

3. SISTEMAS GIRANTES

MÉTODO DOS ELEMENTOS FINITOS

 Agora são abordados modelos de rotores que são utilizados em turbo máquinas.

-As equações gerais são apresentadas e os métodos numéricos usados para resolver estas equações serão introduzidos.

- Se propõe um programa de elementos finitos baseados nas equações e métodos numéricos anteriormente apresentados

No caso de um elemento com 3 nós:

$$q(y) = \{N\}^T \{q\}$$

Deslocamento espacial

Funções de interpolação

Incluindo o deslocamento espacial na equação de energia potencial U

$$U = \frac{1}{2} \{\sigma\}^{T} \underbrace{\int_{-L/2}^{L/2} \{N'\} \{N'\}^{T} EI_{X} dY}_{K^{1}} \{\sigma\} + \frac{1}{2} \{\zeta\}^{T} \underbrace{\int_{-L/2}^{L/2} \{N'\} \{N'\}^{T} EI_{Y} dY}_{K^{2}} \{\zeta\} + \frac{1}{2} \{\zeta\}^{T} \underbrace{\mu}_{-L/2} \int_{-L/2}^{L/2} \{N\} \{N\}^{T} G^{*} S dY}_{K^{3}} \{\zeta\} + \frac{1}{2} \{Q\}^{T} \underbrace{\mu}_{-L/2} \int_{-L/2}^{L/2} \{N\} \{N\}^{T} G^{*} S dY}_{K^{4}} \{u\} + \frac{1}{2} \{u\}^{T} \underbrace{\mu}_{K^{5}} \underbrace{\int_{-L/2}^{L/2} \{N'\} \{N\}^{T} G^{*} S dY}_{K^{6}} \{\zeta\} + \frac{1}{2} \{u\}^{T} \underbrace{\mu}_{K^{6}} \underbrace{\int_{-L/2}^{L/2} \{N'\} \{N\}^{T} G^{*} S dY}_{K^{6}} \{u\} + \frac{1}{2} \{\sigma\}^{T} \underbrace{\mu}_{K^{6}} \underbrace{\int_{-L/2}^{L/2} \{N\} \{N\}^{T} G^{*} S dY}_{K^{6}} \{\sigma\} + \frac{1}{2} \{\sigma\}^{T} \underbrace{(-\mu \int_{-L/2}^{L/2} \{N\} \{N\}^{T} G^{*} S dY}_{K^{6}} \{\sigma\} + \frac{1}{2} \{w\}^{T} \underbrace{(-\mu \int_{-L/2}^{L/2} \{N'\} \{N\}^{T} G^{*} S dY}_{K^{6}} \{w\}, \underbrace{K^{e}}_{K^{6}}$$

Incluindo a velocidade espacial na equação de energia cinética T

$$\dot{q}(y) = \{N\}^T \{\dot{q}\}$$

 $T = \frac{1}{2} \{\dot{u}\}^{T} \underbrace{\rho S \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{1}} \{\dot{u}\} + \frac{1}{2} \{\dot{w}\}^{T} \underbrace{\rho S \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{2}} \{\dot{w}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} + \frac{1}{2} \{\dot{\sigma}\}^{T} \underbrace{\rho I \int_{-L/2}^{L/2} \{N\} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} \{N\}^{T} dy}_{M^{3}} \{N\}^{T} dy}_{M^{3}} \{\dot{\sigma}\} \{N\}^{T} dy}_{M^{3}} \{N\}^$

O amortecimento e rigidez adicionados pelos mancais, são representados pelas matrizes abaixo e são somados aos nós respectivos da matriz global.

Que pode ser exemplificada pela seguinte figura

Serão considerados quatro graus de liberdade no nó do rotor: dois deslocamentos *u* e *w*, e dois giros ao redor do eixo *X* e *Y* que são, respectivamente, $\theta \in \psi$. Assim, se δ é o vetor deslocamento nodal do centro do disco:

$$\delta = \left[u, w, \theta, \psi\right]^T$$

a aplicação da equação de Lagrange para a equação da energia cinética do disco resulta em :

onde a primeira matriz é a matriz de inércia clássica e a segunda é a matriz giroscópica (efeito de Coriolis).

O eixo é modelado como uma viga com seção transversal circular constante. O elemento usado possui dois nós com quatro graus de liberdade cada um deles. Assim, as matrizes que resultarão, após aplicada alguma técnica (equações de Lagrange é uma delas), são de ordem oito (quatro deslocamentos e quatro giros) como pode ser visualizado na imagem abaixo.

O vetor deslocamento nodal é:

$\boldsymbol{\delta} = \begin{bmatrix} \boldsymbol{u}_1, \boldsymbol{w}_1, \boldsymbol{\theta}_1, \boldsymbol{\psi}_1, \boldsymbol{u}_2, \boldsymbol{w}_2, \boldsymbol{\theta}_2, \boldsymbol{\psi}_2 \end{bmatrix}^T$

que incluem os deslocamentos δu e δw correspondendo, respectivamente, aos movimentos nas direções X e Y, tal que

$$\boldsymbol{\delta}_{\boldsymbol{u}} = \begin{bmatrix} \boldsymbol{u}_1, \boldsymbol{\psi}_1, \boldsymbol{u}_2, \boldsymbol{\psi}_2 \end{bmatrix}^T$$

$$\boldsymbol{\delta}_{\boldsymbol{w}} = \left[\boldsymbol{w}_1, \boldsymbol{\theta}_1, \boldsymbol{w}_2, \boldsymbol{\theta}_2\right]^T$$

O elemento finito é construído de:

$$u = N_1(y) \,\delta_u$$
$$w = N_2(y) \,\delta_w$$

onde $N_1(y)$ e $N_2(y)$ são as funções típicas de deslocamento de uma viga a flexão:

$$N_{1}(y) = \left[1 - \frac{3y^{2}}{L^{2}} + \frac{2y^{3}}{L^{3}}; -y + \frac{2y^{2}}{L} - \frac{y^{3}}{L^{2}}; \frac{3y^{2}}{L^{2}} - \frac{2y^{3}}{L^{3}}; \frac{y^{2}}{L} - \frac{y^{3}}{L^{2}}\right]$$
$$N_{2}(y) = \left[1 - \frac{3y^{2}}{L^{2}} + \frac{2y^{3}}{L^{3}}; y - \frac{2y^{2}}{L} + \frac{y^{3}}{L^{2}}; \frac{3y^{2}}{L^{2}} - \frac{2y^{3}}{L^{3}}; -\frac{y^{2}}{L} + \frac{y^{3}}{L^{2}}\right]$$

A energia cinética do eixo é obtida da equação geral da energia cinética do eixo, em forma compacta:

$$T_{s} = \frac{\rho S}{2} \int_{o}^{L} (\dot{u}^{2} + \dot{w}^{2}) dy + \frac{\rho I}{2} \int_{o}^{L} (\dot{\theta}^{2} + \dot{\psi}^{2}) dy + \rho I L \Omega^{2} + 2\rho I \Omega \int_{o}^{L} \dot{\psi} \theta dy$$

$$\begin{split} T_{S} &= \frac{\rho S}{2} \int_{o}^{L} \left[\delta \dot{u}^{T} N_{1}^{T} N_{1} \delta \dot{u} + \delta \dot{w}^{T} N_{2}^{T} N_{2} \delta \dot{w} \right] dy \\ &+ \frac{\rho I}{2} \int_{o}^{L} \left[\delta \dot{u}^{T} \frac{d N_{1}^{T}}{d y} \frac{d N_{1}}{d y} \delta \dot{u} + \delta \dot{w}^{T} \frac{d N_{2}^{T}}{d y} \frac{d N_{2}}{d y} \delta \dot{w} \right] dy \\ &- 2\rho I \Omega \int \delta \dot{u}^{T} \frac{N_{1}^{T}}{d y} \frac{N_{2}}{d y} \delta w \, dy + \rho I L \Omega^{2} \end{split}$$

Substituindo N1(y) e N2(y) na equação da energia cinética, após a integração:

$$T_{s} = \frac{1}{2} \delta \dot{u}^{T} M_{1} \delta \dot{u} + \frac{1}{2} \delta \dot{w}^{T} M_{2} \delta \dot{w} + \frac{1}{2} \delta \dot{u}^{T} M_{3} \delta \dot{u} + \frac{1}{2} \delta \dot{w}^{T} M_{4} \delta \dot{w} + \Omega \delta \dot{u}^{T} M_{5} \delta w + \rho I L \Omega^{2}$$

Onde as matrizes $M_1 e M_2$ são matrizes de massa clássica, $M_3 e M_4$ dão a influencia dos efeitos secundários de rotação de inércia e M_5 apresenta o efeito giroscópio.

Como tem sido observado previamente, o ultimo termo que é uma constante

não será considerado daqui em mais.

Aplicando a equação de Lagrange, obtém-se:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial\dot{\delta}}\right) - \frac{\partial T}{\partial\delta} = \left(M + M_s\right)\ddot{\delta} + G\dot{\delta}$$

onde *M* e M_s são obtidos respectivamente de M_1 , M_2 e M_3 , M_4 , e a matriz *G* vem de M_5 . Estas matrizes são:

M =

A energia de deformação do eixo é obtida da equação geral da energia de deformação do eixo:

$$U_{s} = \frac{EI}{2} \int_{0}^{L} \left[\left(\frac{\partial^{2}u}{\partial y^{2}} \right)^{2} + \left(\frac{\partial^{2}w}{\partial y^{2}} \right)^{2} \right] dy + \frac{F_{o}}{2} \int_{0}^{L} \left[\left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial w}{\partial y} \right)^{2} \right] dy$$
$$U = \frac{EI}{2} \int_{o}^{L} \left[\delta u^{T} \frac{d^{2}N_{1}^{T}}{d y^{2}} \frac{d^{2}N_{1}}{d y^{2}} \delta u + \delta w^{T} \frac{d^{2}N_{2}^{T}}{d y^{2}} \frac{d^{2}N_{2}}{d y^{2}} \delta w \right] d y$$
$$+ \frac{F_{o}}{2} \int_{o}^{L} \left[\delta u^{T} \frac{dN_{1}^{T}}{d y} \frac{dN_{1}}{d y} \delta u + \delta w^{T} \frac{d N_{2}^{T}}{d y} \frac{d N_{2}}{d y} \delta w \right] d y$$

Após a integração, U toma a forma:

$$U = \frac{1}{2}\delta u^T K_1 \delta u + \frac{1}{2}\delta w^T K_2 \delta w + \frac{1}{2}\delta u^T K_3 \delta u + \frac{1}{2}\delta w^T K_4 \delta w$$

onde $K_1 \in K_2$ são matrizes de rigidez clássica, e $K_3 \in K_4$ as matrizes devidas às forças axiais

É também frequentemente necessário considerar o efeito de cisalhamento, o qual é caracterizado pela quantidade:

$$a = \frac{12 E I}{G S_r L^2}$$

com o módulo de cisalhamento:

$$G = \frac{E}{2(1+v)}$$

onde v é o coeficiente de Poisson e $S_r (\cong S)$ é a área reduzida da secção transversal.

A influência do efeito de cisalhamento que da a matriz K_s não é demonstrada aqui, mas a sua influência é incluída na matriz de rigidez clássica. A matriz de rigidez clássica K_c vem de K_1 , K_2 e Ks, e a matriz K_F devido à força axial vem de K_3 e K_4 . Assim, se as equações de Lagrange são aplicadas à equação da energia potencial:

$$\frac{\partial U}{\partial \delta} = K \,\delta$$

Onde:

$$K = K_C + K_F$$

As expressões das matrizes são as seguintes:

se a = 0, a matriz acima é a matriz de rigidez clássica de uma viga fina em flexão

Elementos Finitos: Mancais e Acoplamentos

- As principais características relacionam forças e deslocamentos.
- Por outro lado, a influência dos giros e momentos de flexões é
- desconsiderada. As matrizes são diretamente obtidas das equações
- abaixo:

Elementos Finitos: Mancais e Acoplamentos

como $F_{\theta} = F_{\psi} = 0$, tem-se:

A primeira é uma matriz é uma matriz de rigidez e a segunda uma matriz de amortecimento viscoso. Estas matrizes são geralmente não simétricas (isto é, $k_{xz} \neq k_{zx}$ e $c_{xz} \neq c_{zx}$) e seus

termos podem variar significantemente com a velocidade de rotação.

Elementos Finitos: Desbalanceamento

A expressão geral para a energia cinética de massa desbalanceada é:

$$T_{u} \simeq m_{u} \Omega d \left(\dot{u} \cos \Omega t - \dot{w} \sin \Omega t \right)$$

Aplicando a equação de Lagrange a esta obtém-se

$$\frac{d}{dt}\left(\frac{\partial T}{\partial\dot{\delta}}\right) - \frac{\partial T}{\partial\delta} = -m_u d \Omega^2 \begin{bmatrix}\sin\Omega t\\\cos\Omega t\end{bmatrix}$$

com

$$\delta = \begin{bmatrix} u, w \end{bmatrix}^T$$

Elementos Finitos: Desbalanceamento

- -Essa expressão corresponde a uma massa desbalanceada situada sobre o eixo *z* em *t*=0.
- -Quando um rotor industrial é estudado, a influencia de varias massas
- desbalanceadas agindo simultaneamente tem que ser consideradas.
- -Para a massa desbalanceada situada em t=0, em uma posição angular α com respeito ao eixo z, a força é :

$$\begin{bmatrix} F_u \\ F_w \end{bmatrix} = m_u d \ \Omega^2 \begin{bmatrix} \sin\left(\Omega t + \alpha\right) \\ \cos\left(\Omega t + \alpha\right) \end{bmatrix}$$

que pode ser escrita como:

$$\begin{bmatrix} F_u \\ F_w \end{bmatrix} = F_2 \sin \Omega t + F_3 \cos \Omega t$$

- -Exemplos de modelos simples usando elementos finitos.
- -O primeiro exemplo mostra o grau de confiabilidade que pode ser dado ao método modal de resolução.
- -A seguir, é mostrada uma representação das frequências naturais em função da rigidez do mancal.

Elementos Finitos: Exemplo 1

Rotor composto por um eixo de 0,1 m de diâmetro, três discos distribuídos ao longo do mesmo e dois mancais flexíveis em cada um de seus extremos.

Elementos Finitos: Exemplo 1

-O modelo possui 13 elementos finitos de eixo com os mesmos comprimentos.
-O eixo é dividido em seções com os seguintes valores para cada uma delas:

L1 = 0,2 m; L2 = 0,3 m; L3 = 0,5 m; L4 = 0,3 m

-Os discos e eixo são feitos de aço e suas características físicas são:

$$E = 20.10^{10} N / m^{2}$$

$$\rho = 7800 kg / m^{3}$$

$$\mu = 0.3$$

Os dois mancais são assumidos idênticos e caracterizados por:

$$k_{xx} = 5.10^7 N/m; k_{zz} = 7.10^7 N/m; k_{xz} = k_{zx} = 0$$

 $c_{xx} = 5.10^2 N/m; c_{zz} = 7.10^2 N/m; c_{xz} = c_{zx} = 0$

A velocidade de rotação do rotor varia de 0 a 30 000 rpm.

Os dados dos discos são dados pela seguinte tabela:

Disk	D1	D_2	D_3
Thickness (m)	0.05	0.05	0.06
Inner radius (m)	0.05	0.05	0.05
Outer radius (m)	0.12	0.2	0.2

Elementos Finitos: Exemplo 1-Diagrama de Campbell

As dez primeiras frequências naturais calculadas são apresentadas na figura abaixo:

As frequências naturais em Hz para uma rotação constante de 25 000 rpm

Table 2 Frequencies in hertz at 25 000 rpm								
Frequency	Reference Value	2 Modes	4 Modes	6 Modes	8 Modes	10 Modes	12 Modes	14 Modes
F1	55.408	56.135 1.3%	56.127 1.3%	55.690 0.51%	55.472 0.12%	55.471 0.11%	55.429 0.04°,	55.424 0.03%
F2	67.209	68.062 1.3%	68.051 1.3%	67.473 0.39%	67.267 0.09%	67.266 0.09%	67.228 0.03°。	67.223 0.02%
F3	157.90		160.30 1.5%	160.23 1.1%	159.97 1.1%	158.38 0.3%	158.08 0.11%	157.93 0.02%
F4	193.71		196.30 1.3%	196.25 1.3%	195.94 1.1%	194.13 0.22%	193.86 0.08%	193.73 0.01%
F5	249.90			270.63 8.3%	254.53 1.8%	253.37 1.4%	251.12 0.49%	250.99 0.44%
F6	407.62			448.57 10%	413.06 1.3%	410.80 0.78%	409.51 0.46%	408.61 0.24%
F7	446.62				453.03 1.4%	452.31 1.3%	448.14 0.34°,	447.27 0.14%
F8	715.03				759.81 6.2°,	758.39 6.1%	720.24 0.73%	720.17 0.72%
F9	622.65				Construction of	635.89 2.1°	628.18 0.89%	624.50 0.3%
F10	1093.0					1142.6 4.5° o	1122.6 2.71° o	1104.7 1.1°o

- -Assume-se uma massa desbalanceada de 200 g mm situada sobre o disco D_2 .
- -A resposta de deslocamento no nó 6 é mostrada na figura abaixo:

Considerando dois modos (n=2) na resposta

Considerando quatro modos (n=4) na resposta

Considerando seis modos (n=6) na resposta

Considerando oito modos (n=8) na resposta

Elementos Finitos: Rotações Críticas

Na seguinte tabela esta apresentada a velocidade crítica

Critical Speed	Reference Value	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10	<i>n</i> = 12	<i>n</i> = 14
CI	3620.5 0.938×10^{-3}	3621.3 0.91×10^{-3} -3%	3621.3 0.911 × 10 ⁻³ - 2.9%	3620.8 0.938×10^{-3} 0°_{\circ}	3620.6 0.940 × 10 ⁻³ 0.21%	3620.6 0.940×10^{-3} 0.21%	3620.5 0.937 × 10 ⁻³ - 0.11%	3620.5 0.938×10^{-3} 0%
C2	3798.3 0.210 × 10 ⁻²	3799.6 0.218×10^{-2} 3.8%	3799.6 0.218×10^{-2} 3.8%	3798.7 0.209×10^{-2} -0.48%	$3798.4 \\ 0.204 \times 10^{-2} \\ -0.48\%$	3798.4 0.209 × 10 ⁻² - 0.48%	$ \begin{array}{r} 3798.3 \\ 0.210 \times 10^{-2} \\ 0\% \end{array} $	3798.3 0.210 × 10 ⁻² 0%
C3	10018 0.499×10^{-4}		10042 0.505 × 10 ⁻⁴ 1.2%	10041 0.503 × 10 ⁻⁴ 0.8%	$10038 \\ 0.495 \times 10^{-4} \\ - 0.8\%$	10022 0.496×10^{-4} -0.60%	10020 0.502 × 10 ⁻⁴ 0.60%	10018 0.502 × 10 ⁻⁴ 0.60%
C4	11281 0.130×10^{-3}		$ \begin{array}{r} 11313 \\ 0.126 \times 10^{-3} \\ - 3.1\% \end{array} $	$11313 \\ 0.127 \times 10^{-3} \\ -2.3\%$	11310 0.133 × 10 ⁻³ 2.3%	$ \begin{array}{r} 11286 \\ 0.132 \times 10^{-3} \\ 1.5\% \end{array} $	11283 0.130×10^{-3} 0%	11281 0.130×10^{-3} 0%
C5	16787 0.421 × 10 ⁻⁵			17394 0.584 × 10 ⁻⁵ 39%	$ \begin{array}{r} 16918 \\ 0.410 \times 10^{-5} \\ -2.6^{\circ}_{<0} \end{array} $	16883 0.428 × 10 ⁻⁵ 1.7%	$16824 \\ 0.427 \times 10^{-5} \\ 1.4\% _{o}^{o}$	$16817 \\ 0.420 \times 10^{-5} \\ -0.24\%$
C6	24418 0.684 × 10 ⁻⁴				24769 0.722 × 10 ⁻⁴ 5.6%	24622 0.654 × 10 ⁻⁴ - 3.6%	24539 0.658×10^{-4} - 3.8%	24481 0.705 × 10 ⁻⁴ 3.1%
C7	26611 0.311 × 10 ⁻⁴			24651 0.485 × 10 ⁻⁴ 56%	27003 0.294 × 10 ⁻⁴ - 5.5%	26942 0.276 × 10 ⁻⁴ - 11%	26704 0.332×10^{-4} 6.7%	26645 0.322×10^{-4} 3.5%

Elementos Finitos: Modelo do Disco

Modelo 1: o disco é fixado ao eixo através de um ponto. O disco não muda a rigidez do eixo e concentra a sua inercia no ponto.

Modelo 2: o disco é montado através de ajuste por interferência. Deve-se aumentar, na largura do disco (h), o diametro do eixo em h/2.

Modelo 3: se a largura do disco é tal que abarca 3 nós da malha por exemplo, o disco deve ser alocado em partes em cada um dos mesmos.

Elementos Finitos: Mapa de Rigidez

- O diagrama de rigidez do mancal é a representação da evolução das frequências naturais do rotor versus a rigidez dos mancais que são consideradas:
 - -Idênticas para todos os mancais;-Iguais à rigidez equivalente

Com

$$k_{x} = \sqrt{k_{xx}^{2} + \Omega^{2} c_{xx}^{2}}$$
$$k_{x} = k_{z} = k$$
$$k_{xz} = k_{zx} = c_{xz} = c_{zx} = 0$$

onde Ω é a velocidade angular de rotação.

Elementos Finitos: Mapa de Rigidez

-Este diagrama é muito útil na fase preliminar de projeto de um rotor, dando informação acerca da rigidez comparativa entre o eixo e o mancal. Ele é recomendado (muitas vezes solicitado) por normas de turbomáquinas, tal como a "American Petroleum Instituite" (API).

-Quando o efeito giroscópico é pequeno, as frequências naturais não são função da velocidade de rotação. Se a velocidade de operação do rotor é 21.000 *rpm* (350 Hz), as frequências naturais na faixa de 315-385 Hz devem ser eliminadas (\pm 10% da velocidade de operação). Concluindo que a rigidez equivalente do mancal deve estar fora da faixa 4 x 10⁷ a 9 x 10⁷ N/m.

-Quando o efeito giroscópico é significante, é necessário incluir na predição das frequência naturais a influência da velocidade nominal de rotação (21.000 *rpm*). Seis frequências aparecem agora (3 em FW, 3 em BW), ver o **segundo diagrama**. O que podese concluir que a rigidez equivalente do mancal dever estar fora da faixa entre 2 x10⁷ e 5 x10⁷ N/m (velocidade critica do tipo FW) ou 1 x10⁸ e 3,1 x10⁸ N/m (velocidade critica do tipo FW) ou 9 x10⁸ e 3,1 x10⁸ N/m (velocidade critica do tipo FW). O diagrama da API da uma ideia da rigidez que deve ser usada no mancais p/este tipo de máquinas.

Elementos Finitos: Mapa de Rigidez

A rigidez equivalente do mancal dever estar fora da faixa entre 2 x10⁷ e 5 x10⁷ N/m (velocidade critica do tipo FW) ou 1 x10⁸ e 3,1 x10⁸ N/m (velocidade critica do tipo BW)

Frequências naturais incluindo efeito giroscópico versus rigidez equivalente

