CHAPTER 4 FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS

Example 4.1

where
aw ag ap
r I
2 :4,, 2 .4, au'+a£—5p
Oxyp O

The values of S, and S, can be obtained from the source model (4.8):
SAV =S, + §,0p. Equations (4.11) and (4.8) represent the discretised form
of equation (4.1). This type of discretised equation is central to all further
developments.

Step 3: Solution of equations

Discretised equations of the form (4.11) must be set up at each of the nodal
points in order to solve a problem. For control volumes that are adjacent to
the domain boundaries the general discretised equation (4.11) is modified to
incorporate boundary conditions. The resulting system of linear algebraic
equations is then solved to obtain the distribution of the property ¢ at nodal
points. Any suitable matrix solution technique may be enlisted for this task.
In Chapter 7 we describe matrix solution methods that are specially designed
for CFD procedures. The techniques of dealing with different types of
boundary conditions will be examined in detail in Chapter 9.

The application of the finite volume method to the solution of simple dif-
fusion problems involving conductive heat transfer is presented in this
section. The equation governing one-dimensional steady state conductive
heat transfer is

= kg +S5=0 (4.12)
dx| dx

where thermal conductivity # takes the place of I" in equation (4.3) and the
dependent variable is temperature 7. The source term can, for example, be
heat generation due to an electrical current passing through the rod. Incor-
poration of boundary conditions as well as the treatment of source terms will
be introduced by means of three worked examples.

Consider the problem of source-free heat conduction in an insulated rod
whose ends are maintained at constant temperatures of 100°C and 500°C
respectively. The one-dimensional problem sketched in Figure 4.3 is gov-

erned by
4,97\ _, (4.13)
dx| dx

Calculate the steady state temperature distribution in the rod. Thermal con-
ductivity k equals 1000 W/m.K, cross-sectional area A4 is 10 x 10~ m?,
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Figure 4.4 The grid used

Area (A)

Let us divide the length of the rod into five equal control volumes as shown
in Figure 4.4. This gives dx = 0.1 m.

The grid consists of five nodes. For each one of nodes 2, 3 and 4 temper-
ature values to the east and west are available as nodal values. Consequently,
discretised equations of the form (4.10) can be readily written for control
volumes surrounding these nodes:
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The thermal conductivity (k, = k, = k), node spacing (8x) and cross-sectional
area (A, = A, = A) are constants. Therefore the discretised equation for
nodal points 2, 3 and 4 is

apr'—"EWTW"' a’ETEJ (415)
with
aw arg ap
k k
—A —A aw+a
ax & W E

S, and S, are zero in this case since there is no source term in the governing
equation (4.13).

Nodes 1 and 5 are boundary nodes, and therefore require special atten-
tion. Integration of equation (4.13) over the control volume surrounding
point 1 gives

Te-Tp Tp—-T,
kA| —— | —kA| ——= | =0 4.16

This expression shows that the flux through control volume boundary 4 has
been approximated by assuming a linear relationship between temperatures
at boundary point 4 and node P. We can rearrange (4.16) as follows:

ko 2k k 2%
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Comparing equation (4.17) with equation (4.10), it can be easily identified
that the fixed temperature boundary condition enters the calculation as a
source term (S, + 5,7) with S, = (264/8x)T; and S, = —2kA/ bx, and that
the link to the (west) boundary side has been suppressed by setting
coefficient a; to zero.

Equation (4.17) may be cast in the same form as (4.11) to vield the dis-
cretised equation for boundary node 1:

apr =ay T" + aET£+ S" (4]8)
with
ay ag ap Sp S.
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The control volume surrounding node 5 can be treated in a similar manner.
Its discretised equation is given by

kA T”__Tﬁ — kA To=Tw =0 (4.19)
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As before we assume a linear temperature distribution between node P and
boundary point B to approximate the heat flux through the control volume
boundary. Equation (4.19) can be rearranged as

[£.4+§.4]TP= (é.i‘]?‘,. +0. T+ [%4] Ty (4.20)
The discretised equation for boundary node 5 is
| apTp=auTy + 4Ty +5,] (4.21)
where
ay ag | ap Sp S,
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The discretisation process has yielded one equation for each of the nodal
points | to 5. Substitution of numerical values gives £4/8x = 100, and the
coefficients of each discretised equation can easily be worked out. Their
values are given in Table 4.1.

The resulting set of algebraic equations for this example is

3007, = 1007, + 2007,

2007, = 1007, + 1007,

2007, = 1007, + 1007, (4.22)
2007, = 1007; + 1007,

3007, = 1007, + 2007,



Figure 4.5 Comparison of the
numerical result with the
analytical solution

Example 4.2
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Table 4.1
Node  aw ag S, Se
1 0 100 2007, -200 300
2 00 100 S el O | G
3 100 100 i e TR
4 00 100 0 0 20
5 100 0 2007, =200 300 et
This set of equations can be rearranged as
300 -100 0 0 0| T, 2007,
-100 200 -100 0 0| T 0
0 -100 200 -100 0||T3|=] O (4.23)
0 0 -100 200 -100||7; 0
0 0 0 -100 300||T; 2007,

The above set of equations vields the steady state temperature distribution
of the given situation. For simple problems involving a small number of
nodes the resulting matrix equation can easily be solved with a software
package such as MATLAB (1992). For 7, =100 and T = 500 the solution
of (4.23) can obtained by using, for example, Gaussian elimination:

T 140
7| [220
7,| = | 300 (4.24)
7, |[380
7. |460

The exact solution is a linear distribution between the specified boundary
temperatures: 7 = 800x + 100. Figure 4.5 shows that the exact solution and
the numerical results coincide.
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Now we discuss a problem that includes sources other than those arising
from boundary conditions. Figure 4.6 shows a large plate of thickness
L = 2 em with constant thermal conductivity # = 0.5 W/m.K and uniform
heat generation ¢ = 1000 kW/m®. The faces A and B are at temperatures
of 100°C and 200°C respectively. Assuming that the dimensions in the y- and
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Figure 4.6

Figure 4.7 The grid used

z-directions are so large that temperature gradients are significant in the x-
direction only, calculate the steady state temperature distribution. Compare
the numerical result with the analytical solution. The governing equation is
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As before, the method of solution is demonstrated using a simple grid.
The domain is divided into five control volumes (see Figure 4.7), giving
8x = 0.004 m; a unit area is considered in the y—z plane.

: i - 4 : : ‘ A
Ta lr * oo _pacmmpy X - i . i g RO
w w 4 e E
! 5%/2 ! bx ___! 8x ! l_gg‘_l

Formal integration of the governing equation over a control volume gives

7 i
J—d—[kd—)dl/-o- J sl wid (4.26)
dx| dx

AV AV
We treat the first term of the above equation as in the previous example. The
second integral, the source term of the equation, is evaluated by calculating
the average generation (i.e. SAV = gAV) within each control volume.
Equation (4.26) can be written as

Hd‘] : {Mez] ] qdVat “27)

dx . dx ;

kA M —k A _.Ti__Ti’. +gA8x =0 (4.28)
S S

The above equation can be rearranged as

kA koA kA kA
[éa + 5 }Tp=[a’: ]TW+[-6'X_}TE+'?‘4& (4.29)
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This equation is written in the general form of (4.11):

GPTp=awTw+ aET£+S, (4.30)

Since &, = k, = k we have the following coefficients:
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Equation (4.30) is valid for control volumes at nodal points 2, 3 and 4.

To incorporate the boundary conditions at nodes 1 and 5 we apply the
linear approximation for temperatures between a boundary point and the
adjacent nodal point. At node 1 the temperature at the west boundary is
known. Integration of equation (4.25) at the control volume surrounding
node 1 gives

I
kAE - kAd— +4AV =0 (4.31)
dx dx
L ¢ »
Introduction of the linear approximation for temperatures between A and P
yields
[ Tg-=T, Tp—T,
kA ——— |- kA +gA8x =0 4.32
[ ™ ] . [ &/2 . G

The above equation can be rearranged, using £, = k£, = k, to vield the discre-
tised equation for boundary node 1:

| apTp=ayTy+asTe+ s,] (4.33)
where
ay ag |ap Sp S,
0 % aw+ag—Sp -% qA(S:r+2;rA T,

At nodal point 5, the temperature on the east face of the control volume is
known. The node is treated in a similar way to boundary node 1. At bound-
ary point 5 we have

[[kAﬂ} - (kAﬂJ ] +gAV=0 (4.34)
dx dx .

[kBA(T”‘ T"] —k,A[%TWH +¢Adx=0 (4.35)

Ox/2
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The above equation can be rearranged, noting that kg = k, = &, to give the
discretised equation for boundary node 5:

aplp=ayTy+agTc+ S, (4.36)
where
aw ag ap Sp S,
kA 2kA 2kA
= 1 B tap-Sp| -2 | A+ =T,
5 Ayt dp P S 4 % B

Substitution of numerical values for =1,k =0.5 W/m.K, 4 = 1000 kW/m’*
and &v = 0.004 m everywhere gives the coefficients of the discretised equa-
tions summarised in Table 4.2

Table 4.2
Nede oy . #x & 8. esmembax=Se
ot VR i ¢ e SR 2
b B MR a8
5 0 400042507,  -250

Given directly in matrix form the equations are

[ 375 =125 0 0 o[, 29000

-125 250 -125 0 0| 7, 4000
0 -125 250 -125 0| 73| = | 4000 (4.37)
0 0 -125 250 -125||T, 4000
0 0 0 -125 375(| T; 54000

The solution to the above set of equations is

7, 150
| |218
T,| = | 254 (4.38)
T,| [258
Ts| |230

Comparison with the analytical solution

The analytical solution to this problem may be obtained by integrating equa-
tion (4.25) twice with respect to » and by subsequent application of the
boundary conditions. This gives

- Ty—T, ” q

.z_k(L - I)}I’ + T‘f (439)

T

The comparison between the finite volume solution and the exact solution is
shown in Table 4.3 and Figure 4.8 and it can be seen that, even with a coarse
grid of five nodes, the agreement is very good.
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Figure 4.8 Comparison of the
numerical result with the
analytical solution

Example 4.3

Figure 4.9 The geometry for
Example 4.3
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In the final worked example of this chapter we discuss the cooling of a
circular fin by means of convective heat transfer along its length. Convection
gives rise to a temperature-dependent heat loss or sink term in the govern-
ing equation. Shown in Figure 4.9 is a cylindrical fin with uniform cross-
sectional area A. The base is at a temperature of 100°C (7}) and the end is
insulated. The fin is exposed to an ambient temperature of 20°C. One-
dimensional heat transfer in this situation is governed by

. kAﬂ -hP(T-T.)=0 (4.40)
dx dx
where /4 is the convective heat transfer coefficient, P the perimeter, k the
thermal conductivity of the material and 7. the ambient temperature.
Calculate the temperature distribution along the fin and compare the results
with the analytical solution given by

T-T. cosh(n(L - x)]
Ty-T. a cosh(nL)

(4.41)
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