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Abstract

Numerical solutions of one equation in fluid dynamics are obtained by the finite difference method
with uniform grids and four types of numerical approximations. Analytical effective as well as
analytical apparent orders for estimating the discretization and truncation error are established.
These analytical orders are investigated for the case in which the size of the grid element is small.

1- INTRODUCTION

When the error of the numerical solution is caused only by truncated errors (&), the
difference between the analytical exact solution (@) of a variable and its numerical solution (¢) is

called discretization error (E), and is defined by
E(¢)= @ - ¢, 1)

where the symbols ® and ¢ represents, respectively, the analytical and numerical solutions of the
variables.

Beyond Eqg. (1), other method to compute the discretization error is given by (Ferziger and
Peric, 1999)

E(¢)=Ch™ +C,h™ +C,h™ +..., 2)

where each C, eR, 1=12,3,... are the coefficients. Such coefficients can be positive or negative

and also they can depend on the dependent variable (A) and their respective derivatives, but they
do not depend on the length (h) of the elements of the grid. Equation (2) is called general equation
of the discretization error.

By means of Eq. (1) or Eqg. (2) one can see that the discretization error value can be only
computed when the analytical solution of the mathematical model is known. However, in most of
cases, the analytical solution is not known, consequently, it is necessary to estimate such analytical
solution. Thus, instead of computing the discretization error one computes the estimation of its
value. Such estimation is also called uncertainty U of the numerical solution ¢ (Mehta, 1996;

Chapra and Canale, 1994):
Ug)=¢.-¢. (3)

The Richardson's Estimator U (¢) (Richardson and Gaunt, 1927; Blottner, 1990) is given
by



Un(#)=¢.-9, (4)

where ¢ represents the numerical solution of the variable of interest and ¢, is a estimation of the
value of the analytical solution; ¢_ is obtained from the generalized Richardson's extrapolation
(Roache, 1994) and is given by

_ L h¢
%—@+q}_? (5)
where ¢ and ¢, are the corresponding numerical solution of the fine and coarse grid, respectively,
whose length h of the elements are h, and h,, p, is the asymptotic order of the discretization error
and q is the grid refinement ratio defined by

h
h,
Introducing Eqg. (5) into Eq. (4), the Richardson's Estimator becomes
_4-¢
URi (¢) - ﬁ (7)

The expression for the Richardson's extrapolation is given by considering that the
uncertainty U of a numerical solution ¢ that depends on a constant K, (independent of h) and p,,
the asymptotic order of the discretization error.

In the following sections mathematical model, the type of variables, the numerical
approximations and their truncation error used in this work are introduced. The expressions are
deduced for analytical effective and apparent order. Finally, the results and conclusion of the work
are presented.

2. MATHEMATICAL AND NUMERICAL MODELS

The solution of mathematical models of interest is obtained by means of numerical
approximation of each one of their terms. For this, we consider that the nodal values utilized in such
numerical approximation are obtained by means of analytical solutions, that is, the error in each
node is equal to zero.

The truncation error ¢ of a variable ¢ is given by

e(@)=d—-¢, 8

where @ is the analytical solution of ¢, where ¢ is its approximated value. Equation (8) can be
represented generically by

e(@)=Ch™ +C,h™ +C,h™ +..., 9)

where each C. e R, 1=1,2,3,..., are the coefficients. Such coefficients can be positive or negative

and they can depend on the dependent variable (A ) and their respective derivatives, but they do not
depend on the length h. The Equation (9) is called general equation of the truncation error.



When the numerical solution error is caused only by truncation error, the discretization error
E (see Eq. (1)), coincides with the truncation error ¢ (see Eq. (8)). If the exact analytical solution of
® and its approximated value ¢ are known, the value for the truncation error can be derived by
two distinct methods. The first way is by direct application of Eq. (8) and the second one is by
replacing in Eq. (8) the exact analytical solution @ by its Fourier series and also replacing the
expression utilized for the numerical approximation ¢.

Table 1 shows two types of variables for which are presented the types of numerical
approximations utilized in this paper as well as the symbols employed to denote the analytical
solution (@) and the numerical solution (¢). The variable considered is the first order derivative of

the dependent variable. Its analytical solution is denoted by A' and its numerical approximations
are performed of four different manners, denoted by A,oc, Arps, Apps aNd Apys_,, respectively.

Table 1. Definition of the approximations utilized in this paper.

Type of Variable | Analytical solution | Numerical solution | Types of numerical
(D) (4) approximations
First order A Ao one-point upstream
derivative of the i .
. central difference
dependent variable Acos _
Aoos one-point
downstream
Aoos_o two-point
downstream

Numerical approximations and their truncation errors can be obtained from the Taylor
series, which is an infinite series defined by (Kreyszig, 2006)

A =3AY w (10)
n=0 .

where A denotes the dependent variable of the mathematical models, A, is the exact analytical
value obtained at coordinate x with a Taylor series expansion from the node j, where the exact
analytical value of A; and its derivatives (A';, A", ..., A",) are known. Equation (10) is valid if A
is a continuous function of x in the closed interval [x, x;] and there are continuous derivatives up to

the order n in this same interval.
Applying Eq. (10) to the nodes x; , and x;,, on the uniform grid, one obtains

i ii ? il hS
Aj—lej_Ajh—i_Aj?_AjE—'_"' (11)

i i ? il h3
Aj+l=Aj+Ajh+Aj7+AjF+... (12)

where x; is a generic node used to perform the numerical approximations; h = x; —x; , denotes the

grid spacing and A ; denotes AXJ :

Numerical approximations for the variable A' given in Tab. (1) and others are presented, for
example, in Fletcher (1997), Ferziger and Peric (1999), and Tannehill et al. (1997). Those use in
this work are shown below.



Subtracting Eqg. (11) from Eq. (12), one gets an exact analytical expression for the first
derivative of the dependent variable at node j in the following form:

i (A '+1_A'—) iii h? v h* vii h®
/\j:'—'l—AJ———Aj —Aj -
2h 6 120 5,040

(13)

where A", AY, e A are, respectively, the third, fifth and seventh derivatives of the dependent
variable at node j. Equation (13) can be rewritten as

Aij = (}“iCDS )j + g(;tiCDS )j 1

where the first term on the right-hand side of this is the numerical approximation computed by
applying central difference for the first derivative, that is,

(8.7

(ﬂ’iCDS )j = % ' (14)

and the remaining terms are the truncation error of A.., given by

iii hz v h4 Avii he

elkos ), =~ 5 5 =AY g g

T 6 (15)

Comparing Eq. (9) with Eq. (15), it can be observed that the true orders of g(ﬂJCDS )J. are

p, = 2, 4, 6, and so on. Thus, its asymptotic order equals p, = 2. So, one says that the truncation
error of Ay is of second order. Furthermore, C, =—A" /6, C, =—AY, /120, C, =-A"} /5,040,
and so on, that is, the coefficients C, are functions that depends on x and also depends on

derivatives of the dependent variable.
In a similar way used to deduce Eq. (14), numerical approximations for the first derivative
by one-point upstream, one-point downstream and two-point downstream are given, respectively,

by

i _(AJ'+1_AJ')
(Aips ), ===
i _(AJ_AH)
(ZDDS)J-_T’
. )_=(4Aj+l—3A,.—Ajz).

2h

Table 2 shows a summary of the true and asymptotic orders of the truncation errors expected
for the numerical approximations presented in this work.



Table 2. Expected values for the truncation error orders.

Numerical solution

Types of numerical

True orders

Asymptotic order

(¢) approximation (pv) (po)

s one-point upstream 1,23 .. 1

Abos central difference 2,4,6, .. 2

Aops one-point 1,23, .. 1
downstream

Aops2 two-point 2,3,4,.. 2
downstream

3.2 Apparent order

According to Eq. (19) and Eg. (20), it is necessary to know the exact analytical solution ®
to compute the effective order p.. However, in practical cases, when the analytical solution is not

known, the asymptotic order p, is verified by means of the apparent order p,, given in the

following.

The apparent order p, is defined as the local inclination of the uncertainty curve U of the
numerical solution ¢ versus the length h of the elements of grid in logarithmic graphic. More

formally, the apparent order is given by

U(¢): Kuhpul

where K|, is a coefficient that does not depend on h. Since U (¢) =¢_—¢ then

By applying Eq. (26) to three different solutions ¢, ¢, and ¢, with lengths h, h, and h;,

I<UhpU =¢oo_¢'

respectively, one obtains

Kuhlpu :¢oo_¢l’
KuthU =9, _¢2v

Kuhspu =¢oo _¢3-

Solving such system of equations it follows that

where

_log(w,)
° log(q)




and
¢2_¢3
y =—. 32
v ¢1_¢2 ( )

Replacing Eg. (1) in Eqg. (32) it follows that (to simplify the notation we consider that
E1 = E(¢1) ) Ez = E(¢z)e E3 = E(¢3))

_[(@—EZ)—(G)—E3)]_ Es_Ez

o= [(q) - El) - (q) - Ez)] - Ez - El (33)

and thus we one has

(34)

For the Richardson's Estimator U, (see Eq. (4)), the uncertainty of the numerical solution
¢, obtained in the fine grid of length h, is given by
_$—9
Ui (9) = qlpu _21. (35)

Applying the general equation of the error discretization E (see Eq. (2)), in three grids of
different lengths h, h, and h, (fine, coarse and super-coarse) one has

E,=Ch"™ +C,h” +Ch™ +..., (36)
E,=Ch,™ +C,h,” +C,h,” +..., (37)
E,=Ch™ +C,h,” +C,h,™ +... (38)

Since the equalities h, =gh, and h, _h hold (see Eq. (31)), replacing such equations in
q

Eq. (36) and Eq. (38), respectively, it implies that

pL P2—PL Ps—PL
E = th C,+C, [&j +C, (&] +o ], (39)
q™ q q

E, = (ahy)™ [ C, +C,(ah,)™ ™ +Cy(gh,) ™™ +...|. (40)

From Eq. (37) and Eq. (39) one obtains



E 1 [CrC(h/a)" " +Cihla)" " h] g a an
E2 qu I:C1+C:2thrpL +C3h2P3—PL +:| qu B
and from Eq. (37) and Eq. (40) one obtains
E o (GGl ™ ) v ] c @)
E2 [C1+Czh2P2*pL +C3h2p3*pL +:| B'
where
A=[C+Cy (R /)" ™ +Cy(hy 1) ™ 4.,
B=[C,+C,h," ™ +Ch ™ +..],
C=[C,+C,(ah,)™ ™ +Cy(gh,)™ ™ +...].
Replacing Eqg. (41) and Eq. (42) in Eq. (34) one obtains
(@*C-B)
g2 = 7 43
vy =1 Q"B A) (43)
Replacing Eq. (43) in Eqg. (30) it follows that
Py = P +APy, (44)

where Ap, = log(K)/log(q) and K is given by K = (q*C - B)/(q"B-A).
When g —1 it follows that K —1, resulting in indetermination of Ap, . Eliminating this
indetermination one obtains

— 2 (CZ pz(pz B pl_)hp27pL +C3 p3(p3 - p,_)hpB—pL +)

: 45
(Cip +C,oph™ ™ +Cypsh™ ™ +..) )

Apy

where h=h, is the length of the grid. Equation (44) and Eq. (45) are used for the computation of

the apparent order.
Based on the analysis of Section 3.1.1, we conclude that the possible values for the apparent
order are the same of the effective order.

Remark: Note that the effective order p, equals the asymptotic order p, (for each h) if the general

equation of the error discretization E consists of only one term. However, when h — 0 it follows
that p, - p,.



4. EXAMPLES

In the practical cases of CFD, that is, when it is desirable to obtain the numerical solution for
a specific problem, the analytical solution is unknown. However, for the examples shown in this
section, we consider that the analytical solution of the dependent variable (A) and their respective
derivatives are known. Here we give some examples of the adopted procedure to compute
truncation and discretization errors by applying Taylor series.

The function used is

A =x*,

whose its respective derivatives are given by:

A =4x3,

A" =12x2,

A" =24x,

A" =24,

A =A"=.=0.

We present some examples of applications to compute the effective p., Eq. (23), and the
apparent order p,, Eq. (44), both based on only one numerical solution. The computations of p.

and p,, are applied to four numerical approximations (45, Apss Apps aNd Ahps_,) and the results
are exhibited in Tabs. 3, 5, 6, 8 and 10 and in Figs. 1 to 4. The differences [p. — p,| and |p, — p,|
are shown in Tabs. 4, 7, 9 and 11. Examples 1 to 4, we consider only the node x; =8 and h=4, 2,
1,1/2,1/4, ..., 1/256. Example 5, we consider only the node x; =0 and h=1, 1/2, 1/3, 1/4, 1/5,

.. 1/15,1/16, ..., 1/50.

Example 1
For the numerical approximation A, , one has:
£(A,ps) = 6X*h —4xh? +1h°, (47)
where C, =6x*and p, =1, C,=—4x and p, =2 and C, =1 and p, =3.Therefore,

2h(h-16)

' )=1+Ap, where Ap = ,
Pe (Aups) P P (384 32h+ h?)

4h(3h -32)
(384 —64h +3h?)

Py (Aps) =1+ Ap, where Ap =



Table 3. Effective ( p ) and apparent order ( p, ) of the uncertainty for the numerical
approximation of the first order derivative with one-point upstream (4 ¢ ). Asymptotic

orderp, =1.

H Pe Py
4.000000000E+00 0.64705882352941 -0.81818181818182
2.000000000E+00 0.82716049382716 0.22388059701493
1.000000000E+00 0.91501416430595 0.64086687306502
5.000000000E-01 0.95790902919212 0.82707299787385
2.500000000E-01 0.97905933189297 0.91512476659311
1.250000000E-01 0.98955635047901 0.95795072090414
6.250000000E-02 0.99478490280490 0.97907136909840
3.125000000E-02 0.99739414012999 0.98955955323886
1.561500000E-02 0.99869749308799 0.99478572717114
7.812500000E-03 0.99934885240405 0.99739434914989
3.906250000E-03 0.99967445268003 0.99869754570708
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Figure 1. Effective ( p.) and apparent error order ( p, ) of the uncertainty of &(15s) .

Example 2
For the numerical approximation A, one has:
£(Agps ) = —4xh?, (48)
where C, =—-4x and p, =2. Thus,

Pe (Aps) = 2+ Ap, where Ap =0,



Py (Aeps) = 2+ Ap, where Ap=0.
According to Tab. 5, for the numerical approximation A, we have p.=p, =2.
Therefore, they do not depend on h.

Table 5. Effective ( p. ) and apparent error order ( p, ) of the uncertainty for the numerical

approximation of the first order derivative with central difference (4., ). Asymptotic order p, = 2.

h Pe Py
4.000000000E+00 2.000000000E+00 2.000000000E+00
2.000000000E+00 2.000000000E+00 2.000000000E+00
1.000000000E+00 2.000000000E+00 2.000000000E+00
5.000000000E-01 2.000000000E+00 2.000000000E+00
2.500000000E-01 2.000000000E+00 2.000000000E+00
1.250000000E-01 2.000000000E+00 2.000000000E+00
6.250000000E-02 2.000000000E+00 2.000000000E+00
3.125000000E-02 2.000000000E+00 2.000000000E+00
1.561500000E-02 2.000000000E+00 2.000000000E+00
7.812500000E-03 2.000000000E+00 2.000000000E+00
3.906250000E-03 2.000000000E+00 2.000000000E+00

Example 3
For the numerical approximation A, one has:
£(Apps) = —6X°h—4xh® —1h?, (49)

where C, =-6x*, p,_ =1, C,=-4x, p,=2,C,=-1and p,=3. Thus,

2h(h +16)

A )=1+Ap, where Ap = ,
Pe (Zo0s) P P = 384+32n+h?)

4h(3h +32)
(384 + 64h +3h?)

P, (Abps) =1+ Ap, Where Ap =



Table 6. Effective ( p. ) and apparent error order ( p, ) of the uncertainty for the numerical
approximation of the first order derivative with one-point downstream (1, ). Asymptotic

order p, =1.

h Pe Py
4.000000000E+00 1.30303030303030 2.02325581395349
2.000000000E+00 1.15929203539823 1.58015267175573
1.000000000E+00 1.08153477218225 1.31042128603104
5.000000000E-01 1.04122423485322 1.16076784643071
2.500000000E-01 1.02072373664913 1.08183663907543
1.250000000E-01 1.01038940120002 1.04128970547208
6.250000000E-02 1.00520153414898 1.02073874218522
3.125000000E-02 1.00260246904812 1.01039297487521
1.561500000E-02 1.00130165920276 1.00520240487570
7.812500000E-03 1.00065093566840 1.00260268386296
3.906250000E-03 1.00032549433807 1.00130171254621
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Figure 2. Effective ( p. ) and apparent error order ( p, ) of the uncertainty of &(A},).

Example 4
For the numerical approximation A ,, one has:

£(Apps_,) =8xh* +6h%, (50)

where C, =8x e p, =2e C,=6 e p, =3. Thus,



e (Abns o) =1+ Ap, where Ap =

by (Abps_) =1+Ap , where Ap =

Table 8. Effective ( p. ) and apparent error order ( p, ) of the uncertainty for the numerical
approximation of the first order derivative two-point downstream ( A,y ,). Asymptotic

6h

18h

(64 +6h) '

(64+9h)

orderp, =2.

h Pe Py
4.000000000E+00 2.17647058823529 2.72000000000000
2.000000000E+00 2.12000000000000 2.43902439024390
1.000000000E+00 2.07317073170732 2.24657534246575
5.000000000E-01 2.04109589041096 2.13138686131387
2.500000000E-01 2.02189781021898 2.06792452830189
1.250000000E-01 2.01132075471698 2.03454894433781
6.250000000E-02 2.00575815738964 2.01742497579864
3.125000000E-02 2.00290416263311 2.00875060768109
1.561500000E-02 2.00145843461351 2.00438489646772
7.812500000E-03 2.00073081607795 2.00219485428606
3.906250000E-03 2.00036580904768 2.00109802964680
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Figure 3. Error effective order ( p. ) and uncertainty apparent order ( p, ) of £(A5y_,).




Example 5

In this example we deal with the discretization error (E) of first derivative of dependent
variable with two-point downstream (A, ,). For numerical approximation, one has (Marchi;
2002):

E(/iiDDs-z) =—h* +6h°, (51)
where C, =-1e p, =2, C, =6 e p, =3. Therefore,

6h

Pe (A,ps) = 2+ Ap , Where Ap:m,

12h

P, (Aps) =2+ Ap, where Ap = T

Table 10. Effective ( p. ) and apparent order ( p, ) of the uncertainty for the numerical

approximation of the first order derivative with two-point downstream (A, , ). Asymptotic

orderp, =2.

h Pe Py
1.00000000000000 3.20000000000000 3.50000000000000
0.50000000000000 3.50000000000000 3.71428571428571
0.33333333333333 4.00000000000000 4.00000000000000
0.25000000000000 5.00000000000000 4.40000000000000
0.20000000000000 8.00000000000000 5.00000000000000
0.16666666666667 0 6.00000000000000
0.14285714285714 -4.00000000000000 8.00000000000000
0.12500000000000 -1.00000000000000 14.00000000000000
0.11111111111111 0.00000000000000 0
0.10000000000000 0.50000000000000 -10.00000000000001
0.09090909090909 0.80000000000000 -4.00000000000000
0.08333333333333 1.00000000000000 -2.00000000000000
0.07692307692308 1.14285714285714 -1.00000000000000
0.07142857142857 1.25000000000000 -0.40000000000000
0.06666666666667 1.33333333333333 0
0.02040816326531 1.86046511627907 1.70000000000000
0.02000000000000 1.86363636363636 1.70731707317073
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Figure 4. Effective ( p.) and apparent error order ( p, ) of the uncertainty of E(155_,) .



