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Numerical solutions of eight differential equations in � uid dynamics are obtained by the
� nite-difference method with uniform unidimensional grids and with six types of numerical
approximations. The main purpose of this work is to calculate uncertainties of numerical
solutions using the Richardson error estimator and another estimator which is introduced in
this work. These estimators are examined for reliability and accuracy of the uncertainty for
the situation in which the size of the grid elements is small. In this case, as is shown in this
work, two values of uncertainty can be found that bound the discretization error.

INTRODUCTION

The error (E) in a numerical solution of a variable of interest can be expressed
as [1]

E(f) = F – f (1)

where F is the exact analytical solution and f is the numerical solution. Numerical
solution errors in ¯uid dynamics are discussed in [2±11], where the process that
quanti®es these errors is called veri®cation. The numerical error sources can be
classi®ed into four types: truncation errors, iteration errors, round-o� errors, and
programming errors.

Truncation error arises from numerical approximations which are made in
the discretization of a mathematical model [4, 6, 11]. Roughly, this error decreases as
the grid spacing (h) is diminished, where h is shown in Figure 1. The iteration error
is the di� erence between the exact and the iterative solutions of the discretized
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equation [11]. Grossly, this error decreases as the number of iterations is increased.
The round-o� error is due mainly to a ®nite number of digits in the arithmetic
computations [12, 13]. Roughly, this error increases as the grid spacing is diminished.
Programming errors include the errors caused by people in the implementation and
use of a code.

The acceptable value of a numerical error depends on among other factors, the
intended use of the numerical solution, budgetary constraints, available time to

NOMENCLATURE

c coe� cients in the truncation error

equation

C coe� cients in the discretization error

equation

E discretization error of the numerical

solution

h grid spacing or distance between two

successive grid points

K coe� cients in the numerical solution

uncertainty equation

L length of the problem domain

pL asymptotic order of the error

pU apparent order of the uncertainty

pV true orders of the error

q grid re®nement ratio

R 1 Richardson series

U uncertainty or estimated error of the

numerical solution

UC uncertainty of the numerical solution

by the convergent estimator

URi uncertainty of the numerical solution

by the Richardson estimator

x spatial coordinate
e truncation error
l numerical solution of the dependent

variable
lm numerical solution of the average

of L
l i

CDS numerical approximation of Li

by central di� erence
l i

DDS numerical approximation of Li

by one-point downstream di� erence

li
DDS-2 numerical approximation of Li

by two-point downstream di� erence
li

UDS numerical approximation of Li

by one-point upstream di� erence
lii

CDS numerical approximation of Lii

by central di� erence
L exact analytical solution of the

dependent variable
Lm exact analytical solution of the average

of L
Li exact analytical solution of the ®rst

derivative of L
Lii exact analytical solution of the second

derivative of L
f numerical solution of the variable

of interest
fC convergent numerical solution
f1 estimated analytical solution
F exact analytical solution of the variable

of interest
C convergence ratio

Subscripts

CDS central di� erencing scheme

DDS downstream di� erencing scheme

j number of a grid node

j 7 1 left node to the node j

j ‡ 1 right node to the node j

UDS upwind di� erencing scheme

1 ®ne grid

2 coarse grid

3 supercoarse grid

Figure 1. A uniform and unidimensional grid.
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perform simulations, and available computations resources. One knows that all
numerical solutions contain errors. Therefore, it is important to estimate them
because of the following motives: (1) when the error is larger than the acceptable one,
the numerical solution has no reliability; (2) when the error is smaller than the
acceptable one, there is wasting of computational resources, that is, CPU time and
memory quantity; (3) in order to validate and to develop mathematical models,
for instance, turbulent ¯ows; and (4) to optimize the grid.

In this work, it is considered that the numerical solutions do not contain
iteration, round-o� , or programming errors. In other words, one assumes that the
numerical error de®ned in Eq. (1) is caused only by truncation error. In this case, it is
called discretization error [6], which is also calculated by Eq. (1). Hence, its value can
only be obtained as the exact analytical solution (F) is known. However, in practical
cases, that is, when F is unknown, the discretization error cannot be calculated. So,
the concept of uncertainty (U) is used. The uncertainty [5] of a numerical solution is
de®ned by

U(f) = f1 – f (2)

where f1 is the estimated analytical solution of a variable of interest. The uncer-
tainty is calculated by error estimators that can be divided into two sets. In the ®rst,
the uncertainty is based on a numerical solution obtained on one grid. In general,
uncertainties calculated for numerical solutions achieved by the ®nite-element
method are in this set, as one can see in the literature [14±16]. In the second set, the
uncertainty is based on numerical solutions obtained on two or more grids with
di� erent values of h. Uncertainties calculated for numerical solutions achieved by the
®nite-di� erence method and by the ®nite-volume method commonly are in this
second set of error estimators. Examples can be seen in [2, 17], where the Richardson
error estimator was used [18].

The Richardson error estimator is also used in this work. It is based on: (1) the
di� erence between two numerical solutions obtained on two grids; (2) the grid
re®nement ratio; and (3) the error order. This order can be either the asymptotic (pL)
or the apparent (pU) one. The asymptotic order [3] depends on numerical approx-
imations used in the discretization of a mathematical model. The apparent order [19]
depends on values of numerical solutions achieved on three di� erent grids. It is
recommended [7] to use the Richardson estimator only as pU º pL. However, in
general, the values of pU and pL are very di� erent from each other for grid spacings
commonly used. For example, with the numerical solutions of [2, 17, 19, 20] one
obtains values for the apparent order which are larger or smaller than the asymptotic
order, negative values, or otherwise nonexistent values. The consequences of these
di� erences between values of pU and pL have not been given suitable attention. In
this work it is shown that the value of pU and its function of h are of utmost
importance in order to estimate discretization errors with accuracy and reliability.
Moreover, it is shown that pU º pL sometimes results in error estimates based on the
Richardson extrapolation which are inaccurate and unreliable. Furthermore, it is
shown that only positive apparent order values must be employed in the Richardson
extrapolation.

The purpose of this work is to analyze the estimate of discretization errors in
the situation where the apparent order [19] of the uncertainty converges mono-
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tonically toward the asymptotic order [3] of the error. This work is developed
assuming: the ®nite-di� erence method [6]; steady-state unidimensional problems
with one dependent variable; uniform grids, Figure 1, that is, the grid spacing (h) is a
constant in every grid; a posteriori error estimation [21], which can be applied to
dependent variables or to variables achieved by di� erentiation or integration of
dependent variables; and the Richardson extrapolation [3] for diminishing and
estimating discretization errors.

In the following sections, the mathematical models, the types of variables,
the numerical approximations, and their truncation errors used in this work are
presented. Expressions are deduced for the Richardson extrapolation and the
Richardson uncertainty. The concepts of Richardson series, of convergent interval of
the apparent order, and of the convergent error estimator are introduced. Upper and
lower bounds on analytical solutions and on discretization errors are deduced.
Finally, the results and the conclusion of the work are presented.

MATHEMATICAL MODELS

The mathematical models used in this work are presented in Table 1. They
model basic problems of heat transfer and ¯uid mechanics. Dirichlet boundary
conditions [6] are used for the dependent variable (L). S is a constant, V is the ¯uid
velocity, Pe is the PeÂ clet number, and x is the independent variable. These mathe-
matical models are linear and nonlinear, and unidimensional.

All the mathematical models have exact, continuous, unique, and known
analytical solutions for each variable of interest. Therefore, it is possible to evaluate
whether error estimates of numerical solutions are accurate and reliable. One de®nes
an error estimate as accurate when the ratio between uncertainty (U) and error (E) is
close to the unity. When this ratio is larger or equal to unity, the error estimate is
reliable. The variables of interest are de®ned in the following section.

VARIABLES OF INTEREST

The exact analytical solution of every variable of interest is denoted by F, and
the numerical solution by f. Numerical solution error estimates are obtained for

Table 1. Mathematical models employed in the work

Case

Differential

equation

Numerical approximations used

in the differential equation

1 V dL
dx = 2x li

UDS

2 V dL
dx = S li

UDS

3 and 6 V dL
dx = 3x2 case 3: li

UDS; case 6: li
CDS

4 dL
dx = L ‡ 2x – x2 li

UDS

5 L dL
dx = 2x3 li

UDS

7 d 2L
dx2 = 12x2 lii

CDS

8 d
dx eL dL

dx

¡ ¢
= 0 li

CDS

9 and 10 Pe dL
dx = d 2L

dx2 case 9: li
UDS and lii

CDS

case 10: li
CDS and lii

CDS
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three types of variables that are shown in Table 2. The ®rst type is the dependent
variable of the mathematical models. Its exact analytical solution is denoted by L
and its numerical solution by l. For example, in meteorological studies, it is of
interest to solve the temperature on all points of the domain.

The second type is the integral or the average of the dependent variable on the
whole problem domain. Its exact analytical solution is denoted by Lm and its
numerical solution by lm. In general applications, this type of variable is used to
calculate mass ¯uxes, for example.

The third type is the derivative of the dependent variable on the left boundary
of the domain, that is, at x = 0. Its exact analytical solution is denoted by Li

and its
numerical solutions are denoted by li

DDS and li
DDS-2. In general applications, this

type of variable is used, for example, to calculate heat ¯uxes and shear stresses.
The variable L, l, Li, li

DDS, and li
DDS-2 can be called local variables because

their values depend on x. The variables Lm and lm can be called global variables
because their values represent the whole problem domain.

NUMERICAL APPROXIMATIONS AND THEIR TRUNCATION ERRORS

Numerical solutions are obtained by a numerical approximation of each term
of the mathematical models in Table 1. Some ways to do these approximations and
the generic expressions of their truncation errors are presented in this section. Also,
the concepts of true and asymptotic orders are de®ned.

Table 3 shows three types of variables, for which are presented six types of
numerical approximations used in this work and the symbols employed to denote the
analytical (F) and numerical (f) solutions. The ®rst variable is the ®rst derivative
of the dependent variable. Its analytical solution is denoted by Li. The numerical
approximations are made in four ways that are denoted by li

UDS, li
CDS, li

DDS, and
li

DDS-2. The second variable is the second derivative of the dependent variable. Its
analytical solution is denoted by Lii and the numerical approximation by lii

CDS. The
third variable is the average of the dependent variable on the whole problem domain.
Its analytical solution is denoted by Lm and the numerical approximation by lm.

For each variable of interest, the truncation error (e) can be de®ned as the
di� erence between its exact value (F) and its numerically approximated value (f),
that is,

e(f) = F – f (3)

Table 2. De®nitions of the variables of interest

Type of

variable

Analytical

solution (F)

Numerical

solution (f)

Type of variable with respect

to the independent

variable (x)

Dependent L l Local

Average of the

dependent variable

Lm lm Global

First derivative of the

dependent variable

Li li
DDS

l i
DDS-2

Local
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where it is assumed that f does not contain iteration, round-o� , or programming
errors. If the F and f values are known, e can be calculated by two ways. The ®rst
way is to calculate it using Eq. (3). The second way is by introducing in Eq. (3) an
expression for the exact analytical solution (F) of the variable of interest obtained
from the Taylor series and an expression for the numerical approximation (f). In
this case, one gets [3]

e(f) = c1hPL ‡ c2hP2 ‡ c3hP3 ‡ c4h
P4 ‡ ¢ ¢ ¢ (4)

where the coe� cients ci can be positive or negative. These coe� cients can also be
functions of the dependent variable (L) and of its derivatives; that is, they can change
with x but do not change with grid spacing (h). The exponents of h in Eq. (4) are
connected to the concepts of true and asymptotic orders of the truncation error,
which are de®ned as follows.

True and Asymptotic Orders of the Truncation Error

The true orders (pV) are de®ned as the exponents of h of the nonzero terms in
the truncation error equation, Eq. (4) that is, pL; p2; p3; p4, etc. The true orders follow
the relation pL < p2 < p3 < p4 etc., and are positive integer numbers. In general, they
constitute an arithmetic progression, in other words, the di� erence between suc-
cessive orders is a constant. Usually, the number of true orders is in®nite because the
truncation error equation, Eq. (4), is constituted by an in®nite quantity of nonzero
terms.

The smallest exponent of h in Eq. (4) is de®ned as the asymptotic order (pL).
It is a positive integer number and pL ¶ 1. As h ! 0, the ®rst term of Eq. (4) is the
leading term. So, pL is the slope of an e-versus-h logarithmic curve and indicates how
fast the error is reduced as the grid spacing is reduced.

Numerical Approximations

Numerical approximations and their truncation errors can be obtained from
the Taylor series, which is an in®nite series and is de®ned by [1]

Table 3. De®nitions of the numerical approximations used in the work

Type of variable

Analytical

solution (F)

Numerical

solution (f)

Type of numerical

approximation

First derivative of the

dependent variable

Li li
UDS One-point upstream

li
CDS Central difference

li
DDS One-point downstream

l i
DDS-2 Two-point downstream

Second derivative of the

dependent variable

Lii lii
CDS Central difference

Average of the

dependent variable

Lm lm Trapezoidal rule
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Lx =

X1

n= 0

Ln
j

(x – xj)
n

n!
(5)

where L is the dependent variable of the mathematical models, Lx is the exact
analytical value obtained at coordinate x with a Taylor series expansion from the
node j, where the exact analytical value of Lj and its derivatives (Li

j; Lii
j ; . . . ; Ln

j ) are
known. Equation (5) is valid if L is a continuous function of x in the closed interval
[x, xj] and there are continuous derivaties up to the order n in this same interval.

Applying Eq. (5) to the nodes j 7 1 and j ‡ 1 on the uniform grid shown in
Figure 1, one obtains

Lj– 1 = Lj – Li
jh ‡ Lii

j

h2

2
– Liii

j

h3

6
‡ ¢ ¢ ¢ (6)

Lj‡1 = Lj ‡ Li
jh ‡ Lii

j

h2

2
‡ Liii

j

h3

6
‡ ¢ ¢ ¢ (7)

where j is a generic node used to make the numerical approximations; the three
points indicate an in®nite series; and h is the grid spacing, given by

h = xj – xj– 1 (8)

Numerical approximations for the variables Li, Lii, and Lm given in Table 3
and others are presented, for example, in Fletcher [22], Ferziger and Peric [11], and
Tannehill et al. [6]. Those use in this work are shown below.

Subtracting Eq. (6) from Eq. (7), one gets an exact analytical expression for the
®rst derivative of the dependent variable at node j in the following form:

Li
j =

(Lj‡1 – Lj– 1)

2h
– Liii

j

h2

6
– L

v
j

h4

120
– Lvii

j

h6

5; 040
– ¢ ¢ ¢ (9)

where Liii
j , L

v
j , and Lvii

j are, respectively, the third, ®fth, and seventh derivatives of the
dependent variable at node j. Equation (9) can be rewritten as

Li
j = (li

CDS
)
j
‡ e(li

CDS
)
j

(10)

where the ®rst term on the right-hand side of Eq. (9) is the numerical approximation
by central di� erence for the ®rst derivative, that is,

(li
CDS

)
j =

(Lj‡1 – Lj– 1)

2h
(11)

and the remaining terms in Eq. (9) are the truncation error of li
CDS, given by

e(li
CDS

)
j = – Liii

j

h2

6
– L

v
j

h4

120
– Lvii

j

h6

5; 040
– ¢ ¢ ¢ (12)

Comparing Eq. (4) to Eq. (12), it can be observed that the true orders of
e(li

CDS
) are pV = 2, 4, 6, etc., and, then, its asymptotic order is pL = 2. So, one says

that the truncation error of li
CDS is of second order. Furthermore, c1 = – Liii

j =6;
c2 = – L

v
j =120; c3 = – L

vii
j =5; 040, etc., that is, the coe� cients ci are functions of x

and of derivatives of the dependent variable.
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In a similar way used to achieve Eq. (11), numerical approximations for the
®rst derivative by one-point upstream, one-point downstream, and two-point
downstream are given, respectively, by

(li
UDS

)
j =

(Lj – Lj– 1)

h
(13)

(li
DDS

)
j =

(Lj‡1 – Lj)

h
(14)

(li
DDS-2

)
j =

(4Lj‡1 – 3Lj – Lj‡2)

2h
(15)

The numerical approximation by central di� erence for the second derivative results
in

(lii
CDS

)
j =

(Lj– 1 ‡ Lj‡1 – 2Lj)

h2
(16)

The exact analytical solution of the averaged dependent variable on the whole
problem domain is calculated by

Lm =
I

L

Z
L

0

L dx (17)

where L is the length of the whole problem domain. The numerical approximation
for Lm, obtained by the trapezoidal rule [23], is given by

lm =
h

2L

XN

j= 1

(Lj– 1 ‡ Lj) (18)

where N is the number of grid elements. Table 4 shows a summary of the true and
asymptotic orders of the truncation errors expected for the six numerical approx-
imations presented in this section.

THE RICHARDSON ERROR ESTIMATOR

The discretization error can be calculated by Eq. (1). It can also be calculated
assuming an analogy [4, 11, 24] to the truncation error equation, Eq. (4), that is,

Table 4. Expected values for the orders of the truncation errors

Numerical

solution (f)

Type of numerical

approximation

True

orders (pV)

Asymptotic

order (pL)

li
UDS One-point upstream 1, 2, 3, . . . 1

li
CDS Central difference 2, 4, 6, . . . 2

li
DDS One-point downstream 1, 2, 3, . . . 1

li
DDS-2 Two-point downstream 2, 3, 4, . . . 2

lii
CDS Central difference 2, 4, 6, . . . 2

lm Trapezoidal rule 2, 4, 6, . . . 2

174 C. H. MARCHI AND A. F. CARVALHO DA SILVA



E(f) = C1hpL ‡ C2hp2 ‡ C3hp3 ‡ C4hp4 ‡ ¢ ¢ ¢ (19)

where the coe� cients Ci can be equal to or di� erent from the coe� cients ci in Eq. (4).
They can be positive or negative and can be functions of the dependent variable (L)
and of its derivatives; that is, they can change with x but it is assumed that they are
independent of the grid spacing (h). In the same form as Eq. (4), one can de®ne true
and asymptotic orders in Eq. (19) whose de®nitions are equal to those in the previous
section.

The value of the discretization error can only be calculated by Eq. (1) or by
Eq. (19) when the exact analytical solution is known. When it is unknown, the
concept of uncertainty de®ned in Eq. (2) is used. The uncertainty can be obtained,
for example, by the Richardson error estimator [2, 18]. According to it, the uncer-
tainty (URi) of a numerical solution (f) is given by

URi(f) = f1 – f (20)

where f represents the numerical solution of each variable of interest in Table 2, and
f1 denotes the estimated analytical solution. The value of f1 is obtained by the
Richardson extrapolation [3, 18, 24] as

f1 = f1
‡

(f1
– f2

)
(q pL – 1)

(21)

where f1 and f2 are numerical solutions obtained on ®ne (h1) and coarse (h2) grids,
respectively; pL is the asymptotic order of the discretization error; and q is the grid
re®nement ratio de®ned by

q =
h2

h1

(22)

Introducing Eq. (21) into Eq. (20), the Richardson error estimator results in

URi(f1
) =

(f1
– f2

)
(q pL – 1)

(23)

In order to get a reliable uncertainty calculated by the Richardson error estimator
it is necessary to have URi=E ¶ 1, that is, the analytical solution (F) may be between
f1 and f1. Figure 2 illustrates a reliable uncertainty (URi) that was obtained by the
Richardson error estimator. The values of URi and f1, given by Eqs. (23) and (21),
respectively, are exactly equal to the discretization error (E) and to the exact ana-
lytical solution (F) in the particular case when the discretization error equation,
Eq. (19), is constituted by a single term, as follows.

Deduction of the Richardson Extrapolation with Asymptotic Order

The expression of the Richardson extrapolation, Eq. (21), is obtained [3]
assuming that the uncertainty (U) of a numerical solution (f) is given by

U(f) = KUh pL (24)

where KU is a coe� cient which is assumed has a constant value, that is, it does not
change with h; h is the grid spacing; and pL is the asymptotic order of the
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discretization error. With Eq. (24) applied to two di� erent grids, h1 and h2, whose
numerical solutions are f1 and f2, respectively, one gets

U(f1
) = KUh

pL

1
(25)

U(f2
) = KUh

pL

2
(26)

Introducing Eq. (20) into Eqs. (25) and (26), one obtains

f1 – f1 = KUh
pL

1
(27)

f1 – f2 = KUh
pL

2
(28)

Equations (27) and (28) represent a system of two equations with two unknowns, KU

and f1. In these equations, the numerical solutions f1 and f2 are known, as are the
values of h1 and h2; and it is assumed that the asymptotic order (pL) of the dis-
cretization error is known and that the value is equal to the asymptotic order of the
truncation error. Solving Eqs. (27) and (28) to f1, one obtains the expression for the
Richardson extrapolation given in Eq. (21), concluding its deduction.

Deduction of the Richardson Extrapolation with Apparent Order

The apparent order (pU) is de®ned as the local slope on a curve of numerical
solution uncertainty versus the grid spacing in a logarithmic graph. Its value allows
one to verify in practice whether the asymptotic order (pL) is achieved as h ! 0.
Mathematically, the apparent order (pU) is obtained [19] from

U(f) = KUh pU (29)

where KU is a coe� cient which is assumed to be independent of h. Introducing Eq.
(2) into (29), one has

f1 – f = KUh pU (30)

With Eq. (30) applied to three di� erent grids, h1, h2, and h3, whose numerical
solutions are f1, f2, and f3, respectively, one gets

Figure 2. Example of a reliable uncertainty (URi) obtained by the Richardson error estimator.
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f1 – f1 = KUh
pU

1

f1 – f2 = KUh
pU

2

f1 – f3 = KUh
pU

3

9
>>>=

>>>;
(31)

where the unknowns of this equation system are f1, KU, and pU. Solving this sys-
tem, one obtains

pU =
log (f2

– f3
)=(f1

– f2
)[ ]

log(q)
(32)

f1 = f1
‡

(f1
– f2

)
(q pU – 1)

(33)

where the grid re®nement ratio (q) is given in Eq. (22) and is assumed to be constant
among grids h1, h2, and h3. The value of pU represents an averaged slope of the
uncertainties U1, U2, and U3 between h1 and h3 on a U-versus-h logarithmic graph.
The expression for f1 given in Eq. (33) is the Richardson extrapolation already
shown in Eq. (21). The di� erences are only pL and pU. With Eq. (33) into (20), one
has

URi(f1
) =

(f1
– f2

)
(q pU – 1)

(34)

In Eqs. (21) and (23), it was assumed that the discretization error asymptotic
order was equal to the truncation error asymptotic order. This assumption was
neglected in Eqs. (33) and (34). In this case, the order is obtained in function of
numerical solutions, Eq. (32), that is, its value is unknown a priori. So, in principle,
pU can be calculated for any problem and variable of interest. The same is valid for
f1 and URi calculated with Eqs. (33) and (34).

The apparent order (pU) is only equal to asymptotic order (pL) on any h if
Eq. (19), for the discretization error, is constituted by a single term. That can be
veri®ed by comparing Eq. (19) to (29). However, generally, there are several or
in®nite terms in Eq. (19) as h 6= 0. So, in general, pU is di� erent from pL and it can
assume larger or smaller values than pL, negative values, or otherwise nonexistent
values due to the negative argument of the logarithm in Eq. (32). However, for
h ! 0, pU ! pL because the ®rst term of the error is the leading term.

The Richardson Series

The constraints in using Richardson extrapolation can be better understood
through the Richardson series, whose concept is introduced in this work as follows.
It can be shown from Eqs. (24) and (2) that

f1 = f1
‡ R1(f1

– f2
) (35)
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where

R1 =
1

C
‡ 1

C2
‡ 1

C3
‡ 1

C4
‡ ¢ ¢ ¢ (36)

C = qp (37)

The parameter C is called the convergence ratio and R1 is the Richardson series,
which is a geometric progression. If C < – 1 or C > 1, this series converges toward
®nite values given by

R1 =
1

(C – 1)
(38)

Introducing Eqs. (37) and (38) into (35), one obtains the Richardson extrapolation,
Eq. (21) or (33). So, it can be understood as the sum of an in®nite number of terms in
a geometric progression in which q and p are constant between h2 (coarse grid) and
h1 (®ne grid) down to h = 0, and C < – 1 or C > 1.

Table 5 summarizes the values assumed by the apparent order (pU) and by R1

as functions of four intervals for the values of C. From this table, one veri®es that
only positive apparent order values must be employed in the Richardson extra-
polation, that is pU > 0, because in this case the Richardson series converges toward
a ®nite value. On the contrary, Celik and Karatekin [20] propose, in the intervals, II,
III, and IV of C, the Richardson extrapolation may not be used either because the
Richardson series diverges or because pU does not exist. The same things are
applied to the Richardson error estimator since, from Eqs. (20), (35), (37), and (38),
one obtains

URi

(f1
– f2

) = R1 =
1

(qp – 1)
(39)

CONVERGENT APPARENT ORDERS

For all 10 cases in Table 1 and for the four numerical variables of interest in
Table 2, it can be veri®ed that the apparent order (pU) converges monotonically to
the asymptotic order (pL) of the numerical solution error as h ! 0. This happens in
two ways that are de®ned as subconvergent and superconvergent intervals of the
apparent order, whose concepts are introduced in this work as follows.

Table 5. Values of the apparent order ( pU) as functions of the convergence ratio (c)

Interval c pU R1

I c > 1 pU > 0 Finite

II 0 < c µ 1 pU µ 0 In®nite

III – 1 µ c < 0 Unde®ned In®nite

IV c < – 1 Unde®ned Finite
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Subconvergent Interval of the Apparent Order

Within the subconvergent interval, pU converges monotonically to pL with
smaller values than pL. This is illustrated in Figure 3. The subconvergent interval is
de®ned as the interval 0 µ h µ hC, where pU(h) is positive, increasing with h ! 0,
and smaller than or equal to pL, that is,

0 < pU(hC) µ pU(h) µ pL (0 µ h µ hC) (40)

dpU

dh
µ 0 (0 µ h µ hC) (41)

where hC is the maximum value of h in the subconvergent interval, that is, it is the
maximum value of h up to which Eqs. (40) and (41) are valid; and pU is decreasing as
h is increased.

Superconvergent Interval of the Apparent Order

Within the superconvergent interval, pU converges monotonically to pL with
larger values than pL. This is illustrated in Figure 4. The superconvergent interval is
de®ned as the interval 0 µ h µ hC, where pU(h) is positive, decreasing with h ! 0,
and larger or equal to pL, that is,

0 < pL µ pU(h) µ pU(hC) (0 < h µ hC) (42)

dpU

dh
¶ 0 (0 µ h µ hC) (43)

Figure 3. De®nition of subconvergent interval of the apparent order.
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where hC is the maximum value of h in the superconvergent interval, that is, it is the
maximum value of h up to which Eqs. (42) and (43) are valid; and pU is increasing as
h is increased.

Remarks and Example

One supposes that all numerical solutions of every variable of interest generate
curves of pU versus h which are either subconvergent or superconvergent as h ! 0.
The types of curves of pU versus h which are possible to obtain can be either as
simple as those illustrated in Figures 3 and 4 or more complex, like that shown in
Figure 5. In this ®gure pU is positive, but it is also negative or unde®ned.

The example in Figure 5 refers to case 7 in Table 1 for the numerical variable
li

DDS-2 obtained by Eq. (15) at x = 0 and with q = 2. It can be noticed in this ®gure
that: at h = 0:125, pU is larger than pL, whose value is 2; at h = 0:0625; pU is
unde®ned due to the negative argument of the logarithm in Eq. (32), but it was
plotted with value zero in Figure 5; at h = 0:03125; pU is negative; and at smaller
values than h = 0:03125 pU is subconvergent. These values of pU that match with the
four larger values of h in Figure 5 exemplify the four types of apparent order values
which can be obtained. One notes in Figure 5 that pU ! 2 as h ! 0, that is, pL = 2.
This result is equal to the asymptotic order of the truncation error of the numerical
approximation li

DDS-2 shown in Table 4.
The maximum value of h which de®nes a convergent interval, that is, hC,

depends on the mathematical and numerical models employed to obtain the
numerical solutions. However, in any case, hC de®nes the point up to which the ®rst
term in the discretization error equation (E), Eq. (19), is the leading term. In the
present work, a procedure was not found to estimate a priori the value of hC, that is,

Figure 4. De®nition of superconvergent interval of the apparent order.
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a procedure which showed when a value of apparent order is within of the
convergent interval for any h given except when one obtains curves like that in
Figure 5.

For the particular case of pU = pL in any h, by de®nition, pU is subconvergent
and superconvergent simultaneously or, simply, converged. One can show [25] that:
(1) if Eq. (19) has two or more terms and the ®rst two terms have opposite signs, then
pU is subconvergent as h ! 0; and (2) if Eq. (19) has two or more terms with same
sign, then pU is superconvergent.

BOUNDS FOR ANALYTICAL SOLUTIONS AND ERRORS

Deduction of Bounds for the Discretization Error

In the following, we show that the Richardson error estimator allows us to
calculate two values of uncertainty (URi) which bound the discretization error when
the apparent order (pU) is convergent. So, one can obtain a value of uncertainty
which is reliable certainly, that is, U=E ¶ 1. With the Richardson error estimator
and three numerical solutions (f1; f2, and f3) obtained on three grids (h1; h2, and
h3), it is possible to calculate uncertainties (URi) using the asymptotic order (pL),
Eq. (23), and the apparent order (pU), Eq. (34). Hereafter, these two uncertainties are
denoted as URi(pL) and URi(pU), respectively.

Figure 5. Example of expected values for the apparent order.
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The uncertainties calculated with Eqs. (23) and (34) refer to the numerical
solution f1 obtained on the grid h1. From Eqs. (39), (36), and (37) for pL, one gets

URi(pL)
(f1

– f2
) = R1(pL) =

1

qpL

‡ 1

qpL‡pL

‡ 1

qpL‡pL‡pL

‡ ¢ ¢ ¢ =
1

(qpL – 1)
(44)

It is implicit in this equation that pL is constant between h2 and h ! 0, in accordance
with Eqs. (25) and (26). This assumption is right when the types of numerical
approximations used in numerical models are kept constant. For example, in Table 4
for li

UDS, pL = 1 and for li
CDS, pL = 2. However, pL is only reached at h = 0.

From Eqs. (39), (36), and (37) for pU, one obtains

URi(pU)
(f1

– f2
) = R1(pU) =

1

qpU

‡ 1

qpU
‡pU

‡ 1

qpU
‡pU

‡pU

‡ ¢ ¢ ¢ =
1

(qpU – 1)
(45)

It is implicit in this equation that pU is constant between h3 and h ! 0, in accordance
with Eq. (31). Generally, this assumption is wrong because in practice, even within a
convergent interval, pU is a function of h, that is, at h1 one has pU(h1), which changes
monotonically to reach pL at h = 0. This can be seen, for example, in Figure 5.
Therefore, for pU convergent, from Eqs. (39), (36), and (37) for a real case, it follows
that

E
(f1

– f2
) = R1(pM) =

1

qpa

‡ 1

qpa‡pb

‡ 1

qpa‡pb
‡pc

‡ ¢ ¢ ¢ =
1

(qpM – 1)
(46)

where pa; pb; pc, etc., are between pL and pU(h1) as pU is convergent; pa represents the
curve of pU between h1 and ha; pb represents the curve of pU between ha and hb; pc

represents the curve of pU between hb and hc; and so on; ha; hb; hc, etc., represent
successively more re®ned grids than h1; and the order pM represents a mean value of
pU between h1 and h = 0.

With Eqs. (44) and (46), one gets

URi(pL)

E
=

R1(pL)

R1(pM) =
(1=qpL ) ‡ (1=qpL‡pL ) ‡ (1=qpL‡pL‡pL ) ‡ ¢ ¢ ¢
(1=qpa) ‡ (1=qpa

‡pb ) ‡ (1=qpa
‡pb

‡pc ) ‡ ¢ ¢ ¢ =
(qpM – 1)
(qpL – 1)

(47)

and with Eqs. (45) and (46),

URi(pU)

E
=

R1(pU)

R1(pM) =
(1=qpU ) ‡ (1=qpU‡pU ) ‡ (1=qpU‡pU‡pU ) ‡ ¢ ¢ ¢
(1=qpa ) ‡ (1=qpa

‡pb) ‡ (1=qpa
‡pb

‡pc ) ‡ ¢ ¢ ¢ =
(qpM – 1)
(qpU – 1)

(48)

Remembering that the grid re®nement ratio (q) is always larger than the unity, if
pU(h1) is subconvergent, this means that

pU(h1) < pa < pb < pc < ¢ ¢ ¢ < pL (49)

So, from Eqs. (47) and (48), one obtains

URi(pL)

E
µ 1 µ URi(pU)

E
(if pU is subconvergent) (50)

In other words, URi(pL) and URi(pU) bound the discretization error (E) of the
numerical solution (f1

) when pU is subconvergent . If pU(h1) is superconvergent, this
means that
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pU(h1) > pa > pb > pc > ¢ ¢ ¢ > pL (51)

So, from Eqs. (47) and (48), one has

URi(pU)

E
µ 1 µ URi(pL)

E
(if pU is superconvergent) (52)

Therefore, URi(pL) and URi(pU) again bound the discretization error (E) of the
numerical solution (f1

) when pU is superconvergent.
With Eqs. (50) and (52), it can be concluded that the discretization error (E) is

bounded by uncertainties URi(pL) and URi(pU) as pU is convergent. In other words,
URi(pL) and URi(pU) represent lower and upper bounds for E. So, these equations
allow one to calculate reliable uncertainties, that is, U=E ¶ 1. Thus, if pU is sub-
convergent, URi(pU) is reliable as Eq. (50), and if pU is superconvergent, URi(pL) is
reliable as Eq. (52). From Eqs. (47) and (48), it is veri®ed that when the value of pU

approaches to the value of pL, the ratios URi(pL)=E and URi(pU)=E approach to the
unity and therefore the error estimates are more accurate.

Exact Analytical Solution Bounds

Expressions have been obtained to calculate the estimated analytical solution
(f1) with asymptotic order (pL), Eq. (21), and with apparent order (pU), Eq. (33).
Hereafter, these two values of f1 are denoted as f1(pL) and f1(pU), respectively.
From Eqs. (47) and (48), it is possible to show that

f1(pL)

F
µ 1 µ f1(pU)

F
(if pU is subconvergent) (53)

f1(pU)

F
µ 1 µ f1(pL)

F
(if pU is superconvergent) (54)

In other words, f1(pL) and f1(pU) bound the exact analytical solution (F) when pU

is convergent, and they represent lower and upper bounds for F.
Here also, when the value of pU approaches to the value of pL, the ratios

f1(pL)=F and f1(pU)=F approach to the unity. The signs of equality employed in
Eqs. (50), (52), (53), and (54) are only applied to the limit case where the dis-
cretization error equation, Eq. (19), has a single term, that is, when pU = pL at any h.

Figure 6 illustrates the bounds for the exact analytical solution, Eq. (53), and
for the discretization error, Eq. (50), when pU is subconvergent . In this ®gure can be
noted the numerical solutions f1 and f2 obtained on grids h1 and h2, the exact
analytical solution F, f1(pL), f1(pU), the discretization error of f1, E(f1

),
obtained from Eq. (1), URi(pL) and URi(pU).

THE CONVERGENT ERROR ESTIMATOR

As shown in Figure 6, it was seen in the previous section that the exact ana-
lytical solution (F) of a variable of interest is bounded by f1(pL) and f1(pU) when
the apparent order (pU) is convergent. Based on this, the convergent numerical
solution (fC

) can be de®ned as an average of the values f1(pL) and f1(pU), that is,
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fC =
[f1(pL) ‡ f1(pU)]

2
(55)

where f1(pL) and f1(pU) are obtained by the Richardson extrapolation, Eqs. (21)
and (33), respectively. The uncertainty of fC is equal to the modulus of half of the
interval between f1(pL) and f1(pU), that is,

UC =
jf1(pL) – f1(pU)j

2
(56)

To use fC and UC, a suitable representation of a numerical solution (f) is

f = fC
§ UC (57)

For the case of subconvergent apparent order (pU), Figure 7 illustrates the
convergent numerical solution (fC

), its respective uncertainty (UC), as well as its
discretization error (EC). The other symbols are the same as those of Figure 6.

According to Eq. (55), fC is based on two extrapolated numerical solutions.
One can show [25] that the asymptotic order of its error (EC) is larger than the
asymptotic order of the error of the numerical solutions (f1; f2, and f3) used to
calculate f1(pL) and f1(pU), and is equal to the second true order of the dis-
cretization error equation, Eq. (19), that is, it is equal to p2.

RESULTS

The 10 cases de®ned in Table 1 were solved by the ®nite-di� erence method [6]
for the four numerical variables of interest in Table 2. We employed the six types of
numerical approximations in Table 3, grid re®nement ratio q = 2, and grid spacing
h = 0:5; 0:25; 0:125; . . . ; 1:53 £ 10

– 5, which correspond to grids with 2, 4, 8, . . . ,
65,536 elements.

Figure 6. Bounds for the exact analytical solution (F) and for the discretization error (E) when pU is

subconvergent.
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Figures 5, 8, and 9 illustrate examples of the results obtained. This example
refers to case 7 in Table 1 for the numerical variable li

DDS-2, which was obtained by
Eq. (15) at x = 0 and with q = 2. One can see in Figure 5 that the apparent order
(pU) is subconvergent for h < 3:125 £ 10

– 2. So, for smaller values than this h,

Figure 7. Example of a convergent numerical solution (fC
) for subconvergent pU.

Figure 8. Ratio between uncertainty (U) and error (E) in the subconvergent interval of pU for li
DDS-2 of

case 7.
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Eq. (50) is valid, as can be seen in Figure 8. In this example, URi(pU) is the reliable
uncertainty because its value is larger than the discretization error (Eh), and URi(pL)
is the lower bound of Eh.

In Figure 9 is shown the discretization error (Eh) of li
DDS-2 at x = 0, cal-

culated by Eq. (1); the uncertainty URi(pU) obtained with Eq. (34); the uncertainty
(UC) of the convergent numerical solution (fC

), calculated by Eq. (56); and the
error (EC) of fC, obtained by the di� erence between the exact analytical solution
of Li

and fC. In this ®gure, one can see that the value of UC decreases a lot with
respect to URi as h ! 0. This happens by employing the same numerical results
used to obtain URi. The error asymptotic order of li

DDS-2 is pL = 2, as shown in
Table 4, but it is pL = 3 for fC. This can be seen in Figure 9, where the slopes of
EC and UC are larger than those of Eh and URi. This increase of the error order of
fC is shown in [25].

In Figure 5, it can be noted that pL º 2 at h º 0:09. So, it is possible to obtain
values of apparent order close to asymptotic order out of the convergent interval.
This means that it is necessary to know when pU is convergent in order to employ the
Richardson error estimator reliably to calculate the uncertainty of a numerical
solution. Therefore, error estimates based on only two or three numerical solutions,
as in Eqs. (23) and (34), may not be considered reliable.

Figure 9. Modulus of errors and uncertainties for l i
DDS-2 of case 7.
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For all 10 cases in Table 1 and the four numerical variables of interest in
Table 2, it was veri®ed that the Richardson error estimator allows one to obtain
accurate uncertainties (URi) when grid spacing (h) vanishes, that is,

URi

Eh

! 1 for h ! 0 (58)

where Eh is the discretization error calculated by Eq. (1). Equation (58) is valid for
URi obtained with either the asymptotic order (pL) or the apparent order (pU) by
Eqs. (23) and (34), respectively.

CONCLUSION

The concept of a convergent interval for the uncertainty apparent order was
introduced. Within this interval, we veri®ed for all 10 cases and the four numerical
variables of interest that:

1. The value of the apparent order (pU) approaches the asymptotic order (pL)

monotonically.
2. According to Eqs. (50) and (52), the discretization error (Eh) is bounded

between URi(pL) and URi(pU), whose values are calculated using the
Richardson error estimator with pL and pU by Eqs. (23) and (34).

3. The accuracy of a discretization error estimate depends on the di� erence
between pU and pL. When the value of pU approaches to the value of pL, the
ratios URi(pL)=Eh and URi(pU)=Eh approach to the unity and so the error
estimate is more accurate. As h ! 0, URi=Eh ! 1, according to Eq. (58).

4. The exact analytical solution (F) is bounded between f1(pL) and f1(pU),
whose values are calculated using the Richardson extrapolation with pL and
pU by Eqs. (21) and (33).

5. A convergent numerical solution (fC
) was de®ned which is based on

f1(pL) and f1(pU). Its error (Ec) is smaller than Eh.

Outside convergent interval of pU, there is not assurance about the ®ve con-
clusions above. We did not ®nd a procedure to estimate a priori the beginning of the
convergent interval of pU, denoted by hC. In this work, hC was obtained by calcu-
lation of pU as a function of h as in Figure 5. Therefore, error estimates based on
numerical solutions obtained over only two or three grids may not be considered
reliable.
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