh generator (Aftosmis, Berger and Melton
1998) typically produces 3–5 million cells-per-minute,
and mesh sizes for realistically complex vehicles gener-
ally contain 3–10 million cells. Moreover, when multiple
instances of a configuration need to be produced (e.g. for
each of several elevator settings) these mesh generation jobs
are all executed in parallel (Murman, Aftosmis and Nemec
2004; Nemec, Aftosmis and Pulliam 2004). This archi-
tecture, combined with the underlying speed of the mesh
generation and geometry manipulation processes implies
that the speed of the flow solver is the primary driver in the
total cost of producing the aerodynamic database.

In typical database fills, hundreds or thousands of
cases need to be run. Under these circumstances, compu-
tational efficiency dictates running as many cases simul-
taneously as memory permits, and this strategy maps
well to the Columbia system. The 3–10 million cell cases
typically fit in memory on 32-128 CPUs, making it possi-
ble to run several cases simultaneously on each 512 CPU
node of the system. Such cases can be run using either
OpenMP or MPI communication.

5 Cart3D Flow Solver and Parallelization

Despite the “embarrassingly parallel” nature of database
fills, there is still a strong demand for the ability to run
extremely large cases, or individual cases extremely rap-
idly. Obviously when running 105 or 106 cases, there is
little demand to thoroughly peruse the results of each
simulation, and in general, the only data stored for these
cases are surface pressures, convergence histories and force
and moment coefficients. If, during review of the results,
the database shows unexpected results in a particular
region, those cases are typically re-run on-demand. The
ability to re-create the full solution extremely rapidly by
spreading the job to thousands of processors provides a
“virtual database” of the full solution data. In many
cases, it is actually faster to re-run a case than it would be
to retrieve it from mass storage. In addition to these on-
demand detailed queries, there is often a need to compute
a case on a much larger mesh than the relatively small
meshes used in database fills. This need may be triggered

by the desire to compare detailed flow structures with the
Navier–Stokes design code, or in performing mesh
refinement studies to establish meshing parameters or to
verify results. Thus there is great pressure for the same
solver to perform well on thousands of CPUs.

Cart3D is a simulation package targeted at conceptual
and preliminary design of aerospace vehicles with com-
plex geometry. It is in widespread use throughout NASA,
the DoD, the US intelligence industry and within dozens
of companies in the United States. The flow simulation
module solves the Euler equations governing inviscid flow
of a compressible fluid. Since these equations neglect the
viscous terms present in the full Navier–Stokes equa-
tions, boundary-layers, wakes and other viscous phenom-
ena are not present in the simulations. This simplification
removes much of the demand for extremely fine meshing
in the wall normal direction that Navier–Stokes solvers
must contend with. As a result, the meshes used in invis-
cid analysis are generally smaller and simpler to generate
than those required for viscous solvers like NSU3D. This
simplification is largely responsible for both the degree
of automation available within the Cart3D package and
the speed with which solutions can be obtained. Despite
this simplification, inviscid solutions have a large area of
applicability within aerospace vehicle design as there are
large classes of problems for which they produce excel-
lent results. Moreover, when significant viscous effects
are present, large numbers of inviscid solutions can often
be corrected using the results of a relatively few full
Navier–Stokes simulations.

Cart3D’s solver module uses a second-order cell-cen-
tered, finite-volume upwind spatial discretization com-
bined with a multigrid accelerated Runge–Kutta scheme for
advance to steady-state (Aftosmis, Berger and Adomavi-
cius 2000). Figure 8 shows how the package automati-
cally adapts the embedded-boundary Cartesian grid to
capture control surface deflection of a particular geome-
try. This flexibility is a key ingredient in the automation
of configuration-space parameters. Figure 9 shows geo-
metric detail on the Space Shuttle Launch Vehicle (SSLV)
configuration used in studies with Cart3D.

Like NSU3D, Cart3D uses a variety of techniques to
enhance its efficiency on distributed parallel machines. It
uses multigrid for convergence acceleration and employs
a domain-decomposition strategy for subdividing the glo-
bal solution of the governing equations up among the
many processors of a parallel machine (Aftosmis, Berger
and Adomavicius 2000; Aftosmis, Berger and Murman
2004; Berger et al. 2005). The same multigrid cycling
strategies as shown in Figure 4 are used by Cart3D’s
solver module, and as with NSU3D, W-cycles are preferred.
Rather than relying upon agglomeration and METIS, both
the mesh coarsener and mesh partitioner in Cart3D take
advantage of the hierarchical nesting of adaptively refined
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Cartesian meshes. As detailed in Aftosmis, Berger and
Murman (2004), the techniques are based upon a space-
filling curve (SFC) reordering of the adapted meshes. Fig-
ure 10 illustrates this ordering using a 2D example mesh

around a NACA 0012 airfoil. For illustration purposes
this 2D example shows the cells ordered using the Morton
SFC, however in 3D the Peano–Hilbert SFC is generally
preferred (Aftosmis, Berger and Murman 2004). The con-

Fig. 8 Embedded-boundary Cartesian mesh around two instances of space shuttle orbiter configuration showing
automatic mesh response to capture deflection of the elevon control surface.

Fig. 9 Surface triangulation of Space Shuttle Launch Vehicle (SSLV) geometry including detailed models of the
orbiter, solid rocket boosters, external tank, attach hardware and five engines with gimbaling nozzles. 1.7 million ele-
ments.
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struction rules for these SFC’s are such that a cell’s loca-
tion on the curve can be computed by one-time inspection

of the cell’s coordinates, and thus the reordering process
is bound by the time required to quicksort the cells.

Examining the ordering in Figure 10, the coarse mesh
generation process becomes clear. The SFC order implies
that sibling cells that share a parent are enumerated con-
secutively. If all siblings cells are the same size, they are
replaced by their coarser parent in the new mesh structure.
An additional benefit of this single-pass construction
algorithm is that the coarse mesh is automatically gener-
ated with its cells already ordered along the SFC. Thus,
this coarse mesh is immediately available for further
coarsening by the same traversal algorithm. Numerical
experiments with this coarsening procedure show that it
achieves coarsening ratios in excess of 7 on typical exam-
ples (Aftosmis, Berger and Murman 2004). Figure 11
shows a coarsening sequence around a re-entry vehicle
geometry. The fine grid is on the left, and the coarsest
mesh is on the right. Each frame in this figure shows the
mesh partitioned into 2 subdomains using the SFC as a
partitioner. The mesh partitioner actually operates on-the-
fly as the SFC-ordered mesh file is read. The locality
properties of the SFC ordering are such that a good parti-
tioning strategy is to simply distribute different segments
of the SFC among the various processors. For example, if
the mesh in figure 10 were to be divided into 2 sub-
domains, dividing the SFC in half would result in two
subdomains which split the mesh vertically down the
center. Quartering the SFC would result in 4 square sub-
domains with the airfoil at the center. Results in Aftosmis,

Fig. 10 Space-filling curve (Morton order) illustrating
reordering of adaptively-refined Cartesian mesh
around a 2-D airfoil. In three dimensions, Cart3D uses
either Peano–Hilbert or Morton SFC’s for both mesh
coarsening and domain-decomposition.

Fig. 11 Example multigrid mesh hierarchy for re-entry vehicle geometry, fine mesh on left, coarsest on right. The par-
titioning is shown for 2 subdomains and each mesh in the hierarchy is partitioned independently using the same SFC.
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Berger and Murman (2004) indicate that the surface-to-
volume ratio of these SFC-derived partitions track that of
an idealized cubic partitioner.

Figure 11 shows each mesh in the multigrid hierarchy
partitioned into two subdomains. All meshes in the hier-
archy are partitioned independently using the same SFC.
This implies that although there will be generally very
good overlap between corresponding fine and coarse par-
titions, they are not perfectly nested. The slight changes
in partition boundaries in the figure make this clear.
While most of the communication for multigrid restric-
tion and prolongation in a particular subdomain will take
place within the same local memory, these operators will
incur some degree of off-processor communication as
well. As with NSU3D, this approach favors load-balanc-
ing the work on each mesh in the hierarchy at the possi-
ble expense communication.

Figure 12 shows an example of an adapted Cartesian
mesh around the full Space Shuttle Launch Vehicle
(SSLV) configuration. This mesh contains approximately
4.7 million cells with 14 levels of adaptive subdivision.
The mesh is illustrated with a single cutting plane through
the domain. The grid in this figure is painted to indicate its
partitioning into 16 subdomains using the Peano–Hilbert
SFC. Partition boundaries in this example were chosen for
perfect load-balancing on homogeneous CPU sets and
cut-cells were weighted 2.1 times more heavily than un-
cut Cartesian hexahedra. The partitions in this example
are all predominantly rectangular as is characteristic of
subdomains generated with SFC-based partitioners.

6 Performance and Scalability of NSU3D 
for High-Fidelity Analysis

Figure 13 illustrates a coarse unstructured mesh over two
aircraft configurations, similar to the finer mesh used in
the benchmark NSU3D simulations on the NASA Colum-
bia supercomputer. While the displayed mesh in Figure
13(a) contains a total of 1 million grid points, the fine
benchmark mesh contains a total of 72 million points on
the same configuration. The displayed meshes and config-
urations are taken from the AIAA drag prediction work-
shop study (AIAA 2003). Subsequent studies comparing
various CFD codes on this configuration have shown that
this level of grid resolution, and even additional levels of
refinement (leading to a total of 9 million grid points) are
inadequate for the level of accuracy desired in the aircraft
design process (Lee-Rausch et al. 2003, 2004). Therefore,
a finer grid of 72 million points (315 million cells) was
generated and used for the benchmarks. The accuracy of
the results computed on this mesh is examined in detail in
reference (Mavriplis 2005) by comparing these results
with results obtained on the coarser grid levels, and with
computations performed on an alternate mesh of 65 mil-
lion points, using a different mesh topology in the wing
trailing edge region. The results show substantial differ-
ences remain even at these high resolution levels, and
make the case for the use of even finer grids, or at least for
a better distribution and topology of mesh points in criti-
cal regions of the domain.

Figure 14(a) depicts the convergence to steady-state
achieved on the 72 million point grid using four, five, and
six agglomerated multigrid levels, using a multigrid W-
cycle in all cases. This problem contains a total of 433
million degrees of freedom, since each fine grid point con-
tains 6 quantities. The flow conditions are determined by
a freestream Mach number of 0.75, an incidence and side-
slip angle of 0 degrees, and a Reynolds number of 3 million
(based on the mean aerodynamic chord). For the five- and
six-level multigrid runs, the solution is adequately con-
verged in approximately 800 multigrid cycles, while the

Fig. 12 Cartesian mesh around full SSLV configura-
tion including orbiter, external tank, solid rocket
boosters, and fore and aft attach hardware. Mesh color
indicates 16-way decomposition of 4.7 million cells
using the SFC partitioner in Aftosmis, Berger and Mur-
man (2004).
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four-level multigrid run suffers from slower convergence.
Note that the single grid case (i.e. fine grid only without
multigrid) would be very slow to converge, requiring sev-

eral hundred thousand iterations for a mesh of this size.
Figure 14(b) depicts the parallel speedup and total number
of floating point operations achieved for this case on the

Fig. 13 Illustration of coarse mesh about aircraft without and with engine nacelle configuration showing detail of ani-
sotropic prismatic grid layers near aircraft surface (a), and details near engine nacelle (b). Mesh (a) contains 1 million
grid points. Mesh (b) contains 1.9 million grid points. Fine mesh test case (not shown) contains 72 million grid points.

Fig. 14 (a) Multigrid convergence rate using 4, 5, and 6 grid levels for NSU3D solution of viscous turbulent flow
over aircraft configuration. (b) Scalability and computational rates achieved on NASA Columbia supercomputer for
NSU3D solution of viscous turbulent flow over aircraft configuration.
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NASA Columbia supercomputer, using up to 2008 CPUs.
The identical problem was run on 128, 256, 502, 1004,
and 2008 CPUs. Assuming a perfect speedup on 128
CPUs, the four-level multigrid run achieves a superlinear
speedup of 2250 on 2008 CPUs, while the six-level mul-
tigrid run achieves 2044 on 2008 CPUs. Note that the sin-
gle grid case (not shown) achieves even higher speedup
(2395) than the four-level multigrid case, but does not
constitute a practical solution strategy.

The superlinear speedup in these cases is likely to be
the result of favorable cache effects for the decreased par-
tition sizes on large CPU counts. On the other hand, the
reduction in scalability with additional multigrid levels is
the result of the increased communication requirement of
the coarsest levels, which contain minimal amounts of
computational work, but span the same number of proces-
sors as the finest grid level. In fact, the coarsest (sixth)
level contains only 8188 vertices, and in the case of the
2008 CPU run, the average partition contains only four or
five coarse grid points, with some of the coarsest level
partitions being empty (i.e. containing no grid vertices at
all) due to minor imbalances in the partitioning process.
Note also that within the context of a multigrid W-cycle
(c.f. Figure 4(b)), the coarsest level is visited 2n – 1 = 32 times
for a six-level multigrid cycle (which corresponds to a sin-
gle fine grid visit). Nevertheless, all three multigrid cases
achieve better than ideal speedup in going from 128 to 2008
CPUs, because of the fact that the majority of the work
and communication is performed on the finest grid levels.
Considering that even on the finest grid, the average par-
tition contains only approximately 36000 grid points for
2008 CPUs, this level of scalability is rather impressive.

The number of floating point operations (FLOPS) was
measured using the Itanium hardware counters through
the “pfmon” interface. The difference in the number of
FLOPS recorded for a five-multigrid cycle run and a six-
multigrid cycle run were recorded, in order to get a FLOP
number for a single multigrid cycle. This number was
then divided by the amount of wall-clock time required
for a single multigrid cycle for the various runs on differ-
ent numbers of processors. In this approach, the FLOP
count was determined by disabling the MADD feature on
the compiler, while the timings were obtained with the
MADD feature enabled, thus resulting in the counting of
MADD operations (combined Multiply-Add) as 2
FLOPS. Using this approach, the single grid run achieved
a computational rate of 3.4 Tflops on 2008 CPUs, while
the four-, five- and six-level multigrid runs achieved 3.1
Tflops, 2.95 Tflops, and 2.8 Tflops, respectively. When
taking into account the speed of convergence of these dif-
ferent runs (c.f. Figure 14(a)), the five-level multigrid
scheme represents the overall most efficient solution
scheme. However, for robustness reasons, we prefer to
use the six-level multigrid scheme which delivers the

most consistent convergence histories over a wide range
of flow conditions. On 2008 CPUs, a six-level multigrid
cycle requires 1.95 seconds of wall-clock time, and thus
the flow solution can be obtained in under 30 minutes of
wall-clock time (including I/O time). The fact that the
multigrid runs with fewer grid levels deliver better scala-
bility but lower numerical convergence illustrates the
importance of balancing floating point performance with
numerical algorithmic efficiency in order to obtain the
most efficient overall solution strategy.

Since the 72 million point grid case can run on as few
as 128 CPUs (as determined by memory requirements)
and because of the demonstrated speed of this same case
on 2008 CPUs, it should be feasible to run much larger
grids on the four node (2048 CPU) sub-cluster of the
NASA Columbia machine. For example, a case employ-
ing 109 grid points can be expected to require 4 to 5 hours
to converge on 2008 CPUs. At present, the main issues
holding back the demonstration of such large cases
involve the grid generation and preprocessing operations,
which are mostly sequential in nature, and the resulting
file sizes. The grid input file for the flow solver in the 72
million point case measures 35 Gbytes, and increasing
the grid size by another order of magnitude will certainly
produce I/O bottlenecks particularly considering the
transfer rates typically encountered between the compute
servers and the mass storage system.

On the other hand, there are compelling reasons to seek
further speedup of the existing 72 million grid point case,
by going to even higher processor counts. For example, in
the case of a design optimization problem, multiple anal-
ysis runs are required throughout the design process.
Even for relatively efficient adjoint-based design-optimi-
zation approaches (Jameson 2003; Nielsen et al. 2003;
Mavriplis 2006), as many as 20 to 50 analysis cycles may
be required to reach a local optimum, which would
require up to 24 hours on the 72 million point grid run-
ning on 2008 CPUs. We are thus interested in examining
the speedup achievable for the 72 million point case on
even higher processor counts, using up to 4016 CPUs.
However, in order to run a case on more than 2048 CPUs,
we are faced with certain hardware limitations of the
NASA Columbia machine. Notably, the current NUMA-
link interconnect only spans 2048 CPUs, and therefore
the InfiniBand interconnect must be used to access larger
numbers of processors. Additionally, the limitation on the
number of MPI processes under the InfiniBand intercon-
nect (c.f. equation (1)), which corresponds to a total of
1524 MPI processes, results in the requirement of using a
combined OpenMP/MPI approach for accessing the
required number of processors.

In order to study the effects of these limitations, we
begin with a study of the performance of the 72 million
point grid case on 128 CPUs, using the hybrid OpenMP/
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MPI communication strategy, and comparing the observed
performance for the same cases using the NUMAlink and
InfiniBand interconnects. The baseline case consists of
the 6 level multigrid problem running on 128 CPUs, using
MPI exclusively within one compute node (512 CPUs).

This case was also run using 128 CPUs across two com-
pute nodes (using 64 CPUs in a node), and across four
compute nodes (using 32 CPUs in a node), making use of
the NUMAlink interconnect between the nodes. In all
cases, the timings were essentially indistinguishable, and
averaged 31.3 seconds per multigrid cycle. Using this as
the reference time, Figure 15 compares the relative effi-
ciency using the InfiniBand interconnect for four compute
nodes, and using 128 MPI processes with 1 thread per proc-
ess, 64 MPI processes with 2 OpenMP threads per MPI
process, and 32 MPI processes with 4 OpenMP threads each.
In all cases, the degradations in performance from the
baseline case are relatively minor. Using 2 and 4 OpenMP
processes with the NUMAlink interconnect the efficiency
decreases to 98.4% and 87.2% respectively (i.e. time per
cycle increases by the inverse of the efficiency). This pen-
alty may be the result of the loss of local parallelism (at
the OpenMP thread level) during the MPI to MPI commu-
nication, which is carried out by the master thread on each
MPI process (Mavriplis 2000). The InfiniBand results
show similar behavior, although the degradation in perform-
ance in going from NUMAlink to InfiniBand is minimal
(95.7% efficiency for the pure MPI case, with InfiniBand,
actually outperforming the NUMAlink for the 4 thread
OpenMP/MPI case). Only the results using four compute
nodes are shown, since the timings using two and four nodes
are essentially identical.

Figure 16(a) depicts the scalability using NUMAlink
and InfiniBand for the combined OpenMP/MPI code using
1 or 2 OpenMP threads, for the single grid (no multigrid)

Fig. 15 Relative parallel efficiency for 72 million point
six-level multigrid case on 128 processors distributed
over four compute nodes, using the NUMAlink inter-
connect versus the InfiniBand interconnect and using
from 1 to 4 OpenMP threads per MPI process.

Fig. 16 Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand interconnect,
and using 1 or 2 OpenMP threads per MPI process for single grid case (a), and for six-level multigrid case (b).
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case from 128 up to 2008 CPUs. Note that on 2008 CPUs,
the InfiniBand case can only be run using 2 OpenMP
threads per MPI process, because of the limitation on the
number of MPI processes (i.e. 1524) under InfiniBand.
These results mirror those observed on 128 CPUs, showing
only slight degradation in overall performance between
the NUMAlink and the InfiniBand interconnects, and an
additional slight degradation in going from 1 to 2 OpenMP
threads per MPI process. Note that in all cases, superlin-
ear speedup is still achieved at 2008 CPUs.

Figure 16(b) depicts the same scalability results for the
six-level multigrid solver, which is the preferred solution
algorithm for the 72 million point case. The performance
degradation resulting from the use of 2 OpenMP threads is
somewhat larger than in the single grid case, although it is
still modest. (Note that the scalability of the baseline case,
NUMAlink with 1 OpenMP thread for six-level multigrid,
is slightly lower than that observed in Figure 14(b). This
may be due to different compiler options used to invoke
OpenMP, and/or to variations in the state of the hardware,
since these tests were performed several weeks apart.)
However, the degradation in performance resulting from
the use of InfiniBand over NUMAlink is dramatic, partic-
ularly at the higher processor counts. This may be attrib-
utable to the lower bandwidth of the InfiniBand for the
increased communication required by the coarser levels
of the multigrid sequence. In order to further investigate
this behavior, scalability studies have been run for the
two-, three-, four-, and five-level multigrid solvers, as

shown in Figures 17 and 18. As expected, a gradual deg-
radation of performance is observed as the number of
multigrid levels is increased. However, even the two level
multigrid case shows substantial degradation between the
NUMAlink and InfiniBand results. In Figure 19(a) the
second grid in the multigrid sequence, which contains
approximately 9 million points, is run by itself, without
the finer grid, or any coarser multigrid levels, to examine
the scalability on this grid alone. As expected, this coarser
grid level does not scale as well as the finer 72 million
point grid. However, both the NUMAlink and InfiniBand
results degrade at similar rates, and deliver similar per-
formance even on 2008 CPUs. Analogous results are
found for the next coarser multigrid level (which contains
approximately 1 million points) in Figure 19(b). These
findings suggest that the increased communication gener-
ated by the coarser multigrid levels is not responsible for
the differences observed between the NUMAlink and
InfiniBand scalabilities of the full multigrid algorithm.

The other main source of communication in the multi-
grid algorithm occurs in the inter-grid transfer phase,
when transferring solution quantities from fine to coarse
(restriction operation) and from coarse to fine (prolonga-
tion operation) grids. Although the volume of communi-
cation data in these operations is estimated to be lower
than in the intra-grid communication routines, because the
coarse and fine levels are non-nested, these communica-
tion operations may be less local than those performed on
each level, although the number of neighbors in the com-

Fig. 17 Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand interconnect, and
using 1 or 2 OpenMP threads per MPI process for two-level multigrid case (a), and for three-level multigrid case (b).
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munication graph is approximately the same in both cases
(i.e. the maximum degree of the fine grid communication
graph is 18, while the maximum degree of the inter-grid

communication graph is 19). In Biswas et al. (2005),
severe degradation of the InfiniBand latency and band-
width was observed for a random ring communication

Fig. 18 Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand interconnect, and
using 1 or 2 OpenMP threads per MPI process for four-level multigrid case (a), and for five-level multigrid case (b).

Fig. 19 Parallel speedup observed for second coarse multigrid level alone (9 million grid points) (a) and for third
multigrid level alone (1 million grid points) (b) comparing NUMAlink versus InfiniBand interconnect, and using 1 or 2
OpenMP threads per MPI process.
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benchmark, and we speculate that the performance of the
inter-grid multigrid communication operations may be
related to this effect.

Given the results of Figure 16(a), we may expect the
single grid case for 72 million points to scale relatively
well on 4016 CPUs, using the InfiniBand interconnect,
and 4 OpenMP processes per MPI process (as dictated by
the available number of MPI processes under InfiniBand).
However, the multigrid algorithm using any number of
grid levels will most likely perform no better on 4016 CPUs,
than on 2008 CPUs using the NUMAlink. However, the
results obtained on 128 CPUs (c.f. Figure 15) suggest that
a larger multigrid case (of the order of 109 grid points with
7 multigrid levels) would perform adequately on 4016
CPUs, delivering of the order of 5 to 6 Tflops. In order to
obtain good performance with the 72 million point multi-
grid case, the exact cause of the InfiniBand performance
degradation must be determined and resolved if possible.

7 Performance and Scalability of Cart3D 
on Large Problems

To assess performance of Cart3D’s solver module on real-
istically complex problems, several performance experi-

ments were devised examining scalability for a typical
large grid case. The case considered is based on the full
Space Shuttle Launch Vehicle (SSLV) example shown
earlier (Figure 12). For scalability testing the mesh den-
sity was increased to 25 million cells, which is about
twice as fine as that shown in Figure 12. Cart3D’s solver
module solves five equations for each cell in the domain
giving this example approximately 125 million degrees-
of-freedom. The geometry includes detailed models of the
orbiter, solid rocket boosters, external tank, five engines,
and all attach hardware. The geometry in this example
also includes the modifications to the external tank geom-
etry as part of NASA’s return-to-flight effort. Figure 20(a)
shows pressure contours of the discrete solution at Mach
= 2.6, angle-of-attack = 2.09 deg. and 0.8 degrees sideslip.
The surface triangulation contains about 1.7 million ele-
ments. An aerodynamic performance database and virtual-
flight trajectories using this configuration with power on
was presented by Murman, Aftosmis and Nemec (2004).

This example was used for several performance experi-
ments on the Columbia system. These experiments included
comparisons of OpenMP and MPI, the effects of multi-
grid on scalability, and comparisons of the NUMAlink and
InfiniBand communication fabrics. The baseline solution

Fig. 20 (a) Pressure contours around full SSLV configuration including orbiter, external tank, solid rocket boosters,
and fore and aft attach hardware for benchmarking case described in text. (b) Parallel scalability of Cart3D solver
module on Columbia using SSLV example on 25 million cell mesh. Runs conducted on single 512 CPU node of
Columbia system.
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algorithm used 4 levels of multigrid, and unless other-
wise stated, all results are with this scheme.

As discussed earlier, Cart3D’s solver module can be
built against either OpenMP or MPI communication
libraries. On the Columbia system, the 1Tb of each 512
CPU node is globally sharable to any process within the
node, but cache-coherent shared memory is not maintained
between nodes. Thus, pure OpenMP codes are restricted
to, at most, the 512 CPUs within a single box. Figure 20(b)
shows scalability for the same problem using both OpenMP
and MPI. These cases were run on CPU sets with 32 to
504 processors on Columbia node c18. In computing par-
allel speedup, perfect scalability was assumed on 32 CPUs.
Performance with both programming libraries is very
nearly ideal, however while the MPI shows no appreciable
degradation over the full processor range, the OpenMP
results display a slight break in the slope of the scalability
curve near 128 CPUs. Beyond this point the curve is again
linear, but with a slightly reduced slope. This slight deg-
radation is most probably attributable to the routing
scheme used within the Altix nodes. The 512 CPU nodes
are built of four 128 CPU double cabinets, within any one
of these, addresses are dereferenced using the complete
pointer. More distant addresses are dereferenced using
“coarse mode” which drops the last few bits of the address.
On average, this translates into slightly slower communi-
cation when addressing less local memory. Since only the
OpenMP uses this global address space, the MPI results
are not impacted by this pointer swizzling.

The right axis of the speedup plot in Figure 20 is
scaled in TFLOP/s for the baseline solution algorithm. As
with NSU3D, FLOP/s were counted by interrogating the
Itanium2’s hardware counters using Intel’s “pfmon” inter-
face. Operations were counted for a single multigrid cycle
and then divided by the time per iteration on various
numbers of processors to provide this scale. In establish-
ing this scale, MADD operations were counted as two
operations. Substantial work on optimizing single CPU
performance with this code has resulted in somewhat bet-
ter than 1.5 GFLOP/s on each CPU. When combined with
linear parallel speedup, this produces around 0.75 TFLOP/
s for the code on 496 processors of a single Columbia
node.

With single node performance solidly in the same
range as that of NSU3D, our investigations now focus on
performance across multiple nodes of the Columbia sys-
tem. These experiments were carried out on nodes c17–
c20, all of which are part of the Columbia’s “Vortex
3700” subsystem. They use the BX2 routers, have double
density processor bricks, and are connected using
NUMAlink, InfiniBand, and 10Gig-E. Since the system
is not cache-coherent across all 4 of these nodes and the
solver module does not have a hybrid OpenMP+MPI
build mode, performance was evaluated using MPI only.

Figure 21 examines parallel speedup for the system
comparing the baseline four level multigrid solution
algorithm with single grid. This experiment was carried
out exclusively using the the NUMAlink interconnect,
and spanned from 32 to 2016 CPUs. As with the study in
Figures 14–16 for NSU3D, reducing the number of mul-
tigrid levels de-emphasizes communication (relative to
floating-point performance) in the solution algorithm.
Scalability for the the single grid scheme is very nearly
ideal, achieving parallel speedups of about 1900 on 2016
CPUs. It is clear that even on the NUMAlink, communi-
cation is beginning to affect scalability of the multigrid.
This is not surprising, with only 25 million cells in the
fine mesh (12000 cells/partition on 2016 CPUs), the
coarsest mesh in the multigrid sequence has only 32000
cells giving only about 16 cells per partition on 2016
CPUs. Roll-off in the multigrid results does not become
apparent until around 688 CPUs, and does really not start
to degrade until above 1024 CPUs. Given this relatively
modest decrease in performance it seems clear that the
bandwidth demands of the solver are not greatly in
excess of that delivered by the NUMAlink. With 2016
CPUs and 4 levels of multigrid the NUMAlink still posts
parallel speedups of around 1585.

The work by Biswas et al. (2005) includes a study of
delivered bandwidth and latency for both the NUMAlink
and InfiniBand for a variety of different communication
patterns. To understand the implications of this for

Fig. 21 Comparison of parallel speedup of Cart3D
solver module using 1 and 4 levels of mesh in the mul-
tigrid hierarchy. NUMAlink interconnect.
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Cart3D’s solver module the baseline four-level multigrid
scheme was re-run using the InfiniBand interconnect on
the same nodes as the preceding experiment. Figure 22 dis-
plays these results plotted against those of the NUMAlink
interconnect.

As before, the identical problem was run on from 32
to 2016 CPUs using MPI. Note that results with the
InfiniBand, however, do not extend beyond 1524 CPUs
due to the limitation expressed in equation 1. Tracing the
results, from 32 to 496 CPUs the cases were run on a sin-
gle node and thus there is no difference between the two
curves (no box-to-box communication). Cases with 508–
1000 CPUs were run spanning two nodes of Columbia and
some interesting differences begin to appear. While the
InfiniBand consistently lags the NUMAlink, the most
striking example is the case at 508 CPUs which actually
underperforms the single-box case with 496 CPUs. This
is consistent with the observations in Biswas et al.
(2005) which quantify the decrease in delivered band-
width for InfiniBand across two nodes. This work also
predicts an increasing penalty when spanning 4 nodes.
As expected, cases with 1024–2016 CPUs (run on 4
nodes) show a further decrease with respect to those
posted by the NUMAlink. These results are also con-
sistent with the investigations performed with NSU3D,
however, the smaller problem size used here empha-
sizes the communication even more heavily. Perform-
ance of the NUMAlink case with 2016 CPUs is slightly
over 2.4 TFLOP/s.

8 Conclusions and Future Work

This paper examined the parallel performance of two
widely used high-performance aerodynamic simulation
packages on the newly installed NASA Columbia super-
computer. These packages include both a high-fidelity,
unstructured, Reynolds-averaged Navier–Stokes solver
(NSU3D), and a fully-automated inviscid flow package
for cut-cell Cartesian grids (Cart3D). The combination of
these two simulation codes enables high-fidelity charac-
terization of aerospace vehicle design performance over
the entire flight envelope. They permit both extensive par-
ametric analysis as well as detailed simulation of critical
cases. Both packages are industrial-level codes designed
for complex geometry and incorporate customized mul-
tigrid solution algorithms. Numerical performance on
Columbia was examined using MPI, OpenMP and hybrid
(OpenMP & MPI) communication architectures. Experi-
ments focused on scalability to large numbers of CPUs on
the Columbia system. In particular, they contrasted the
performance of the NUMAlink and InfiniBand intercon-
nect fabrics, and examined the incremental performance
degradation incurred by additional communication when
including very coarse grids in the multigrid scheme.
Numerical results demonstrate good scalability on up
to 2016 CPUs using the NUMAlink4 interconnect. These
examples showed linear parallel speedups and posted
measured computational rates in the vicinity of 3 TFLOP/s.
Both codes showed modest performance degradation at
large CPU counts on the InfiniBand interconnect particu-
larly as ever coarser grids were included in the multigrid
hierarchy. These results are important since the NUMA-
link spans at most four Columbia nodes and runs using
more than 2048 CPUs must rely on the InfiniBand for at
least a fraction of their communication. The numerical
results in this study are encouraging enough to indicate
that larger test cases using combined MPI/OpenMP com-
munication should continue to get good performance
improvements well beyond the four Columbia nodes used
in this study.
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