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Solutions to the odd numbered exercises

SECTION 1.1

1. As n increases, the proportion of heads gets closer to 1/2, but the difference between the number
of heads and half the number of flips tends to increase (although it will occasionally be 0).

3. (b) If one simulates a sufficiently large number of rolls, one should be able to conclude that the
gamblers were correct.

5. The smallest n should be about 150.

7. The graph of winnings for betting on a color is much smoother (i.e. has smaller fluctuations) than
the graph for betting on a number.

9. Each time you win, you either win an amount that you have already lost or one of the original
numbers 1,2,3,4, and hence your net winning is just the sum of these four numbers. This is not a
foolproof system, since you may reach a point where you have to bet more money than you have.
If you and the bank had unlimited resources it would be foolproof.

11. For two tosses, the probabilities that Peter wins 0 and 2 are 1/2 and 1/4, respectively. For four
tosses, the probabilities that Peter wins 0, 2, and 4 are 3/8, 1/4, and 1/16, respectively.

13. Your simulation should result in about 25 days in a year having more than 60 percent boys in the
large hospital and about 55 days in a year having more than 60 percent boys in the small hospital.

15. In about 25 percent of the games the player will have a streak of five.

SECTION 1.2

1. P ({a, b, c}) = 1 P ({a}) = 1/2
P ({a, b}) = 5/6 P ({b}) = 1/3
P ({b, c}) = 1/2 P ({c}) = 1/6
P ({a, c}) = 2/3 P (φ) = 0

3. (b), (d)

5. (a) 1/2
(b) 1/4
(c) 3/8
(d) 7/8

7. 11/12

9. 3/4, 1

11. 1 : 12, 1 : 3, 1 : 35

13. 11:4

15. Let the sample space be:

ω1 = {A,A} ω4 = {B,A} ω7 = {C,A}
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ω2 = {A,B} ω5 = {B,B} ω8 = {C,B}
ω3 = {A,C} ω6 = {B,C} ω9 = {C,C}
where the first grade is John’s and the second is Mary’s. You are given that

P (ω4) + P (ω5) + P (ω6) = .3,

P (ω2) + P (ω5) + P (ω8) = .4,

P (ω5) + P (ω6) + P (ω8) = .1.

Adding the first two equations and subtracting the third, we obtain the desired probability as

P (ω2) + P (ω4) + P (ω5) = .6.

17. The sample space for a sequence of m experiments is the set of m-tuples of S’s and F ’s, where S
represents a success and F a failure. The probability assigned to a sample point with k successes
and m− k failures is ( 1

n

)k(n− 1
n

)m−k
.

(a) Let k = 0 in the above expression.

(b) If m = n log 2, then

lim
n→∞

(
1− 1

n

)m
= lim
n→∞

((
1− 1

n

)n)log 2

=
(

lim
n→∞

(
(

1− 1
n

)n)log 2

=
(
e−1
)log 2

=
1
2
.

(c) Probably, since 6 log 2 ≈ 4.159 and 36 log 2 ≈ 24.953.

19. The left-side is the sum of the probabilities of all elements in one of the three sets. For the right
side, if an outcome is in all three sets its probability is added three times, then subtracted three
times, then added once, so in the final sum it is counted just once. An element that is in exactly
two sets is added twice, then subtracted once, and so it is counted correctly. Finally, an element in
exactly one set is counted only once by the right side.

21. 7/212

23. We have
∞∑
n=0

m(ωn) =
∞∑
n=0

r(1− r)n =
r

1− (1− r) = 1 .

25. They call it a fallacy because if the subjects are thinking about probabilities they should realize
that

P (Linda is bank teller and in feminist movement) ≤ P (Linda is bank teller).

One explanation is that the subjects are not thinking about probability as a measure of likelihood.
For another explanation see Exercise 52 of Section 4.1.

27.
Px = P (male lives to age x) =

number of male survivors at age x
100, 000

.
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Qx = P (female lives to age x) =
number of female survivors at age x

100, 000
.

29. (Solution by Richard Beigel)
(a) In order to emerge from the interchange going west, the car must go straight at the first point
of decision, then make 4n + 1 right turns, and finally go straight a second time. The probability
P (r) of this occurring is

P (r) =
∞∑
n=0

(1− r)2r4n+1 =
r(1− r)2

1− r4
=

1
1 + r2

− 1
1 + r

,

if 0 ≤ r < 1, but P (1) = 0. So P (1/2) = 2/15.

(b) Using standard methods from calculus, one can show that P (r) attains a maximum at the value

r =
1 +
√

5
2

−

√
1 +
√

5
2

≈ .346 .

At this value of r, P (r) ≈ .15.

31. (a) Assuming that each student gives any given tire as an answer with probability 1/4, then prob-
ability that they both give the same answer is 1/4.

(b) In this case, they will both answer ‘right front’ with probability (.58)2, etc. Thus, the probability
that they both give the same answer is 39.8%.

SECTION 2.1

The problems in this section are all computer programs.

SECTION 2.2

1. (a) f(ω) = 1/8 on [2, 10]

(b) P ([a, b]) = b−a
8 .

3. (a) C = 1
log 5 ≈ .621

(b) P ([a, b]) = (.621) log(b/a)

(c)

P (x > 5) =
log 2
log 5

≈ .431

P (x < 7) =
log(7/2)

log 5
≈ .778

P (x2 − 12x+ 35 > 0) =
log(25/7)

log 5
≈ .791 .

5. (a) 1− 1
e1 ≈ .632

(b) 1− 1
e3 ≈ .950

(c) 1− 1
e1 ≈ .632
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(d) 1

7. (a) 1/3, (b) 1/2, (c) 1/2, (d) 1/3

13. 2 log 2− 1.

15. Yes.

SECTION 3.1

1. 24

3. 232

5. 9, 6.

7.
5!
55
.

11.
3n− 2
n3

,
7
27
,

28
1000

.

13. (a) 263 × 103

(b)
(

6
3

)
× 263 × 103

15.

(
3
1

)
× (2n − 2)

3n
.

17. 1− 12 · 11 · . . . · (12− n+ 1)
n12

, if n ≤ 12, and 1, if n > 12.

21. They are the same.

23. (a)
1
n
,

1
n

(b) She will get the best candidate if the second best candidate is in the first half and the best
candidate is in the secon half. The probability that this happens is greater than 1/4.

SECTION 3.2

1. (a) 20

(b) .0064

(c) 21

(d) 1

(e) .0256

(f) 15

(g) 10

3.
(

9
7

)
= 36

5. .998, .965, .729

7.
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b(n, p, j)
b(n, p, j − 1)

=

(
n

j

)
pjqn−j(

n

j − 1

)
pj−1qn−j+1

=
n!

j!(n− j)!
(n− j + 1)!(j − 1)!

n!
p

q

=
(n− j + 1)

j

p

q

.

But
(n− j + 1)

j

p

q
≥ 1 if and only if j ≤ p(n + 1), and so j = [p(n + 1)] gives b(n, p, j) its largest

value. If p(n + 1) is an integer there will be two possible values of j, namely j = p(n + 1) and
j = p(n+ 1)− 1.

9. n = 15, r = 7

11. Eight pieces of each kind of pie.

13. The number of subsets of 2n objects of size j is
(

2n
j

)
.(

2n
i

)
(

2n
i− 1

) =
2n− i+ 1

i
≥ 1⇒ i ≤ n+

1
2
.

Thus i = n makes
(

2n
i

)
maximum.

15. .3443, .441, .181, .027.

17. There are
(
n
a

)
ways of putting a different objects into the 1st box, and then

(
n−a
b

)
ways of putting

b different objects into the 2nd and then one way to put the remaining objects into the 3rd box.
Thus the total number of ways is(

n

a

)(
n− a
b

)
=

n!
a!b!(n− a− b)! .

19. (a)

(
4
1

)(
13
10

)
(

52
10

) = 7.23× 10−8.

(b)

(
4
1

)(
3
2

)(
13
4

)(
13
3

)(
13
3

)
(

52
10

) = .044.

(c)
4!
(

13
4

)(
13
3

)(
13
2

)(
13
1

)
(

52
13

) = .315.

21. 3(25)− 3 = 93 (We subtract 3 because the three pure colors are each counted twice.)

23. To make the boxes, you need n+ 1 bars, 2 on the ends and n− 1 for the divisions. The n− 1 bars
and the r objects occupy n−1 + r places. You can choose any n−1 of these n−1 + r places for the
bars and use the remaining r places for the objects. Thus the number of ways this can be done is(

n− 1 + r

n− 1

)
=
(
n− 1 + r

r

)
.
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25. (a) 6!
(

10
6

)
/106 ≈ .1512

(b)
(

10
6

)
/

(
15
6

)
≈ .042

27. Ask John to make 42 trials and if he gets 27 or more correct accept his claim. Then the probability
of a type I error is ∑

k≥27

b(42, .5, k) = .044,

and the probability of a type II error is

1−
∑
k≥27

b(42, .75, k) = .042.

29. b(n, p,m) =
(
n

m

)
pm(1− p)n−m. Taking the derivative with respect to p and setting this equal to

0 we obtain m(1− p) = p(n−m) and so p = m/n.

31. .999996.

33. By Stirling’s formula,(
2n
n

)2

(
4n
2n

) =
(2n!)2(2n!)2

n!4(4n)!
∼ (

√
4πn(2n)2ne−2n)4

(
√

2πn(nn)e−n)4
√

2π(4n)(4n)4ne−4n
=

√
2
πn

.

35. Consider an urn with n red balls and n blue balls inside. The left side of the identity(
2n
n

)
=

n∑
j=0

(
n

j

)2

=
n∑
j=0

(
n

j

)(
n

n− j

)

counts the number of ways to choose n balls out of the 2n balls in the urn. The right hand counts
the same thing but breaks the counting into the sum of the cases where there are exactly j red
balls and n− j blue balls.

38. Consider the Pascal triangle (mod 3) for example.

0 1
1 1 1
2 1 2 1
3 1 0 0 1
4 1 1 0 1 1
5 1 2 1 1 2 1
6 1 0 0 2 0 0 1
7 1 1 0 2 2 0 1 1
8 1 2 1 2 1 2 1 2 1
9 1 0 0 0 0 0 0 0 0 1
10 1 1 0 0 0 0 0 0 0 1 1
11 1 2 1 0 0 0 0 0 0 1 2 1
12 1 0 0 1 0 0 0 0 0 1 0 0 1
13 1 1 0 1 1 0 0 0 0 1 1 0 1 1
14 1 2 1 1 2 1 0 0 0 1 2 1 1 2 1
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15 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1
16 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1
17 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1
18 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1

Note first that the entries in the third row are 0 for 0 < j < 3. Lucas notes that this will be true
for any p. To see this assume that 0 < j < p. Note that(

p

j

)
=
p(p− 1) · · · p− j + 1

j(j − 1) · · · 1

is an integer. Since p is prime and 0 < j < p, p is not divisible by any of the terms of j!, and so

(p − 1)! must be divisible by j!. Thus for 0 < j < p we have
(
p

j

)
= 0 mod p. Let us call the

triangle of the first three rows a basic triangle. The fact that the third row is

1 0 0 1

produces two more basic triangles in the next three rows and an inverted triangle of 0’s between
these two basic triangles. This leads to the 6’th row

1 0 0 2 0 0 1
.

This produces a basic triangle, a basic triangle multiplied by 2 (mod 3), and then another basic
triangle in the next three rows. Again these triangles are separated by inverted 0 triangles. We can
continue this way to construct the entire Pascal triangle as a bunch of multiples of basic triangles
separated by inverted 0 triangles. We need only know what the mutiples are. The multiples in row
np occur at positions 0, p, 2p, ..., np. Looking at the triangle we see that the multiple at position
(mp, jp) is the sum of the multiples at positions (j−1)p and jp in the (m−1)p’th row. Thus these
multiples satisfy the same recursion relation(

n

j

)
=
(
n− 1
j − 1

)
+
(
n− 1
j

)
that determined the Pascal triangle. Therefore the multiple at position (mp, jp) in the triangle is(
m

j

)
. Suppose we want to determine the value in the Pascal triangle mod p at the position (n, j).

Let n = sp + s0 and j = rp + r0, where s0 and r0 are < p. Then the point (n, j) is at position

(s0, r0) in a basic triangle multiplied by
(
s

r

)
.

Thus (
n

j

)
=
(
s

r

)(
s0

r0

)
.

But now we can repeat this process with the pair (s, r) and continue until s < p. This gives us the
result: (

n

j

)
=

k∏
i=0

(
si
rj

)
(mod p) ,

where
s = s0 + s1p

1 + s2p
2 + · · ·+ skp

k ,

j = r0 + r1p
1 + r2p

2 + · · ·+ rkp
k .
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If rj > sj for some j then the result is 0 since, in this case, the pair (sj , rj) lies in one of the inverted
0 triangles.

If we consider the row pk−1 then for all k, sk = p−1 and rk ≤ p−1 so the product will be positive
resulting in no zeros in the rows pk − 1. In particular for p = 2 the rows pk − 1 will consist of all
1’s.

39.

b(2n,
1
2
, n) = 2−2n 2n!

n!n!
=

2n(2n− 1) · · · 2 · 1
2n · 2(n− 1) · · · 2 · 2n · 2(n− 1) · · · 2

=
(2n− 1)(2n− 3) · · · 1

2n(2n− 2) · · · 2 .

SECTION 3.3

3. (a) 96.99%

(b) 55.16%

SECTION 4.1

3. (a) 1/2

(b) 2/3

(c) 0

(d) 1/4

5. (a) (1) and (2)

(b) (1)

7. (a) P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
1
4
,

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1
4
,

P (A ∩B ∩ C) =
1
4
6= P (A)P (B)P (C) =

1
8
.

(b) P (A ∩ C) = P (A)P (C) =
1
4
, so C and A are independent,

P (C ∩B) = P (B)P (C) =
1
4
, so C and B are independent,

P (C ∩ (A ∩B)) =
1
4
6= P (C)P (A ∩B) =

1
8
,

so C and A ∩B are not independent.
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8. P (A ∩B ∩ C) = P ({a}) =
1
8
,

P (A) = P (B) = P (C) =
1
2
.

Thus while P (A ∩B ∩ C) = P (A)P (B)P (C) =
1
8
,

P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
5
16

,

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1
4
.

Therefore no two of these events are independent.

9. (a) 1/3

(b) 1/2

13. 1/2

15. (a)

(
48
11

)(
4
2

)
(

52
13

)
−
(

48
13

)≈ .307 .

(b)

(
48
11

)(
3
1

)
(

51
12

) ≈ .328 .

17(a) P (A ∩ B̃) = P (A)− P (A ∩B) = P (A)− P (A)P (B)
= P (A)(1− P (B))

= P (A)P (B̃) .
(b) Use (a), replacing A by B̃ and B by A.

19. .273.

21. No.

23. Put one white ball in one urn and all the rest in the other urn. This gives a probability of nearly
3/4, in particular greater than 1/2, for obtaining a white ball which is what you would have with
an equal number of balls in each urn. Thus the best choice must have more white balls in one urn
than the other. In the urn with more white balls, the best we can do is to have probability 1 of
getting a white ball if this urn is chosen. In the urn with less white balls than black, the best we
can do is to have one less white ball than black and then to have as many white balls as possible.
Our solution is thus best for the urn with more white balls than black and also for the urn with
more black balls than white. Therefore our solution is the best we can do.

25. We must have

p

(
n

j

)
pkqn−k = p

(
n− 1
k − 1

)
pk−1qn−k .

This will be true if and only if np = k. Thus p must equal k/n.

27.
(a) P (Pickwick has no umbrella, given that it rains)=

2
9
.

(b) P (It does not rain, given that he brings his umbrella)=
5
12

.

9



  

29. P (Accepted by Dartmouth | Accepted by Harvard) =
2
3
.

The events ‘Accepted by Dartmouth’ and ‘Accepted by Harvard’ are not independent.

31. The probability of a 60 year old male living to 80 is .41, and for a female it is .62.

33. You have to make a lot of calcuations, all of which are like this:

P (Ã1 ∩A2 ∩A3) = P (A2)P (A3)− P (A1)P (A2)P (A3)
= P (A2)P (A3)(1− P (A1))

= P (Ã1)P (A2)P (A3).

35. The random variables X1 and X2 have the same distributions, and in each case the range values are
the integers between 1 and 10. The probability for each value is 1/10. They are independent. If the
first number is not replaced, the two distributions are the same as before but the two random vari-

ables are not independent.
37. P (max(X,Y ) = a) = P (X = a, Y ≤ a) + P (X ≤ a, Y = a)− P (X = a, Y = a).

P (min(X,Y ) = a) = P (X = a, Y > a) + P (X > a, Y = a) + P (X = a, Y = a).

Thus P (max(X,Y ) = a) + P (min(X,Y ) = a) = P (X = a) + P (Y = a)
and so u = t+ s− r.

39. (a) 1/9
(b) 1/4
(c) No

(d) p
Z

=
(
−2 −1 0 1 2 4
1
6

1
6

1
6

1
6

1
6

1
6

)
43. .710.

45.
(a) The probability that the first player wins under either service convention is equal to the proba-
bility that if a coin has probability p of coming up heads, and the coin is tossed 2N + 1 times, then
it comes up heads more often than tails. This probability is clearly greater than .5 if and only if
p > .5.

(b) If the first team is serving on a given play, it will win the next point if and only if one of the
following sequences of plays occurs (where ‘W’ means that the team that is serving wins the play,
and ‘L’ means that the team that is serving loses the play):

W, LLW, LLLLW, . . . .

The probability that this happens is equal to

p+ q2p+ q4p+ . . . ,

which equals
p

1− q2
=

1
1 + q

.

Now, consider the game where a ‘new play’ is defined to be a sequence of plays that ends with a
point being scored. Then the service convention is that at the beginning of a new play, the team
that won the last new play serves. This is the same convention as the second convention in the
preceding problem.

¿From part a), we know that the first team to serve under the second service convention will win
the game more than half the time if and only if p > .5. In the present case, we use the new value
of p, which is 1/(1 + q). This is easily seen to be greater than .5 as long as q < 1. Thus, as long as
p > 0, the first team to serve will win the game more than half the time.
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47. (a) P (Y1 = r, Y2 = s) = P (Φ1(X1) = r,Φ2(X2) = s)

=
∑

Φ1(a)=r
Φ2(b)=s

P (X1 = a,X2 = b) .

(b) If X1, X2 are independent, then

P (Y1 = r, Y2 = s) =
∑

Φ1(a)=r
Φ2(b)=s

P (X1 = a,X2 = b)

=
∑

Φ1(a)=r
Φ2(b)=s

P (X1 = a)P (X2 = b)

=
( ∑

Φ1(a)=r

P (X1 = a)
)( ∑

Φ2(b)=s

P (X2 = b)
)

= P (Φ1(X1) = r)P (Φ2(X2) = s)
= P (Y1 = r)P (Y2 = s) ,

so Y1 and Y2 are independent.

49. P (both coins turn up using (a)) = 1
2p

2
1 + 1

2p
2
2.

P (both coins turn up heads using (b)) = p1p2.
Since (p1 − p2)2 = p2

1 − 2p1p2 + p2
2 > 0, we see that p1p2 <

1
2p

2
1 + 1

2p
2
2, and so (a) is better.

51.
P (A) = P (A|C)P (C) + P (A|C̃)P (C̃)

≥ P (B|C)P (C) + P (B|C̃)P (C̃) = P (B) .

53. We assume that John and Mary sign up for two courses. Their cards are dropped, one of the cards
gets stepped on, and only one course can be read on this card. Call card I the card that was not
stepped on and on which the registrar can read government 35 and mathematics 23; call card II the
card that was stepped on and on which he can just read mathematics 23. There are four possibilities
for these two cards. They are:

Card I Card II Prob. Cond. Prob.
Mary(gov,math) John(gov, math) .0015 .224
Mary(gov,math) John(other,math) .0025 .373
John(gov,math) Mary(gov,math) .0015 .224
John(gov,math) Mary(other,math) .0012 .179

In the third column we have written the probability that each case will occur. For example,
for the first one we compute the probability that the students will take the appropriate courses:
.5× .1× .3× .2 = .0030 and then we multiply by 1/2, the probability that it was John’s card that
was stepped on. Now to get the conditional probabilities we must renormalize these probabilities
so that they add up to one. In this way we obtain the results in the last column. From this we
see that the probability that card I is Mary’s is .597 and that card I is John’s is .403, so it is more
likely that that the card on which the registrar sees Mathematics 23 and Government 35 is Mary’s.

55.
P (R1) =

4(
52
5

) = 1.54× 10−6.

P (R2 ∩R1) =
4 · 3(

52
5

)(
47
5

) .
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Thus
P (R2 | R1) =

3(
47
5

) = 1.96× 10−6.

Since P (R2|R1) > P (R1), a royal flush is attractive.

P (player 2 has a full house) =
13 · 12

(
4
3

)(
4
2

)
(

52
5

) .

P (player 1 has a flush and player 2 has a full house) =

4 · 8 · 7
(

4
3

)(
4
2

)
+ 4 · 8 · 5

(
4
3

)
·
(

3
2

)
+ 4 · 5 · 8 ·

(
3
3

)(
4
2

)
+ 4 · 5 · 4

(
3
3

)(
3
2

)
(

52
5

)(
47
5

) .

Taking the ratio of these last two quantities gives:

P(player 1 has a royal flush | player 2 has a full house) = 1.479× 10−6.

Since this probability is less than the probability that player 1 has a royal flush (1.54 × 10−6), a
full house repels a royal flush.

57.
P (B|A) ≤ P (B) and P (B|A) ≥ P (A)
⇔ P (B ∩A) ≤ P (A)P (B) and P (B ∩A) ≥ P (A)P (B)
⇔ P (A ∩B) = P (A)P (B) .

59. Since A attracts B, P (B|A) > P (A) and

P (B ∩A) > P (A)P (B) ,

and so
P (A)− P (B ∩A) < P (A)− P (A)P (B) .

Therefore,
P (B̃ ∩A) < P (A)P (B̃) ,

P (B̃|A) < P (B̃) ,

and A repels B̃.

61. Assume that A attracts B1, but A does not repel any of the Bj ’s. Then

P (A ∩B1) > P (A)P (B1),

and
P (A ∩Bj) ≥ P (A)P (Bj), 1 ≤ j ≤ n.

Then
P (A) = P (A ∩ Ω)

= P (A ∩ (B1 ∪ . . . ∪Bn))
= P (A ∩B1) + · · ·+ P (A ∩Bn)
> P (A)P (B1) + · · ·+ P (A)P (Bn)

= P (A)
(
P (B1) + · · ·+ P (Bn)

)
= P (A) ,
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which is a contradiction.

SECTION 4.2

1. (a) 2/3

(b) 1/3

(c) 1/2

(d) 1/2

3. (a) .01

(b) e−.01T where T is the time after 20 hours.

(c) e−.2 ≈ .819

(d) 1− e−.01 ≈ .010

5. (a) 1

(b) 1

(c) 1/2

(d) π/8

(e) 1/2

7. P (X >
1
3
, Y >

2
3

) =
∫ 1

1
3

∫ 1

2
3

dydx =
2
9
.

But P (X >
1
3

)P (Y >
2
3

) =
2
3
· 1

3
, so X and Y are independent.

11. If you have drawn n times (total number of balls in the urn is now n+ 2) and gotten j black balls,
(total number of black balls is now j + 1), then the probability of getting a black ball next time is
(j + 1)/(n+ 2). Thus at each time the conditional probability for the next outcome is the same in
the two models. This means that the models are determined by the same probability distribution,
so either model can be used in making predictions. Now in the coin model, it is clear that the
proportion of heads will tend to the unknown bias p in the long run. Since the value of p was
assumed to be unformly distributed, this limiting value has a random value between 0 and 1. Since
this is true in the coin model, it is also true in the Polya Urn model for the proportion of black
balls.(See Exercise 20 of Section 4.1.)

SECTION 4.3

1. 2/3

3. (a) Consider a tree where the first branching corresponds to the number of aces held by the player,
and the second branching corresponds to whether the player answers ‘ace of hearts’ or anything
else, when asked to name an ace in his hand. Then there are four branches, corresponding to the
numbers 1, 2, 3, and 4, and each of these except the first splits into two branches. Thus, there are
seven paths in this tree, four of which correspond to the answer ‘ace of hearts.’ The conditional
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probability that he has a second ace, given that he has answered ‘ace of hearts,’ is therefore(((
48
12

)
+

1
2

(
3
1

)(
48
11

)
+

1
3

(
3
2

)(
48
10

)
+

1
4

(
3
3

)(
48
9

))/(52
13

))
((

51
12

)/(52
13

)) ≈ .6962 .

(b) This answer is the same as the second answer in Exercise 2, namely .5612.

5. Let x = 2k. It is easy to check that if k ≥ 1, then

px/2

px/2 + px
=

3
4
.

If x = 1, then
px/2

px/2 + px
= 0 .

Thus, you should switch if and only if your envelope contains 1.

SECTION 5.1

1. (a), (c), (d)

3. Assume that X is uniformly distributed, and let the countable set of values be {ω1, ω2, . . .}. Let p
be the probability assigned to each outcome by the distribution function f of X. If p > 0, then

∞∑
i=1

f(ωi) =
∞∑
i=1

p ,

and this last sum does not converge. If p = 0, then

∞∑
i=1

f(ωi) = 0 .

So, in both cases, we arrive at a contradiction, since for a distribution function, we must have

∞∑
i=1

f(ωi) = 1 .

5. (b) Ask the Registrar to sort by using the sixth, seventh, and ninth digits in the Social Security
numbers.
(c) Shuffle the cards 20 times and then take the top 100 cards. (Can you think of a method of
shuffling 3000 cards?

7. (a) p
j (n) =

1
6

(5
6

)n−1

for j = 0, 1, 2, . . . .

(b) P (T > 3) = (
5
6

)3 =
125
216

.

(c) P (T > 6 | T > 3) = (
5
6

)3 =
125
216

.
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9. (a) 1000

(b)

(
100
10

)(
N−100

90

)(
N

100

)
(c) N = 999 or N = 1000

13. .7408, .2222, .0370

17. 649741

19. The probability of at least one call in a given day with n hands of bridge can be estimated by
1− e−n·(6.3×10−12). To have an average of one per year we would want this to be equal to 1

365 . This
would require that n be about 400,000,000 and that the players play on the average 8,700 hands a
day. Very unlikely! It’s much more likely that someone is playing a practical joke.

21. (a) b(32, j, 1/80) =
(

32
j

)( 1
80

)j(79
80

)32−j

(b) Use λ = 32/80 = 2/5. The approximate probability that a given student is called on j times
is e−2/5(2/5)j/j! . Thus, the approximate probability that a given student is called on more than
twice is

1− e−2/5

(
(2/5)0

0!
+

(2/5)1

1!
+

(2/5)2

2!

)
≈ .0079 .

23.

P (outcome is j + 1)/P(outcome is j) =
mj+1e−m

(j + 1)!

/mje−m

j!
=

m

j + 1
.

Thus when j+1 ≤ m, the probability is increasing, and when j+1 ≥ m it is decreasing. Therefore,
j = m is a maximum value. If m is an integer, then the ratio will be one for j = m − 1, and so
both j = m− 1 and j = m will be maximum values. (cf. Exercise 7 of Chapter 3, Section 2)

25. Without paying the meter Prosser pays

2 · 5e−5

1!
+ (5 · 2)

52e−5

2!
+ · · · (5 · n)

5ne−5

n!
+ · · · = 25− 15e−5 = $24.90.

He is better off putting a dime in the meter each time for a total cost of $10.
26.

number observed expected

0 229 227
1 211 211
2 93 99
3 35 31
4 7 9
5 1 1

27. m = 100× (.001) = .1. Thus P (at least one accident) = 1− e−.1 = .0952.

29. Here m = 500× (1/500) = 1, and so P (at least one fake) = 1− e−1 = .632. If the king tests two

coins from each of 250 boxes, then m =250× 2
500

= 1, and so the answer is again .632.
31. The expected number of deaths per corps per year is

1 · 91
280

+ 2 · 32
280

+ 3 · 11
280

+ 4 · 2
280

= .70.

The expected number of corps with x deaths would then be 280 · (.70)xe−(.70)

x!
. From this we obtain

the following comparison:
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Number of deaths Corps with x deaths Expected number of Corps

0 144 139.0
1 91 97.3
2 32 34.1
3 11 7.9

≥ 4 2 1.6

The fit is quite good.

33. Poisson with mean 3.

35. (a) In order to have d defective items in s items, you must choose d items out of D defective ones
and the rest from S−D good ones. The total number of sample points is the number of ways
to choose s out of S.

(b) Since
min(D,s)∑

j=0

P (X = j) = 1,

we get
min(D,s)∑

j=0

(
D

j

)(
s−D
s− j

)
=
(
S

s

)
.

37. The maximum likelihood principle gives an estimate of 1250 moose.

43. If the traits were independent, then the probability that we would obtain a data set that differs
from the expected data set by as much as the actual data set differs is approximately .00151. Thus,
we should reject the hypothesis that the two traits are independent.

SECTION 5.2

1. (a) f(x) = 1 on [2, 3];F (x) = x− 2 on [2, 3].

(b) f(x) =
1
3
x−2/3 on [0, 1]; F (x) = x1/3 on [0, 1].

2. (a) F (x) = 2− 1
x , f(x) = 1

x2 on [1
2 , 1].

(b) F (x) = ex − 1, f(x) = ex on [0, log 2].
5. (a) F (x) = 2x, f(x) = 2 on [0, 1

2 ].

(b) F (x) = 2
√
x, f(x) = 1√

x
on [0, 1

4 ].

7. Using Corollary 5.2, we see that the expression
√
rnd will simulate the given random variable.

9. (a) F (y) =

{
y2

2 , 0 ≤ y ≤ 1;

1− (2−y)2

2 , 1 ≤ y ≤ 2,
f(y) =

{
y, 0 ≤ y ≤ 1;
2− y 1 ≤ y ≤ 2.

(b) F (y) = 2y − y2, f(y) = 2− 2y, 0 ≤ y ≤ 1.
13.

(a) F (r) =
√
r , f(r) =

1
2
√
r
, on [0,1].

(b) F (s) = 1−
√

1− 4s , f(s) =
2√

1− 4s
,on [0, 1

4 ].

(c) F (t) =
t

1 + t
, f(t) =

1
(1 + t)2 , on [0,∞].
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15. F (d) = 1− (1− 2d)2, f(d) = 4(1− 2d) on [0, 1
2 ].

17. (a) f(x) =
{
π
2 sin(πx), 0 ≤ x ≤ 1;
0, otherwise.

(b) sin2(π8 ) = .146.

19. a 6= 0 : f
W

(w) = 1
|a|fX (w−ba ), a = 0: f

W
(w) = 0 if w 6= 0.

21. P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y on [0, 1].

23. The mean of the uniform density is (a+ b)/2. The mean of the normal density is µ. The mean of
the exponential density is 1/λ.

25. (a) .9773, (b) .159, (c) .0228, (d) .6827.

27. A: 15.9%, B: 34.13%, C: 34.13%, D: 13.59%, F: 2.28%.

29. e−2, e−2.

31. 1
2 .

35. P (size increases) = P (Xj < Yj) = λ/(λ+ µ).

P (size decreases) = 1− P (size increases) = µ/(λ+ µ).

37. FY (y) =
1√
2πy

e−
log2(y)

2 , for y > 0.

SECTION 6.1

1. -1/9

3. 5′ 10.1”

5. -1/19

7. Since X and Y each take on only two values, we may choose a, b, c, d so that

U =
X + a

b
, V =

Y + c

d

take only values 0 and 1. If E(XY ) = E(X)E(Y ) then E(UV ) = E(U)E(V ). If U and V are
independent, so are X and Y . Thus it is sufficient to prove independence for U and V taking on
values 0 and 1 with E(UV ) = E(U)E(V ).Now

E(UV ) = P (U = 1, V = 1) = E(U)E(V ) = P (U = 1)P (V = 1),

and
P (U = 1, V = 0) = P (U = 1)− P (U = 1, V = 1)

= P (U = 1)(1− P (V = 1)) = P (U = 1)P (V = 0).

Similarly,
P (U = 0, V = 1) = P (U = 0)P (V = 1)
P (U = 0, V = 0) = P (U = 0)P (V = 0).

Thus U and V are independent, and hence X and Y are also.

9. The second bet is a fair bet so has expected winning 0. Thus your expected winning for the two
bets is the same as the original bet which was -7/498 = -.0141414... On the other hand, you bet
1 dollar with probability 1/3 and 2 dollars with probability 2/3. Thus the expected amount you
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bet is 12
3 dollars and your expected winning per dollar bet is -.0141414/1.666667 = -.0085 which

makes this option a better bet in terms of the amount won per dollar bet. However, the amount
of time to make the second bet is negligible, so in terms of the expected winning per time to make
one play the answer would still be -.0141414.

11. The roller has expected winning -.0141; the pass bettor has expected winning -.0136.

13. 45

15. E(X) = 1
5 , so this is a favorable game.

17. pk = p(

k−1 times︷ ︸︸ ︷
S · · ·S F ) = pk−1(1− p) = pk−1q, k = 1, 2, 3, . . . .

∞∑
k=1

pk = q
∞∑
k=0

pk = q
1

1− p = 1 .

E(X) = q
∞∑
k=1

kpk−1 =
q

(1− p)2
=

1
q
. (See Example 6.4.)

19.

E(X) =

(
4
4

)(
4
4

) (3− 3) +

(
3
2

)(
4
3

) (3− 2) +

(
3
3

)(
4
3

) (0− 3) +

(
3
1

)(
4
2

) (3− 1)

+

(
3
2

)(
4
2

) (0− 2) +

(
3
0

)(
4
1

) (3− 0) +

(
3
1

)(
4
1

) (0− 1) = 0

.

23. 10

25.
(b) Let S be the number of stars and C the number of circles left in the deck. Guess star if S > C

and guess circle if S < C. If S = C toss a coin.
(d) Consider the recursion relation:

h(S,C) =
max(S,C)
S + C

+
S

S + C
h(S − 1, C) +

C

S + C
h(S,C − 1)

and h(0, 0) = h(−1, 0) = h(0,−1) = 0. In this equation the first term represents your expected
winning on the current guess and the next two terms represent your expected total winning
on the remaining guesses. The value of h(10, 10) is 12.34.

27. (a) 4

(b) 4 +
4∑

x=1

(
4
x

)(
4
x

)(
8
x

) = 5.79 .

29. If you have no ten-cards and the dealer has an ace, then in the remaining 49 cards there are 16 ten
cards. Thus the expected payoff of your insurance bet is:

2 · 16
49
− 1 · 33

49
= − 1

49
.

If you are playing two hands and do not have any ten-cards then there are 16 ten-cards in the
remaining 47 cards and your expected payoff on an insurance bet is:

2 · 16
47
− 1 · 31

47
=

1
47

.

Thus in the first case the insurance bet is unfavorable and in the second it is favorable.

18



  

31. (a) 1− (1− p)k .

(b)
N

k
·
(

(k + 1)(1− (1− p)k) + (1− p)k
)
.

(c) If p is small, then (1− p)k ∼ 1− kp, so the expected number in (b) is
∼ N [kp+ 1

k ], which will be minimized when k = 1/
√
p.

33. We begin by noting that

P (X ≥ j + 1) = P ((t1 + t2 + · · ·+ tj) ≤ n) .

Now consider the j numbers a1, a2, · · · , aj defined by

a1 = t1

a2 = t1 + t2

a3 = t1 + t2 + t3

...
...

...
aj = t1 + t2 + · · ·+ tj .

The sequence a1, a2, · · · , aj is a monotone increasing sequence with distinct values and with succes-
sive differences between 1 and n. There is a one-to-one correspondence between the set of all such
sequences and the set of possible sequences t1, t2, · · · , tj . Each such possible sequence occurs with
probability 1/nj . In fact, there are n possible values for t1 and hence for a1. For each of these there
are n possible values for a2 corresponding to the n possible values of t2. Continuing in this way we
see that there are nj possible values for the sequence a1, a2, · · · , aj . On the other hand, in order to
have t1 + t2 + · · ·+ tj ≤ n the values of a1, a2, · · · , aj must be distinct numbers lying between 1 to
n and arranged in order. The number of ways that we can do this is

(
n
j

)
. Thus we have

P (t1 + t2 + · · ·+ tj ≤ n) = P (X ≥ j + 1) =
(
n

j

)
1
nj

.

E(X) = P (X = 1) + P (X = 2) + P (X = 3) · · ·
+ P (X = 2) + P (X = 3) · · ·

+ P (X = 3) · · · .
.

If we sum this by rows we see that

E(X) =
n−1∑
j=0

P (X ≥ j + 1) .

Thus,

E(X) =
n∑
j=1

(
n

j

)( 1
n

)j
=
(

1 +
1
n

)n
.

The limit of this last expression as n→∞ is e = 2.718... .

There is an interesting connection between this problem and the exponential density discussed in
Section 2.2 (Example 2.17). Assume that the experiment starts at time 1 and the time between
occurrences is equally likely to be any value between 1 and n. You start observing at time n. Let
T be the length of time that you wait. This is the amount by which t1 + t2 + · · ·+ tj is greater than
n. Now imagine a sequence of plays of a game in which you pay n/2 dollars for each play and for
the j’th play you receive the reward tj . You play until the first time your total reward is greater
than n. Then X is the number of times you play and your total reward is n+T . This is a perfectly
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fair game and your expected net winning should be 0. But the expected total reward is n+E(T ).
Your expected payment for play is n

2E(X). Thus by fairness, we have

n+ E(T ) = (n/2)E(X) .

Therefore,
E(T ) =

n

2
E(X)− n .

We have seen that for large n, E(X) ∼ e. Thus for large n,

E(waiting time) = E(T ) ∼ n(
e

2
− 1) = .718n .

Since the average time between occurrences is n/2 we have another example of the paradox where
we have to wait on the average longer than 1/2 the average time time between occurrences.

35. One can make a conditionally convergent series like the alternating harmonic series sum to anything
one pleases by properly rearranging the series. For example, for the order given we have

E =
∞∑
n=0

(−1)n+1 2n

n
· 1

2n

=
∞∑
n=0

(−1)n+1 1
n

= log 2 .

But we can rearrange the terms to add up to a negative value by choosing negative terms until they
add up to more than the first positive term, then choosing this positive term, then more negative
terms until they add up to more than the second positive term, then choosing this positive term,
etc.

37. (a) Under option (a), if red turns up, you win 1 franc, if black turns up, you lose 1 franc, and if 0
turns up, you lose 1/2 franc. Thus, the expected winnings are

1
(18

37

)
+ (−1)

(18
37

)
+
(−1

2

)( 1
37

)
≈ −.0135 .

(b) Under option (b), if red turns up, you win 1 franc, if black turns up, you lose 1 franc, and if 0
comes up, followed by black or 0, you lose 1 franc. Thus, the expected winnings are

1
(18

37

)
+ (−1)

(18
37

)
+ (−1)

( 1
37

)(19
37

)
≈ −.0139 .

(c)

39. (Solution by Peter Montgomery) The probability that book 1 is in the right place is the probability
that the last phone call referenced book 1, namely p1. The probability that book 2 is in the right
place, given that book 1 is in the right place, is

p2 + p2p1 + p2p
2
1 + . . . =

p2

(1− p1)
.

Continuing, we find that

P = p1
p2

(1− p1)
p3

(1− p1 − p2)
· · · pn

(1− p1 − p2 − . . .− pn−1
.

Now let q be a real number between 0 and 1, let

p1 = 1− q ,
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p2 = q − q2 ,

and so on, and finally let
pn = qn−1 .

Then
P = (1− q)n−1 ,

so P can be made arbitrarily close to 1.

SECTION 6.2

1. E(X) = 0, V (X) =
2
3
, σ = D(X) =

√
2
3
.

3. E(X) =
−1
19
, E(Y ) =

−1
19
, V (X) = 33.21, V (Y ) = .99 .

5. (a) E(F ) = 62, V (F ) = 1.2 .
(b) E(T ) = 0, V (T ) = 1.2 .

(c) E(C) =
50
3
, V (C) =

10
27

.

7. V (X) =
3
4
, D(X) =

√
3

2
.

9. V (X) =
3
4
, D(X) =

2
√

5
3

.

11. E(X) = (1 + 2 + · · ·+ n)/n = (n+ 1)/2.

V (X) = (12 + 22 + · · ·+ n2)/n− (E(X))2

= (n+ 1)(2n+ 1)/6− (n+ 1)2/4 = (n+ 1)(n− 1)/12.

13. Let X1, . . . , Xn be identically distributed random variables such that

P (Xi = 1) = P (Xi = −1) =
1
2
.

Then E(Xi) = 0, and V (Xi) = 1. Thus Wn =
∑n
j=1Xi. Therefore

E(Wn) =
∑n
i=1E(Xi) = 0, and V (Wn) =

∑n
i=1 V (Xi) = n.

15. (a) PXi =
(

0 1
n−1
n

1
n

)
. Therefore, E(Xi)2 = 1/n for i 6= j.

(b) PXiXj =
(

0 1
1− 1

n(n−1)
1

n(n−1)

)
for i 6= j .

Therefore, E(XiXj) =
1

n(n− 1)
.

(c)
E(Sn)2 =

∑
i

E(Xi)2 +
∑
i

∑
j 6=i

E(XiXj)

= n · 1
n

+ n(n− 1) · 1
n(n− 1)

= 2 .

(d)
V (Sn) = E(Sn)2 − E(Sn)2

= 2− (n · (1/n))2 = 1 .
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16. (a) For p = .5:
k

1 2 3
10 .656 .979 .998

N 30 .638 .957 .999
50 .678 .967 .997

For p = .2:
k

1 2 3
10 .772 .967 .994

N 30 .749 .964 .997
50 .629 .951 .997

(b) Use Exercise 12 and the fact that E(Sn) = np and V (Sn) = npq. The two examples in (a)
suggests that the probability that the outcome is within k standard deviations is approximately
the same for different values of p. We shall see in Chapter 9 that the Central Limit Theorem
explains why this is true.

19. Let X1, X2 be independent random variables with

pX1 = pX2 =
(
−1 1
1
2

1
2

)
.

Then

pX1+X2 =
(
−2 0 2
1
4

1
2

1
4

)
.

Then
σ̄X1 = σ̄X2 = 1, σ̄X1+X2 = 1 .

Therefore
V (X1 +X2) = 1 6= V (X1) + V (X2) = 2 ,

and
σ̄X1+X2 = 1 6= σ̄X1 + σ̄X2 = 2 .

21.
f ′(x) = −

∑
ω

2(X(ω)− x)p(ω)

= −2
∑
ω

X(ω)p(ω) + 2x
∑
ω

p(ω)

= −2µ+ 2x .

Thus x = µ is a critical point. Since f ′′(x) ≡ 2, we see that x = µ is the minimum point.

23. If X and Y are independent, then

Cov(X,Y ) = E(X − E(X)) · E(Y − E(Y )) = 0 .

Let U have distribution

p
U

=
(

0 π/2 π 3π/2
1/4 1/4 1/4 1/4

)
.

Then let X = cos(U) and Y = sin(U). X and Y have distributions

p
X

=
(

1 0 −1 0
1/4 1/4 1/4 1/4

)
,
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p
Y

=
(

0 1 0 −1
1/4 1/4 1/4 1/4

)
.

Thus E(X) = E(Y ) = 0 and E(XY ) = 0, so Cov(X,Y ) = 0. However, since
sin2(x) + cos2(x) = 1, X and Y are dependent.

25. (a) The expected value of X is

µ = E(X) =
5000∑
i=1

iP (X = i) .

The probability that a white ball is drawn is

P (white ball is drawn) =
n∑
i=1

P (X = i)
i

5000
.

Thus
P (white ball is drawn) =

µ

5000
.

(b) To have P (white,white) = P (white)2 we must have

5000∑
i=1

(
i

5000
)2P (X = i) = (

n∑
i=1

i

5000
P (X = i))2 .

But this would mean that E(X2) = E(X)2, or V (X) = 0. Thus we will have independence only if
X takes on a specific value with probability 1.

(c) From (b) we see that

P (white,white) =
1

50002E(X2) .

Thus

V (X) =
(σ2 + µ2)

50002
.

27. The number of boxes needed to get the j’th picture has a geometric distribution with

p =
(2n− k + 1)

2n
.

Thus

V (Xj) =
2n(k − 1)

(2n− k + 1)2
.

Therefore, for a team of 26 players the variance for the number of boxes needed to get the first half
of the pictures would be

13∑
k=1

26(k − 1)
(26− k + 1)2

= 7.01 ,

and to get the second half would be

26∑
k=14

26(k − 1)
(26− k + 1)2

= 979.23 .

Note that the variance for the second half is much larger than that for the first half.
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SECTION 6.3

1. (a) µ = 0, σ2 = 1/3
(b) µ = 0, σ2 = 1/2
(c) µ = 0, σ2 = 3/5
(d) µ = 0, σ2 = 3/5

3. µ = 40, σ2 = 800

5. (d) a = −3/2, b = 0, c = 1

(e) a =
45
48
, b = 0, c =

3
16

7. f(a) = E(X − a)2 =
∫

(x− a)2f(x)dx . Thus

f ′(a) = −
∫

2(x− a)f(x)dx

= −2
∫
xf(x)dx+ 2a

∫
f(x)dx

= −2µ(X) + 2a .

Since f ′′(a) = 2, f(a) achieves its minimum when a = µ(X).

9. (a) 3µ, 3σ2

(b) E(A) = µ, V (A) =
σ2

3

(c) E(S2) = 3σ2 + 9µ2, E(A2) =
σ2

3
+ µ2

11. In the case that X is uniformly distributed on [0, 100], one finds that

E(|X − b|) =
1

200

(
b2 + (100− b)2

)
,

which is minimized when b = 50.
When fX(x) = 2x/10,000, one finds that

E(|X − b|) =
200
3
− b+

b3

15000
,

which is minimized when b = 50
√

2.

13. Integrating by parts, we have

E(X) =
∫ ∞

0

xdF (x)

= −x(1− F (x))
∣∣∞
0

+
∫ ∞

0

(1− F (x))dx

=
∫ ∞

0

(1− F (x))dx .

To justify this argment we have to show that a(1 − F (a)) approaches 0 as a tends to infinity. To
see this, we note that ∫ ∞

0

xf(x)dx =
∫ a

0

xf(x)dx+
∫ ∞
a

xf(x)dx

≥
∫ a

0

xf(x)dx+
∫ a

0

af(x)dx

=
∫ a

0

xf(x)dx+ a(1− F (a)) .
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Letting a tend to infinity, we have that

E(X) ≥ E(X) + lim
a→∞

a(1− F (a)) .

Since both terms are non-negative, the only way this can happen is for the inequality to be an
equality and the limit to be 0.

To illustrate this with the exponential density, we have∫ ∞
0

(1− F (x))dx =
∫ ∞

0

e−λxdx =
1
λ

= E(X) .

15. E(Y ) = 9.5, E(Z) = 10, E(|X − Y |) = 1/2, E(|X − Z|) = 1/2 .
Z is better, since it has the same expected value as X and the variance is only slightly larger.

17. (a)
Cov(X,Y ) = E(XY )− µ(X)E(Y )− E(X)µ(Y ) + µ(X)µ(Y )

= E(XY )− µ(X)µ(Y ) = E(XY )− E(X)E(Y ) .

(b) If X and Y are independent, then E(XY ) = E(X)E(Y ), and so Cov(X,Y ) = 0.

(c)
V (X + Y ) = E(X + Y )2 − (E(X + Y ))2

= E(X2) + 2E(XY ) + E(Y 2)

− E(X)2 − 2E(X)E(Y )− E(Y )2

= V (X) + V (Y ) + 2Cov(X,Y ) .

19. (a) 0

(b)
1√
2

(c) − 1√
2

(d) 0

21. We have

f
XY (x,y)

f
Y

(y)
=

1

2π
√

1−ρ2
· exp

(
−(x2−2ρxy+y2)

2(1−ρ2)

)
√

2π · exp(−y2

2 )

=
1√

2π(1− ρ2)
· exp

(−(x− ρy)2

2(1− ρ2)

)
which is a normal density with mean ρy and variance 1− ρ2. Thus,

E(X|Y = y) =
∫ ∞
−∞

x
1√

2π(1− ρ2)
· exp

(−(x− ρy)2

2(1− ρ2)

)
dx

= ρy

∫ ∞
−∞

1√
2π(1− ρ2)

· exp(−(x− ρy)2)

=
{
ρy < y, if 0 < ρ < 1;
y, if ρ = 1.

27. Let Z represent the payment. Then

P (Z = k|X = x) = P (Y1 ≤ x, Y2 ≤ x, . . . , Yk ≤ x, Yk+1 > x)

= xk(1− x) .
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Therefore,

P (Z = k) =
∫ 1

0

xk(1− x) dx

=
[

1
k + 1

xk+1 − 1
k + 2

xk+2

]1

0

=
1

k + 1
− 1
k + 2

=
1

(k + 1)(k + 2)
.

Thus,

E(Z) =
∞∑
k=0

k

(
1

(k + 1)(k + 2)

)
,

which diverges. Thus, you should be willing to pay any amount to play this game.

SECTION 7.1

1. (a) .625

(b) .5

3.
(

0 1 2 3 4
1
64

3
32

17
64

3
8

1
4

)
5. (a)

(
3 4 5 6
1
12

4
12

4
12

3
12

)
(b)

(
1 2 3 4
1
12

4
12

4
12

3
12

)
7. (a) P (Y3 ≤ j) = P (X1 ≤ j,X2 ≤ j,X3 ≤ j) = P (X1 ≤ j)3.

Thus

p
Y3

=
(

1 2 3 4 5 6
1

216
7

216
19
216

37
216

61
216

91
216

)
.

This distribution is not bell-shaped.

(b) In general,

P (Yn ≤ j) = P (X1 ≤ j)3 =
(
j

n

)n
.

Therefore,

P (Yn = j) =
(
j

n

)n
−
(
j − 1
n

)n
.

This distribution is not bell-shaped for large n.

9. Let p1, . . . , p6 be the probabilities for one die and q1, . . . , q6 be the probabilities for the other die.
Assume first that all probabilities are positive. Then p1q1 > p1q6, since there is only one way to
get a 2 and several ways to get a 7. Thus q1 > q6. In the same way q6q6 > q1p6 and so q6 > q1.
This is a contradiction. If any of the sides has probability 0, then we can renumber them so that
it is side 1. But then the probability of a 2 is 0 and so all sums would have to have probability 0,
which is impossible.
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Here’s a fancy way to prove it. Define the polynomials

p(x) =
5∑
k=0

p(k+1)x
k

and

q(x) =
5∑
k=0

q(k+1)x
k .

Then we must have

p(x)q(x) =
10∑
k=0

xk

11
=

(1− x11)
(1− x)

.

The left side is the product of two fifth degree polynomials. A fifth degree polynomial must have
a real root which will not be 0 if p1 > 0. Consider the right side as a polynomial. For x to be a
non-zero root of this polynomial it would have to be a real eleventh root of unity other than 1, and
there are no such roots. Hence again we have a contradiction.

SECTION 7.2

3. (a)

f
Z

(x) =
{
x3/24, if 0 ≤ x ≤ 2;
x− x3/24− 4/3, if 2 ≤ x ≤ 4.

(b)

f
Z

(x) =
{

(x3 − 18x2 + 108x− 216)/24, if 6 ≤ x ≤ 8;
(−x3 + 18x2 − 84x+ 40)/24, if 8 ≤ x ≤ 10.

(c)

f
Z

(x) =
{
x2/8, if 0 ≤ x ≤ 2;
1/2− (x− 2)2/8, if 2 ≤ x ≤ 4.

5. (a)

f
Z

(x) =

{
λµ
µ+λe

λx, x < 0;
λµ
µ+λe

−µx, x ≥ 0.

(b)

f
Z

(x) =
{

1− e−λx, 0 < x < 1;
(eλ − 1)e−λx, x ≥ 1.

7. We first find the density for X2 when X has a general normal density

f
X

(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

dx .

Then (see Theorem 1 of Chapter 5, Section 5.2 and the discussion following) we have

f2
X

(x) =
1

σ
√

2π
1

2
√
x

exp(−x/2σ2 − µ2/2σ2)
(

exp(
√
xµ/σ2) + exp(−

√
xµ/σ2)

)
.
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Replacing the last two exponentials by their series representation, we have

f2
X

(x) = e−µ/2σ
2
∞∑
r=0

( µ

2σ2

)r 1
r!
G(1/2σ2, r + 1/2, x) ,

where
G(a, p, x) =

ap

Γ(p)
e−axxp−1

is the gamma density. We now consider the original problem with X1 and X2 two random variables
with normal density with parameters µ1, σ1 and µ2, σ2. This is too much generality for us, and we
shall assume that the variances are equal, and then for simplicity we shall assume they are 1. Let

c =
√
µ2

1 + µ2
2 .

We introduce the new random variables

Z1 =
1
c

(µ1X1 + µ2X2) ,

Z2 =
1
c

(µ2X1 − µ1X2) .

Then Z1 is normal with mean c and variance 1 and Z2 is normal with mean 0 and variance 1. Thus,

fZ2
1

= e−c
2/2

∞∑
r=0

(c2
2

)r 1
r!
G(1/2, r + 1/2, x) ,

and
fZ2

2
= G(1/2, 1/2, x) .

Convoluting these two densities and using the fact that the convolution of a gamma densityG(a, p, x)
and G(a, q, x) is a gamma density G(a, p+ q, x) we finally obtain

fZ2
1+Z2

2
= fX2

1+X2
2

= e−c
2/2

∞∑
r=0

(c2
2

)r 1
r!
G
(

1/2, r + 1, x
)
.

(This derivation is adapted from that of C.R. Rao in his book Advanced Statistical Methods in
Biometric Research, Wiley, l952.)

9. P (X10 > 22) = .341 by numerical integration. This also could be estimated by simulation.

11. 10 hours

13. Y1 = −log(X1) has an exponential density f
Y1

(x) = e−x. Thus Sn has the gamma density

f
Sn

(x) =
xn−1e−x

(n− 1)!
.

Therefore
f
Zn

(x) =
1

(n− 1)!

(
log

1
x

)n−1

.

19. The support of X + Y is [a+ c, b+ d].

21. (a)

f
A

(x) =
1√
2πn

e−x
2/(2n) .
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(b)
f
A

(x) = nnxne−nx/(n− 1)! .

SECTION 8.1

1. 1/9
3. We shall see that Sn−n/2 tends to infinity as n tends to infinity. While the difference will be small

compared to n/2, it will not tend to 0. On the other hand the difference Sn/n− 1/2 does tend to
0.

5. k = 10

7.

p(1− p) =
1
4
−
(

1
4
− p+ p2

)
=

1
4
− (

1
2
− p)2 ≤ 1

4
.

Thus, max
0≤p≤1

p(1− p) =
1
4
. From Exercise 6 we have that

P

(
|Sn
n
− p| ≥ ε

)
≤ p(1− p)

nε2
≤ 1

4nε2
.

9.
P (Sn ≥ 11) = P (Sn − E(Sn) ≥ 11− E(Sn))

= P (Sn − E(Sn) ≥ 10)

≤ V (Sn)
102

= .01.

11. No, we cannot predict the proportion of heads that should turn up in the long run, since this will
depend upon which of the two coins we pick. If you have observed a large number of trials then, by
the Law of Large Numbers, the proportion of heads should be near the probability for the coin that
you chose. Thus, in the long run, you will be able to tell which coin you have from the proportion
of heads in your observations. To be 95 percent sure, if the proportion of heads is less than .625,
predict p = 1/2; if it is greater than .625, predict p = 3/4. Then you will get the correct coin if the
proportion of heads does not deviate from the probability of heads by more than .125. By Exercise
7, the probability of a deviation of this much is less than or equal to 1/(4n(.125)2). This will be
less than or equal to .05 if n > 320. Thus with 321 tosses we can be 95 percent sure which coin we
have.

15. Take as Ω the set of all sequences of 0’s and 1’s, with 1’s indicating heads and 0’s indicating
tails. We cannot determine a probability distribution by simply assigning equal weights to all
infinite sequences, since these weights would have to be 0. Instead, we assign probabilities to finite
sequences in the usual way, and then probabilities of events that depend on infinite sequences can
be obtained as limits of these finite sequences. (See Exercise 28 of Chapter 1, Section 1.2.)

17. For x ∈ [0, 1], let us toss a biased coin that comes up heads with probability x. Then

E
(f(Sn)

n

)
→ f(x).
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But

E
(f(Sn)

n

)
=

n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k.

The right side is a polynomial, and the left side tends to f(x). Hence

n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k → f(x).

This shows that we can obtain obtain any continuous function f(x) on [0,1] as a limit of polynomial
functions.

SECTION 8.2

1. (a) 1
(b) 1
(c) 100/243
(d) 1/12

3.
f(x) =

{
1− x/10, if 0 ≤ x ≤ 10;
0 otherwise.

g(x) =
100
3x2

.

5. (a) 1, 1/4, 1/9
(b) 1 vs. .3173, .25 vs. .0455, .11 vs. .0027

7. (b) 1, 1, 100/243, 1/12

9. (a) 0
(b) 7/12
(c) 11/12

11. (a) 0
(b) 7/12

13. (a) 2/3
(b) 2/3
(c) 2/3

17. E(X) =
∫∞
−∞ xp(x)dx. Since X is non-negative, we have

E(X) ≥
∫
x≥a

xp(x)dx ≥ aP (X ≥ a) .

SECTION 9.1(The answers to the problems in this chapter do not use the ‘1/2 correction mentioned
in Section 9.1.
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1. (a) .158655

(b) .6318

(c) .0035

(d) .9032

3. (a) P (June passes) ≈ .985

(b) P (April passes) ≈ .056

5. Since his batting average was .267, he must have had 80 hits. The probability that one would
obtain 80 or fewer successes in 300 Bernoulli trials, with individual probability of success .3, is
approximately .115. Thus, the low average is probably not due to bad luck (but a statistician
would not reject the hypothesis that the player has a probability of success equal to .3).

7. .322

9. (a) 0

(b) 1 (Law of Large Numbers)

(c) .977 (Central Limit Theorem)

(d) 1 (Law of Large Numbers)

13. P (S1900 ≥ 115) = P

(
S∗1900 ≥

115− 95√
1900 · .05 · .95

)
= P (S∗1900 ≥ 2.105) = .0176.

17. We want
2
√
pq√
n

= .01. Replacing
√
pq by its upper bound 1

2 , we have
1√
n

= .01. Thus we would

need n = 10,000. Recall that by Chebyshev’s inequality we would need 50,000.

SECTION 9.2

1. (a) .4762

(b) .0477

3. (a) .5

(b) .9987

5. (a) P (S210 < 700) ≈ .0757.

(b) P (S189 ≥ 700) ≈ .0528

(c) P (S179 < 700, S210 ≥ 700) = P (S179 < 700)− P (S179 < 700, S210 < 700)
= P (S179 < 700)− P (S210 < 700)
≈ .9993− .0757 = .9236 .

7. (a) Expected value = 200, variance = 2

(b) .9973

9. P
(∣∣∣Sn

n
− µ

∣∣∣ ≥ ε) = P
(∣∣∣Sn − nµ∣∣∣ ≥ nε)= P

(∣∣∣Sn − nµ√
nσ2

∣∣∣ ≥ nε√
nσ2

)
.

By the Central Limit Theorem, this probability is approximated by the area under the normal

curve between
√
nε

σ
and infinity, and this area approaches 0 as n tends to infinity.

11. Her expected loss is 60 dollars. The probability that she lost no money is about .0013.

13. p = .0056
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SECTION 9.3

1.
E(X∗) =

1
σ

(E(X)− µ) =
1
σ

(µ− µ) = 0 ,

σ2(X∗) = E
(X − µ

σ

)2

=
1
σ2
σ2 = 1 .

3. Tn = Y1 + Y2 + · · ·+ Yn =
Sn − nµ

σ
. Since each Yj has mean 0 and variance 1, E(Tn) = 0 and

V (Tn) = n. Thus T ∗n =
Tn√
n

=
Sn − nµ
σ
√
n

= S∗n .

11. (a) .5
(b) .148
(c) .018

13. .0013

SECTION 10.1

1. In each case, to get g(t) just replace z by et in h(z).

(a) h(z) =
1
2

(1 + z)

(b) h(z) =
6∑
j=1

zj

(c) h(z) = z3

(d) h(z) =
1

k + 1
zn

k∑
j=1

zj

(e) h(z) = zn(pz + q)k

(f) h(z) =
2

3− z

3. (a) h(z) =
1
4

+
1
2
z +

1
4
z2 .

(b) g(t) = h(et) =
1
4

+
1
2
et +

1
4
e2t .

(c) g(t) =
1
4

+
1
2

(( ∞∑
k=0

tk

k!

)
+

1
4

( ∞∑
k=0

2k

k!
tk
)

= 1 +
∞∑
k=1

( 1
2k!

+
2k−2

k!

)
tk = 1 +

∞∑
k=1

µk
k!
tk .

Thus µ0 = 1, and µk = 1
2 + 2k−2 for k ≥ 1.

(d) p0 =
1
4
, p1 =

1
2
, p2 =

1
4
.

5. (a) µ1(p) = µ1(p′) = 3, µ2(p) = µ2(p′) = 11
µ3(p) = 43, µ3(p′) = 47
µ4(p) = 171, µ4(p′) = 219

7. (a) g−X(t) = g(−t)
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(b) gX+1(t) = etg(t)
(c) g3X(t) = g(3t)
(d) gaX+b = ebtg(at)

9. (a) h
X

(z) =
6∑
j=1

ajz
j , h

Y
(z) =

6∑
j=1

bjz
j .

(b) h
Z

(z) =
( 6∑
j=1

ajz
j
)( 6∑

j=1

bjz
j
)
.

(c) Assume that h
Z

(z) = (z2 + · · ·+ z12)/11 .

Then
( 6∑
j=1

ajz
j−1
)( 6∑

j=1

bjz
j−1
)

=
1 + z + · · · z10

11
=

z11 − 1
11(z − 1)

.

Either
6∑
j=1

ajz
j−1or

6∑
j=1

bjz
j−1 is a polynomial of degree 5 (i.e., either a6 6= 0 or b6 6= 0). Suppose

that
6∑
j=1

ajz
j−1 is a polynomial of degree 5. Then it must have a real root, which is a real root of

(z11 − 1)/(z − 1). However (z11 − 1)/(z − 1) has no real roots. This is because the only real root
of z11 − 1 is 1, which cannot be a real root of (z11 − 1)/(z − 1). Thus, we have a contradiction.
This means that you cannot load two dice in such a way that the probabilities for any sum from 2
to 12 are the same. (cf. Exercise 11 of Section 7.1).

11. Let pn = probability that the gambler is ruined at play n.

Then
pn = 0, if n is even,
p1 = q,

pn = p(p1pn−2 + p3pn−4 + · · ·+ pn−2p1), if n > 1 is odd.

Thus
h(z) = qz + pz

(
h(x)

)2

,

so

h(z) =
1−

√
1− 4pqz2

2pz
.

By Exercise 10 we have

h(1) =
{
q/p, if q ≤ p,
1, if q ≥ p,

h′(1) =
{

1/(q − p), if q > p,
∞, if q = p.

This says that when q > p, the gambler must be ruined, and the expected number of plays before
ruin is 1/(q− p). When p > q, the gambler has a probability q/p of being ruined. When p = q, the
gambler must be ruined eventually, but the expected number of plays until ruin is not finite.

13. (a) From the hint:

hk(z) = h
U 1

(z) · · ·h
Uk

(z) =
(
h(z)

)k
.

(b)

hk(1) =
(
h(1)

)k
=
{

(q/p)k if q ≤ p,
1 if q ≥ p.
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h′(1) =
{
k/(q − p) if q > p,
∞ if q = p.

Thus the gambler must be ruined if q ≥ p. The expected number of plays in this case is k/(q − p)
if q > p and ∞ if q = p. When q < p he is ruined with probability (q/p)k.

SECTION 10.2

1. (a) d = 1
(b) d = 1
(c) d = 1
(d) d = 1
(e) d = 1/2
(f) d ≈ .203

3. (a) 0
(b) 276.26

5. Let Z be the number of offspring of a single parent. Then the number of offspring after two
generations is

SN = X1 + · · ·+XN ,

where N = Z and Xi are independent with generating function f . Thus by Exercise 4, the
generating function after two generations is h(z) = f(f(z)).

7. Let N be the time she needs to be served. Then the number of customers arriving during this time
is X1 + · · ·+XN , where Xi are identically distributed independent of N . P (X0 = 0) = p, P (Xi =
1) = q. Thus by Exercise 4, h(z) = g(f(z)).

9. If there are k offspring in the first generation, then the expected total number of offspring will be
kN , where N is the expected total numer for a single offspring. Thus we can compute the expected
total number by counting the first offspring and then the expected number after the first generation.
This gives the formula

N = 1 +
(∑

k

kpk

)
= 1 +mN .

¿From this it follows that N is finite if and only if m < 1, in which case
N = 1/(1−m).

SECTION 10.3

1. (a) g(t) =
1
2t

(e2t − 1)

(b) g(t) =
e2t(2t− 1) + 1

2t2

(c) g(t) =
e2t − 2t− 1

2t2

(d) g(t) =
e2t(ty − 1) + 2et − t− 1

t2

(e) (3/8)
(
e2t(4t2 − 4t+ 2)− 2

t3

)
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3. (a) g(t) =
2

2− t
(b) g(t) =

4− 3t
2(1− t)(2− t)

(c) g(t) =
4

(2− t)2
(d) g(t) =

( λ

λ+ t

)
, t < λ .

5. (a) k(τ) =
1

2iτ
(e2iτ − 1)

(b) k(τ) =
e2iτ (2iτ − 1) + 1

−2τ2

(c) k(τ) =
e2iτ − 2iτ − 1
−2τ2

(d) k(τ) =
e2iτ (iτ − 1) + 2eiτ − iτ − 1

−τ2

(e) k(τ) = (3/8)
(
e2iτ (−4τ2 − 4iτ + 2

−iτ3

)
7. (a) g(−t) =

1− e−t
t

(b) etg(t) =
e2t − et

t

(c) g(et) =
e3t − 1

3t

(d) ebg(at) =
eb(eat − 1)

at

9. (a) g(t) = et
2+t

(b)
(
g(t)

)2

(c)
(
g(t)

)n
(d)

(
g(t/n)

)n
(e) et

2/2

SECTION 11.1

1. w(1) = (.5, .25, .25)
w(2) = (.4375, .1875, .375)
w(3) = (.40625, .203125, .390625)

3. Pn = P for all n.

5. 1

7. (a) Pn = P

(b) Pn =
{

P, if n is odd,
I, if n is even.

9. p2 + q2, q2,

( 0 1
0 p q
1 q p

)
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11. .375

19. (a) 5/6.

(b) The ‘transition matrix’ is

P =
( H T

H 5/6 1/6
T 1/2 1/2

)
.

(c) 9/10.

(d) No. If it were a Markov chain, then the answer to (c) would be the same as the answer to (a).

SECTION 11.2

1. a = 0 or b = 0

3. Examples 11.10 and 11.11

5. The transition matrix in canonical form is

P =



GG,Gg GG, gg Gg,Gg Gg, gg GG,GG gg, gg

GG,Gg 1/2 0 1/4 0 1/4 0
GG, gg 0 0 1 0 0 0
Gg,Gg 1/4 1/8 1/4 1/4 1/16 1/16
Gg, gg 0 0 1/4 1/2 0 1/4
GG,GG 0 0 0 0 1 0
gg, gg 0 0 0 0 0 1

.

Thus

Q =



GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 1/2 0 1/4 0
GG, gg 0 0 1 0
Gg,Gg 1/4 1/8 1/4 1/4
Gg, gg 0 0 1/4 1/2
.

,
and

N = (I−Q)−1 =


GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 8/3 1/6 4/3 2/3
GG, gg 4/3 4/3 8/3 4/3
Gg,Gg 4/3 1/3 8/3 4/3
Gg, gg 2/3 1/6 4/3 8/3

.
From this we obtain

t = Nc =


GG,Gg 29/6
GG, gg 20/3
Gg,Gg 17/3
Gg, gg 29/6

,
and

B = NR =


GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.
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7. N =

 2.5 3 1.5
2 4 2

1.5 3 2.5


Nc =

 7
8
7


B =

 5/8 3/8
1/2 1/2
3/8 5/8


9. 2.08

12.

P =



ABC AC BC A B C none

ABC 5/18 5/18 4/18 0 0 4/18 0
AC 0 5/12 0 5/2 0 1/12 1/12
BC 0 0 10/18 0 5/18 2/18 1/18
A 0 0 0 1 0 0 0
B 0 0 0 0 1 0 0
C 0 0 0 0 0 1 0
none 0 0 0 0 0 0 1



N =

 1.385 .659 .692
0 1.714 0
0 0 2.25


Nc =

 2.736
1.714
2.25



B =


A B C none

ABC .275 .192 .440 .093
AC .714 0 .143 .143
BC 0 .625 .25 .125


13. Using timid play, Smith’s fortune is a Markov chain with transition matrix

P =



1 2 3 4 5 6 7 0 8
1 0 .4 0 0 0 0 0 .6 0
2 .6 0 .4 0 0 0 0 0 0
3 0 .6 0 .4 0 0 0 0 0
4 0 0 .6 0 .4 0 0 0 0
5 0 0 0 .6 0 .4 0 0 0
6 0 0 0 0 .6 0 .4 0 0
7 0 0 0 0 0 .6 0 .4 0
0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1


.

For this matrix we have

B =



0 8
1 .98 .02
2 .95 .05
3 .9 .1
4 .84 .16
5 .73 .27
6 .58 .42
7 .35 .65


.
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For bold strategy, Smith’s fortune is governed instead by the transition matrix

P =



1 2 4 0 8
1 0 .4 0 .6 0
2 0 0 .4 .6 0
4 0 0 0 .6 .4
0 0 0 0 1 0
8 0 0 0 0 1

,
with

B =


0 8

1 .936 .064
2 .84 .16
4 .6 .4

.
From this we see that the bold strategy gives him a probability .064 of getting out of jail while the
timid strategy gives him a smaller probability .02. Be bold!

15. (a)

P =



3 4 5 1 2
3 0 2/3 0 1/3 0
4 1/3 0 2/3 0 0
5 0 2/3 0 0 1/3
1 0 0 0 1 0
2 0 0 0 0 1

.
(b)

N =


3 4 5

3 5/3 2 4/3
4 1 3 2
5 2/3 2 7/3

,

t =

3 5
4 6
5 5

,

B =


1 2

3 5/9 4/9
4 1/3 2/3
5 2/9 7/9

.
(c) Thus when the score is deuce (state 4), the expected number of points to be played is 6, and

the probability that B wins (ends in state 2) is 2/3.

17. For the color-blindness example, we have

B =


G,GG g, gg

g,GG 2/3 1/3
G,Gg 2/3 1/3
g,Gg 1/3 2/3
G, gg 1/3 2/3

,
and for Example 9 of Section 11.1, we have

B =


GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.
38



   

In each case the probability of ending up in a state with all G’s is proportional to the number of
G’s in the starting state. The transition matrix for Example 9 is

P =



GG,GG GG,Gg GG, gg Gg,Gg Gg, gg gg, gg

GG,GG 1 0 0 0 0 0
GG,Gg 1/4 1/2 0 1/4 0 0
GG, gg 0 0 0 1 0 0
Gg,Gg 1/16 1/4 1/8 1/4 1/4 1/16
Gg, gg 0 0 0 1/4 1/2 1/4
gg, gg 0 0 0 0 0 1

.

Imagine a game in which your fortune is the number of G’s in the state that you are in. This is a
fair game. For example, when you are in state Gg,gg your fortune is 1. On the next step it becomes
2 with probability 1/4, 1 with probability 1/2, and 0 with probability 1/4. Thus, your expected
fortune after the next step is equal to 1, which is equal to your current fortune. You can check that
the same is true no matter what state you are in. Thus if you start in state Gg,gg, your expected
final fortune will be 1. But this means that your final fortune must also have expected value 1.
Since your final fortune is either 4 if you end in GG,GG or 0 if you end in gg, gg, we see that the
probability of your ending in GG,GG must be 1/4.

19. (a)

P =


1 2 0 3

1 0 2/3 1/3 0
2 2/3 0 0 1/3
0 0 0 1 0
3 0 0 0 1

.
. (b)

N =
( 1 2

1 9/5 6/5
2 6/5 9/5

)
,

B =
( 0 3

1 3/5 2/5
2 2/5 3/5

)
,

t =
(

1 3
2 3

)
.

(c) The game will last on the average 3 moves.

(d) If Mary deals, the probability that John wins the game is 3/5.

21. The problem should assume that a fraction

qi = 1−
∑
j

qij > 0

of the pollution goes into the atmosphere and escapes.
(a) We note that u gives the amount of pollution in each city from today’s emission, uQ the

amount that comes from yesterday’s emission, uQ2 from two days ago, etc. Thus

wn = u + uQ + · · ·uQn−1 .

(b) Form a Markov chain with Q-matrix Q and with one absorbing state to which the process
moves with probability qi when in state i. Then

I + Q + Q2 + · · ·+ Qn−1 → N ,
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so
w(n) → w = uN .

(c) If we are given w as a goal, then we can achieve this by solving w = Nu for u, obtaining

u = w(I−Q) .

27. Use the solution to Exercise 24 with w = f.

29. For the chain with pattern HTH we have already verified that the conjecture is correct starting in
HT. Assume that we start in H. Then the first player will win 8 with probability 1/4, so his expected
winning is 2. Thus E(T |H) = 10 − 2 = 8, which is correct according to the results given in the
solution to Exercise 28. The conjecture can be verified similarly for the chain HHH by comparing
the results given by the conjecture with those given by the solution to Exercise 28.

31. You can easily check that the proportion of G’s in the state provides a harmonic function. Then
by Exercise 27 the proportion at the starting state is equal to the expected value of the proportion
in the final aborbing state. But the proportion of 1s in the absorbing state GG,GG is 1. In the
other absorbing state gg, gg it is 0. Thus the expected final proportion is just the probability of
ending up in state GG,GG. Therefore, the probability of ending up in GG,GG is the proportion
of G genes in the starting state.(See Exercise 17.)

33. In each case Exercise 27 shows that

f(i) = biNf(N) + (1− biN )f(0) .

Thus

biN =
f(i)− f(0)
f(N)− f(0)

.

Substituting the values of f in the two cases gives the desired results.

SECTION 11.3

1. (a), (f)

3. (a) a = 0 or b = 0
(b) a = b = 1
(c) (0 < a < 1 and 0 < b < 1) or (a = 1 and 0 < b < 1) or (0 < a < 1 and b = 1).

5. (a) (2/3, 1/3)
(b) (1/2, 1/2)
(c) (2/7, 3/7, 2/7)

7. The fixed vector is (1, 0) and the entries of this vector are not strictly positive, as required for the
fixed vector of an ergodic chain.

9. Let

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,

with column sums equal to 1. Then

(1/3, 1/3, 1/3)P = (1/3
3∑
j=1

pj1, 1/3
3∑
j=1

pj2, 1/3
3∑
j=1

pj3)

= (1/3, 1/3, 1/3) .
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The same argument shows that if P is an n× n transition matrix with columns that add to 1 then

w = (1/n, · · · , 1/n)

is a fixed probability vector. For an ergodic chain this means the the average number of times in
each state is 1/n.

11. In Example 11.11 of Section 11.1, the state (GG,GG) is absorbing, and the same reasoning as in
the immediately preceding answer applies to show that this chain is not ergodic.

13. The fixed vector is w = (a/(b + a), b/(b + a)). Thus in the long run a proportion b/(b+ a) of the
people will be told that the President will run. The fact that this is independent of the starting
state means it is independent of the decision that the President actually makes. (See Exercise 2 of
Section 11.1)

15. It is clearly possible to go between any two states, so the chain is ergodic. From 0 it is possible to
go to states 0, 2, and 4 only in an even number of steps, so the chain is not regular. For the general
Erhrenfest Urn model the fixed vector must statisfy the following equations:

1
n
w1 = w0 ,

wj+1
j + 1
n

+ wj−1
n− j + 1

n
= wj , if 0 < j < n,

1
n
wn−1 = wn .

It is easy to check that the binomial coefficients satisfy these conditions.

17. Consider the Markov chain whose state is the value of Sn mod(7), that is, the remainder when Sn
is divided by 7. Then the transition matrix for this chain is

P =



0 1 2 3 4 5 6
0 0 1/6 1/6 1/6 1/6 1/6 1/6
1 1/6 0 1/6 1/6 1/6 1/6 1/6
2 1/6 1/6 0 1/6 1/6 1/6 1/6
3 1/6 1/6 1/6 0 1/6 1/6 1/6
4 1/6 1/6 1/6 1/6 0 1/6 1/6
5 1/6 1/6 1/6 1/6 1/6 0 1/6
6 1/6 1/6 1/6 1/6 1/6 1/6 0


.

Since the column sums of this matrix are 1, the fixed vector is

w = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7) .

19.
(a) For the general chain it is possible to go from any state i to any other state j in r2−2r+2 steps.

We show how this can be done starting in state 1. To return to 1, circle (1, 2, .., r− 1, 1) r− 2
times (r2− 3r+ 2 steps) and (1, ..., r, 1) once (r steps). For k = 1, ..., r− 1 to reach state k+ 1,
circle (1, 2, . . . , r, 1) r−k times (r2−rk steps) then (1, 2, . . . , r−1, 1) k−2 times (rk−2r−k+2
steps) and then move to k+1 in k steps.You have taken r2−2r+2 steps in all. The argument
is the same for any other starting state with everything translated the appropriate amount.

(b)

P =

 0 ∗ 0
∗ 0 ∗
∗ 0 0

 , P2 =

 ∗ 0 ∗
∗ ∗ 0
0 ∗ 0

 , P3 =

 ∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗

 ,
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P4 =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ 0

 , P5 =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 .

25. To each Markov chain we can associate a directed graph, whose vertices are the states i of the chain,
and whose edges are determined by the transition matrix: the graph has an edge from i to j if and
only if pij > 0. Then to say that P is ergodic means that from any state i you can find a path
following the arrows until you reach any state j. If you cut out all the loops in this path you will
then have a path that never interesects itself, but still leads from i to j. This path will have at
most r− 1 edges, since each edge leads to a different state and none leads to i. Following this path
requires at most r − 1 steps.

27. If P is ergodic it is possible to go between any two states. The same will be true for the chain
with transition matrix 1

2 (I+P). But for this chain it is possible to remain in any state; therefore,
by Exercise 26, this chain is regular.

29.
(b) Since P has rational transition probabilities, when you solve for the fixed vector you will

get a vector a with rational components. We can multiply through by a sufficiently large
integer to obtain a fixed vector u with integer components such that each component of u
is an integer multiple of the corresponding component of a. Let a(n) be the vector resulting
from the nth iteration. Let b(n) = a(n)P. Then a(n+1) is obtained by adding chips to b(n+1).
We want to prove that a(n+1) ≥ a(n). This is true for n = 0 by construction. Assume that
it is true for n. Then multiplying the inequality by P gives that b(n+1) ≥ b(n). Consider
the component a(n+1)

j . This is obtained by adding chips to b(n+1)
j until we get a multiple of

aj . Since b(n)
j ≤ b

(n+1)
j , any multiple of aj that could be obtained in this manner to define

a
(n+1)
j could also have been obtained to define a(n)

j by adding more chips if necessary. Since

we take the smallest possible multiple aj , we must have a(n)
j ≤ an+1

j . Thus the results after
each iteration are monotone increasing. On the other hand, they are always less than or equal
to u. Since there are only a finite number of integers between components of a and u, the
iteration will have to stop after a finite number of steps.

31. If the maximum of a set of numbers is an average of other elements of the set, then each of the
elements with positive weight in this average must also be maximum. By assumption, Px = x.
This implies Pnx = x for all n. Assume that xi = M , where M is the maximum value for the xk’s,
and let j be any other state. Then there is an n such that pnij > 0. The ith row of the equation
Pnx = x presents xi as an average of values of xk with positive weight,one of which is xj . Thus
xj = M , and x is constant.

SECTION 11.4

1.
(

1/3
1/3

)
3. For regular chains, only the constant vectors are fixed column vectors.

SECTION 11.5

1.

Z =
(

11/9 −2/9
−1/9 10/9

)
.
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and

M =
(

0 2
4 0

)
.

3. 2

5. The fixed vector is w = (1/6,1/6,1/6,1/6,1/6,1/6), so the mean recurrence time is 6 for each state.

7. (a)



1 2 3 4 5 6
1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 1/4 1/4 0 1/4 1/4 0
4 0 0 1/2 0 0 1/2
5 0 0 1/2 0 0 1/2
6 0 0 0 1/2 1/2 0


(b) The rat alternates between the sets {1, 2, 4, 5} and {3, 6}.
(c) w = (1/12, 1/12, 4/12, 2/12, 2/12, 2/12).

(d) m1,5 = 7

9. (a) if n is odd, P is regular. If n is even, P is ergodic but not regular.

(b) w = (1/n, · · · , 1/n).
(c) From the program Ergodic we obtain

M =



0 1 2 3 4
0 0 4 6 6 4
1 4 0 4 6 6
2 6 4 0 4 6
3 6 6 4 0 4
4 4 6 6 4 0

.

This is consistent with the conjecture that mij = d(n− d), where d is the clockwise distance from
i to j.

11. Yes, the reverse transition matrix is the same matrix.

13. Assume that w is a fixed vector for P. Then

∑
i

wip
∗
ij =

∑
i

wiwjpji
wi

=
∑
i

wjpji = wj ,

so w is a fixed vector for P*. Thus if w* is the unique fixed vector for P* we must have w = w*.

15. If pij = pji then P has column sums 1. We have seen (Exercise 9 of Section 11.3) that in this case
the fixed vector is a constant vector. Thus for any two states si and sj , wi = wj and pij = pji.
Thus wipij = wjpji, and the chain is reversible.

17. We know that wZ = w. We also know that mki = (zii − zki)/wi and wi = 1/ri. Putting these in
the relation

m̄i =
∑
k

wkmki + wiri ,
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we see that
m̄i =

∑
k

wk
zii − zki
wi

+ 1

=
zii
wi

∑
k

wk −
1
wi

∑
k

wkzki + 1

=
zii
wi
− 1 + 1 =

zii
wi

.

18. Form a Markov chain whose states are the possible outcomes of a roll. After 100 rolls we may
assume that the chain is in equilibrium. We want to find the mean time in equilibrium to obtain
snake eyes for the first time. For this chain mki is the same as ri, since the starting state does not
effect the time to reach another state for the first time. The fixed vector has all entries equal to
1/36, so ri = 36. Using this fact, we obtain

m̄i =
∑
k

wkmki + wiri = 35 + 1 = 36.

We see that the expected time to obtain snake eyes is 36, so the second argument is correct.

19. Recall that
mij =

∑
j

zjj − zij
wj

.

Multiplying through by wj summing on j and, using the fact that Z has row sums 1, we obtain

mij =
∑
j

zjj −
∑
j

zij =
∑
j

zjj − 1 = K,

which is independent of i.

21. The transition matrix is

P =


GO A B C

GO 1/6 1/3 1/3 1/6
A 1/6 1/6 1/3 1/3
B 1/3 1/6 1/6 1/3
C 1/3 1/3 1/6 1/6

.
Since the column sums are 1, the fixed vector is

w = (1/4, 1/4, 1/4, 1/4) .

From this we see that wf = 0. From the result of Exercise 20 we see that your expected winning
starting in GO is the first component of the vector Zf where

f =


15
−30
−5
20

 .

Using the program ergodic we find that the long run expected winning starting in GO is 10.4.

23. Assume that the chain is started in state si. Let X(n)
j equal 1 if the chain is in state si on the nth

step and 0 otherwise. Then

S
(n)
j = X

(0)
j +X

(1)
j +X

(2)
j + . . . X

(n)
j .

and
E(X(n)

j ) = Pnij .
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Thus

E(S(n)
j ) =

n∑
h=0

p
(n)
ij .

If now follows then from Exercise 16 that

lim
n→∞

E(S(n)
j )
n

= wj .
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