
ANALYTICAL EFFECTIVE AND APPARENT ORDER FOR ESTIMATING THE 
DISCRETIZATION ERROR 

 
 
Carlos H. Marchi*, Marcio A. V. Pinto*, Luciane Grossi**, Giuliano G. La Guardia** 
 
*Department of Mechanics Engineering, Federal University of Paraná, CP 19.011, 81.531-990, 
Curitiba, PR, Brazil. 
e-mail: marchi@ufpr.br; marcio_villela@yahoo.com.br 
 
**Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900, Ponta 
Grossa-PR, Brazil. 
e-mail: lgbombacini@gmail.com; gguardia@uepg.br 
 
Abstract 
Numerical solutions of one equation in fluid dynamics are obtained by the finite difference method 
with uniform grids and four types of numerical approximations. Analytical effective as well as 
analytical apparent orders for estimating the discretization and truncation error are established. 
These analytical orders are investigated for the case in which the size of the grid element is small. 
 
1 - INTRODUCTION 
 

When the error of the numerical solution is caused only by truncated errors (ε ), the 
difference between the analytical exact solution (Φ ) of a variable and its numerical solution (φ ) is 
called discretization error (E), and is defined by 
 

E(φ ) =  Φ  - φ ,                                      (1) 
 
where the symbols Φ  and φ  represents, respectively, the analytical and numerical solutions of the 
variables. 

Beyond Eq. (1), other method to compute the discretization error is given by (Ferziger and 
Peric, 1999) 
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1 2 3( ) ...L pp pE C h C h C hφ = + + + ,                                                     (2) 

 
where each iC ∈R , 1, 2,3,...i =  are the coefficients. Such coefficients can be positive or negative 
and also they can depend on the dependent variable (Λ ) and their respective derivatives, but they 
do not depend on the length (h) of the elements of the grid. Equation (2) is called general equation 
of the discretization error. 

By means of Eq. (1) or Eq. (2) one can see that the discretization error value can be only 
computed when the analytical solution of the mathematical model is known. However, in most of 
cases, the analytical solution is not known, consequently, it is necessary to estimate such analytical 
solution. Thus, instead of computing the discretization error one computes the estimation of its 
value. Such estimation is also called uncertainty U of the numerical solution φ  (Mehta, 1996; 
Chapra and Canale, 1994): 
 

( )U φ φ φ∞= − .                                                                        (3) 
 

The Richardson's Estimator ( )RiU φ  (Richardson and Gaunt, 1927; Blottner, 1990) is given 
by 



 
( )RiU φ φ φ∞= − ,                                                                       (4) 

 
where φ  represents the numerical solution of the variable of interest and φ∞  is a estimation of the 
value of the analytical solution; φ∞  is obtained from the generalized Richardson's extrapolation 
(Roache, 1994) and is given by 
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where 1φ  and 2φ  are the corresponding numerical solution of the fine and coarse grid,  respectively, 
whose length h of the elements are 1h  and 2h , Lp  is the asymptotic order of the discretization error 
and q is the grid refinement ratio defined by 
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Introducing Eq. (5) into Eq. (4), the Richardson's Estimator becomes 
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.                                                   (7) 

 
The expression for the Richardson's extrapolation is given by considering that the 

uncertainty U of a numerical solution φ  that depends on a constant UK  (independent of h) and Lp , 
the asymptotic order of the discretization error.  

In the following sections mathematical model, the type of variables, the numerical 
approximations and their truncation error used in this work are introduced. The expressions are 
deduced for analytical effective and apparent order. Finally, the results and conclusion of the work 
are presented. 
 
2. MATHEMATICAL AND NUMERICAL MODELS 
 

The solution of mathematical models of interest is obtained by means of numerical 
approximation of each one of their terms. For this, we consider that the nodal values utilized in such 
numerical approximation are obtained by means of analytical solutions, that is, the error in each 
node is equal to zero. 

The truncation error  ε of a variable φ  is given by 
 

( )ε φ φ= Φ − ,                     (8) 
 
where Φ  is the analytical solution of φ , where φ  is its approximated value. Equation (8) can be 
represented generically by  
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where each iC ∈R , 1, 2,3,...i = , are the coefficients. Such coefficients can be positive or negative 
and they can depend on the dependent variable (Λ ) and their respective derivatives, but they do not 
depend on the length h. The Equation (9) is called general equation of the truncation error. 



When the numerical solution error is caused only by truncation error, the discretization error 
E (see Eq. (1)), coincides with the truncation error ε  (see Eq. (8)). If the exact analytical solution of 
Φ  and its approximated value φ  are known, the value for the truncation error can be derived by 
two distinct methods. The first way is by direct application of Eq. (8) and the second one is by 
replacing in Eq. (8) the exact analytical solution Φ  by its Fourier series and also replacing the 
expression utilized for the numerical approximation φ . 

Table 1 shows two types of variables for which are presented the types of numerical 
approximations utilized in this paper as well as the symbols employed to denote the analytical 
solution (Φ ) and the numerical solution (φ ). The variable considered is the first order derivative of 
the dependent variable. Its analytical solution is denoted by iΛ  and its numerical approximations 
are performed of four different manners, denoted by i

UDSλ , i
CDSλ , i

DDSλ  and i
DDS 2−λ , respectively. 

 
Table 1. Definition of the approximations utilized in this paper. 

Type of Variable Analytical solution 
(Φ ) 

Numerical solution 
(φ ) 

Types of numerical 
approximations  

First order 
derivative of the 

dependent variable  

iΛ  i
UDSλ  one-point upstream 
i
CDSλ  central difference 
i
DDSλ  one-point 

downstream 
i
DDS 2−λ  two-point 

downstream 
 

Numerical approximations and their truncation errors can be obtained from the Taylor 
series, which is an infinite series defined by (Kreyszig, 2006) 
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,                                                                     (10) 

 
where Λ  denotes the dependent variable of the mathematical models, xΛ  is the exact analytical 
value obtained at coordinate x with a Taylor series expansion from the node j, where the exact 
analytical value of jΛ  and its derivatives ( i

jΛ , ii
jΛ , …, n

jΛ ) are known. Equation (10) is valid if Λ  
is a continuous function of x in the closed interval [ , ]jx x  and there are continuous derivatives up to 
the order n in this same interval. 

Applying Eq. (10) to the nodes 1jx −  and 1jx +  on the uniform grid, one obtains 
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where jx  is a generic node used to perform the numerical approximations; 1−−= jj xxh  denotes the 
grid spacing and jΛ  denotes 

jxΛ . 

Numerical approximations for the variable iΛ  given in Tab. (1) and others are presented, for 
example, in Fletcher (1997), Ferziger and Peric (1999), and Tannehill et al. (1997). Those use in 
this work are shown below. 



Subtracting Eq. (11) from Eq. (12), one gets an exact analytical expression for the first 
derivative of the dependent variable at node j in the following form: 
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where iii

jΛ , v
jΛ  e vii

jΛ  are, respectively, the third, fifth and seventh derivatives of the dependent 
variable at node j. Equation (13) can be rewritten as  

 
( ) ( ) j
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where the first term on the right-hand side of this is the numerical approximation computed by 
applying central difference for the first derivative, that is, 
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and the remaining terms are the truncation error of i

CDSλ , given by 
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Comparing Eq. (9) with Eq. (15), it can be observed that the true orders of ( ) j

i
CDSλε  are 

Vp = 2, 4, 6, and so on. Thus, its asymptotic order equals 2=Lp . So, one says that the truncation 
error of i

CDSλ  is of second order. Furthermore, 61
iii
jC Λ−= , 1202

v
jC Λ−= , 040,53

vii
jC Λ−= , 

and so on, that is, the coefficients iC  are functions that depends on x and also depends on 
derivatives of the dependent variable. 

In a similar way used to deduce Eq. (14), numerical approximations for the first derivative 
by one-point upstream, one-point downstream and two-point downstream are given, respectively, 
by 
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λ +Λ −Λ

= , 

 

( ) ( )1j ji
DDS j h

λ −Λ −Λ
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Table 2 shows a summary of the true and asymptotic orders of the truncation errors expected 

for the numerical approximations presented in this work. 
 
 
 
 



Table 2. Expected values for the truncation error orders. 
Numerical solution 

(φ ) 
Types of numerical 

approximation  
True orders 

 ( Vp ) 
Asymptotic order 

( Lp ) 
i
UDSλ  one-point upstream 1, 2, 3, ... 1 
i
CDSλ  central difference 2, 4, 6, ... 2 
i
DDSλ  one-point 

downstream 
1, 2, 3, ... 1 

i
DDS 2−λ  two-point 

downstream 
2, 3, 4, ... 2 

 
 
3.2 Apparent order  
 

According to Eq. (19) and Eq. (20), it is necessary to know the exact analytical solution Φ  
to compute the effective order Ep . However, in practical cases, when the analytical solution is not 
known, the asymptotic order Lp  is verified by means of the apparent order Up , given in the 
following. 
 The apparent order Up  is defined as the local inclination of the uncertainty curve U of the 
numerical solution φ  versus the length h of the elements of grid in logarithmic graphic. More 
formally, the apparent order is given by  
 

( ) Up
UU K hφ = ,                                                                                (25) 

 
where UK  is a coefficient that does not depend on h. Since ( )U φ φ φ∞= −  then 
 

Up
UK h φ φ∞= − .                                                                               (26) 

 
By applying Eq. (26) to three different solutions 1φ , 2φ  and 3φ  with lengths 1h , 2h  and 3h , 

respectively, one obtains 
 

1 1
Up

UK h φ φ∞= − ,                                                               (27) 
 

2 2
Up

UK h φ φ∞= − ,                                                                  (28) 
 

3 3
Up

UK h φ φ∞= − .                                                                  (29) 
 

Solving such system of equations it follows that 
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where  
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Replacing Eq. (1) in Eq. (32) it follows that (to simplify the notation we consider that 

1 1( )E E φ= , 2 2( )E E φ= e 3 3( )E E φ= ) 
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and thus we one has 
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For the Richardson's Estimator RiU  (see Eq. (4)), the uncertainty of the numerical solution 

1φ  obtained in the fine grid of length  1h  is given by  
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Applying the general equation of the error discretization E (see Eq. (2)), in three grids of 

different lengths 1h , 2h  and 3h  (fine, coarse and super-coarse) one has 
 

32
1 1 1 2 1 3 1 ...L pp pE C h C h C h= + + +  ,                               (36) 

 
32

2 1 2 2 2 3 2 ...L pp pE C h C h C h= + + + ,                             (37) 
 

32
3 1 3 2 3 3 3 ...L pp pE C h C h C h= + + +                             (38) 

 

Since the equalities 3 2h qh=  and 2
1

hh
q

=  hold (see Eq. (31)), replacing such equations in 

Eq. (36) and Eq. (38), respectively, it implies that 
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From Eq. (37) and Eq. (39) one obtains 
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and from Eq. (37) and Eq. (40) one obtains 
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where  
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Replacing Eq. (41) and Eq. (42) in Eq. (34) one obtains 
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Replacing Eq. (43) in Eq. (30) it follows that 
 

U L Up p p= + ∆ ,                                                                                (44) 
 
where log( ) log( )Up K q∆ =  and K  is given by )()( ABqBCqK LL PP −−= . 

When 1q →  it follows that 1K → , resulting in indetermination of Up∆ . Eliminating this 
indetermination one obtains 
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where 2h h=  is the length of the grid. Equation (44) and Eq. (45) are used for the computation of 
the apparent order. 

Based on the analysis of Section 3.1.1, we conclude that the possible values for the apparent 
order are the same of the effective order. 
 
Remark: Note that the effective order Up  equals the asymptotic order Lp  (for each h) if the general 
equation of the error discretization E consists of only one term. However, when  0h →  it follows 
that U Lp p→ . 

 
 
 
 



 
4. EXAMPLES 
 

In the practical cases of CFD, that is, when it is desirable to obtain the numerical solution for 
a specific problem, the analytical solution is unknown. However, for the examples shown in this 
section, we consider that the analytical solution of the dependent variable (Λ ) and their respective 
derivatives are known. Here we give some examples of the adopted procedure to compute 
truncation and discretization errors by applying Taylor series. 

The function used is 
 

4x=Λ , 
 
whose its respective derivatives are given by: 
 

34xi =Λ , 
 

212xii =Λ , 
 

xiii 24=Λ , 
 

24=Λiv , 
 

0... ==Λ=Λ viv . 
 

We present some examples of applications to compute the effective Ep , Eq. (23), and the 
apparent order Up , Eq. (44), both based on only one numerical solution. The computations of Ep  
and Up  are applied to four numerical approximations ( i

UDSλ , i
CDSλ , i

DDSλ  and i
DDS 2−λ ) and the results 

are exhibited in Tabs. 3, 5, 6, 8 and 10 and in Figs. 1 to 4. The differences LE pp −  and U Lp p−  
are shown in Tabs. 4, 7, 9 and 11. Examples 1 to 4, we consider only the node 8=jx  and 4=h , 2, 
1, 21 , 41 , ..., 2561 . Example 5, we consider only the node 0jx =  and 1h = , 21 , 1 3, 41 , 1 5, 
..., 1 15 , 1 16 , ..., 1 50 . 
 
Example 1  

 
For the numerical approximation i

UDSλ , one has: 
 

322 146)( hxhhxi
UDS +−=λε ,                                                          (47) 

 
where 2

1 6xC =  and 1=Lp , 2 4C x= −  and 22 =p  and 13 =C  and 3 3p = .Therefore,   
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Table 3. Effective ( Ep ) and apparent order ( Up ) of the uncertainty for the numerical 
approximation of the first order derivative with one-point upstream ( i

UDSλ ). Asymptotic 
order 1=Lp . 

H Ep  Up  
4.000000000E+00 0.64705882352941 -0.81818181818182 
2.000000000E+00 0.82716049382716 0.22388059701493 
1.000000000E+00 0.91501416430595 0.64086687306502 
5.000000000E-01 0.95790902919212 0.82707299787385 
2.500000000E-01 0.97905933189297 0.91512476659311 
1.250000000E-01 0.98955635047901 0.95795072090414 
6.250000000E-02 0.99478490280490 0.97907136909840 
3.125000000E-02 0.99739414012999 0.98955955323886 
1.561500000E-02 0.99869749308799 0.99478572717114 
7.812500000E-03 0.99934885240405 0.99739434914989 
3.906250000E-03 0.99967445268003 0.99869754570708 
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Figure 1.  Effective ( Ep ) and apparent error order ( Up ) of the uncertainty of )( i

UDSλε .   
 
 

Example 2  
 
For the numerical approximation i

CDSλ , one has: 
 

24)( xhi
CDS −=λε ,                                                                            (48) 

 
where xC 41 −=  and 2=Lp . Thus,   

 
pp i

CDSE ∆+= 2)(λ , where 0=∆p ,  



 
pp i

CDSU ∆+= 2)(λ , where 0=∆p . 
 

According to Tab. 5, for the numerical approximation i
CDSλ  we have 2== UE pp . 

Therefore, they do not depend on h. 
 
Table 5. Effective ( Ep ) and apparent error order ( Up ) of the uncertainty for the numerical 

approximation of the first order derivative with central difference ( i
CDSλ ). Asymptotic order 2=Lp . 

h Ep  Up  
4.000000000E+00 2.000000000E+00 2.000000000E+00 
2.000000000E+00 2.000000000E+00 2.000000000E+00 
1.000000000E+00 2.000000000E+00 2.000000000E+00 
5.000000000E-01 2.000000000E+00 2.000000000E+00 
2.500000000E-01 2.000000000E+00 2.000000000E+00 
1.250000000E-01 2.000000000E+00 2.000000000E+00 
6.250000000E-02 2.000000000E+00 2.000000000E+00 
3.125000000E-02 2.000000000E+00 2.000000000E+00 
1.561500000E-02 2.000000000E+00 2.000000000E+00 
7.812500000E-03 2.000000000E+00 2.000000000E+00 
3.906250000E-03 2.000000000E+00 2.000000000E+00 

 
  

Example 3  
 
For the numerical approximation i

DDSλ , one has: 
 

2 2 3( ) 6 4 1i
DDS x h xh hε λ = − − − ,                                                         (49) 

 
where 2

1 6C x= − , 1=Lp , 2 4C x= − , 22 =p , 3 1C = −  and 3 3p = . Thus,   
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Table 6. Effective ( Ep ) and apparent error order ( Up ) of the uncertainty for the numerical 

approximation of the first order derivative with one-point downstream ( i
DDSλ ). Asymptotic 

order 1=Lp . 
h Ep  Up  

4.000000000E+00 1.30303030303030 2.02325581395349 
2.000000000E+00 1.15929203539823 1.58015267175573 
1.000000000E+00 1.08153477218225 1.31042128603104 
5.000000000E-01 1.04122423485322 1.16076784643071 
2.500000000E-01 1.02072373664913 1.08183663907543 
1.250000000E-01 1.01038940120002 1.04128970547208 
6.250000000E-02 1.00520153414898 1.02073874218522 
3.125000000E-02 1.00260246904812 1.01039297487521 
1.561500000E-02 1.00130165920276 1.00520240487570 
7.812500000E-03 1.00065093566840 1.00260268386296 
3.906250000E-03 1.00032549433807 1.00130171254621 
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Figure 2. Effective ( Ep ) and apparent error order ( Up ) of the uncertainty of )( i

DDSλε .   
 
 

Example 4  
 
For the numerical approximation i

DDS 2−λ , one has: 
 

2 3
2( ) 8 6i

DDS xh hε λ − = + ,                                                                   (50) 
 
where xC 81 =  e 2=Lp  e 62 =C  e 32 =p . Thus,   
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Table 8. Effective ( Ep ) and apparent error order ( Up ) of the uncertainty for the numerical 

approximation of the first order derivative two-point downstream ( i
DDS 2−λ ). Asymptotic 

order 2Lp = . 
h Ep  Up  

4.000000000E+00 2.17647058823529 2.72000000000000 
2.000000000E+00 2.12000000000000 2.43902439024390 
1.000000000E+00 2.07317073170732 2.24657534246575 
5.000000000E-01 2.04109589041096 2.13138686131387 
2.500000000E-01 2.02189781021898 2.06792452830189 
1.250000000E-01 2.01132075471698 2.03454894433781 
6.250000000E-02 2.00575815738964 2.01742497579864 
3.125000000E-02 2.00290416263311 2.00875060768109 
1.561500000E-02 2.00145843461351 2.00438489646772 
7.812500000E-03 2.00073081607795 2.00219485428606 
3.906250000E-03 2.00036580904768 2.00109802964680 
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Figure 3. Error effective order ( Ep ) and uncertainty apparent order ( Up ) of )( 2

i
DDS−λε .   

 
 
 
 
 
 



Example 5  
 
In this example we deal with the discretization error (E) of first derivative of dependent 

variable with two-point downstream ( i
DDS 2−λ ). For numerical approximation, one has (Marchi; 

2002):  
 

32
2 6)( hhE i

DDS +−=−λ ,                                                                   (51) 
 
where 11 −=C  e 2=Lp , 62 =C  e 32 =p . Therefore,   

 

pp i
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pp i
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Table 10. Effective ( Ep ) and apparent order ( Up ) of the uncertainty for the numerical 

approximation of the first order derivative with two-point downstream ( 2
i
DDSλ − ). Asymptotic 

order 2=Lp . 
h Ep  Up  

1.00000000000000 3.20000000000000 3.50000000000000 
0.50000000000000 3.50000000000000 3.71428571428571 
0.33333333333333 4.00000000000000 4.00000000000000 
0.25000000000000 5.00000000000000 4.40000000000000 
0.20000000000000 8.00000000000000 5.00000000000000 
0.16666666666667 ∞  6.00000000000000 
0.14285714285714 -4.00000000000000 8.00000000000000 
0.12500000000000 -1.00000000000000 14.00000000000000 
0.11111111111111 0.00000000000000 ∞  
0.10000000000000 0.50000000000000 -10.00000000000001 
0.09090909090909 0.80000000000000 -4.00000000000000 
0.08333333333333 1.00000000000000 -2.00000000000000 
0.07692307692308 1.14285714285714 -1.00000000000000 
0.07142857142857 1.25000000000000 -0.40000000000000 
0.06666666666667 1.33333333333333 0 

… … … 
0.02040816326531 1.86046511627907 1.70000000000000 
0.02000000000000 1.86363636363636 1.70731707317073 
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Figure 4.  Effective ( Ep ) and apparent error order ( Up ) of the uncertainty of )( 2

i
DDSE −λ .   

 
 


