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In this work, we present a scheme which is based on non-staggered grids. This scheme is a new family
of non-staggered central schemes for hyperbolic conservation laws. Motivation of this work is a staggered
central scheme recently introduced by A.A.I. Peer et al. [A new fourth-order non-oscillatory central
scheme for hyperbolic conservation laws, Appl. Numer. Math. 58 (2008) 674–688]. The most important
properties of the technique developed in the current paper are simplicity, high-resolution and avoiding
the use of staggered grids and hence is simpler to implement in frameworks which involve complex
geometries and boundary conditions. Numerical implementation of the new scheme is carried out on the
scalar conservation laws with linear, non-linear flux and systems of hyperbolic conservation laws. The
numerical results confirm the expected accuracy and high-resolution properties of the scheme.
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1. Introduction

Hyperbolic systems of conservation laws arise in many practical
problems such as compressible gas dynamics, shallow water flow,
weather prediction, plasma modeling, and many others. For more
descriptions see [23,28]. Analytical solutions are available only in
very few special cases. Therefore, the numerical solution of hyper-
bolic systems of conservation laws has been a field of research for
the last decades. It is well known that the solutions of hyperbolic
conservation laws may develop discontinuities in finite time even
when the initial condition is smooth.

In this paper, we present a non-oscillatory central scheme for
the approximate solution of non-linear of hyperbolic conservation
laws. The feature of scheme is the use of regular, non-staggered
spatial grids.

The most popular methods for non-linear conservation laws are
finite-volume methods and, in particular, Godunov-type schemes.
These schemes form a class of projection–evolution methods, in
which a computed solution is first interpolated by a piecewise
polynomial function and then evolved to the next time level ac-
cording to the integral form of the conservation law.

Among Godunov methods, we distinguish between upwind and
central schemes. As is said in [30] the evolution step of upwind
schemes is based on solvers of the Riemann problem. On the con-
trary, central schemes are based on the integration of conservation
laws over the space–time control volumes that are selected so that
each Riemann fan is entirely contained in its own control volume,
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thus, no Riemann problem solver is needed. The prototype of up-
wind schemes is first-order upwind, which is first-order Godunov
method [8], based on the solution of the Riemann problem at cell
edges. The first-order Lax–Friedrichs (LxF) scheme [6] is a proto-
type of central schemes. Like the Godunov method, it is based on
piecewise constant approximate solution and its Riemann-solver-
free. As is said in [11] unfortunately, the excessive numerical vis-
cosity in the LxF scheme yields a relatively poor resolution, which
seems to have delayed the development of a high-resolution cen-
tral scheme, parallel to the earlier developments of high-resolution
upwind schemes.

Generally speaking, upwind schemes guarantee sharper resolu-
tion than central schemes for the same order of accuracy and grid
spacing, but are more expensive, and more complicated to be im-
plemented. For this reason, in recent years, central schemes have
mostly utilized and got considerable attention.

As it is mentioned, the resolution of the LxF scheme is quite
low. The performance of the LxF scheme has been enhanced in
[19]. This scheme known as the NT scheme. The NT scheme is
based on the reconstruction of piecewise linear polynomial from
the known staggered cell-averages, and uses non-linear limiters to
prevent oscillations. This scheme was extended to several space
dimensions [12]. The NT scheme conserves Riemann-solver-free
and hence it is simple to be implemented. Another approach to
second-order central differencing based on characteristics tracing
was proposed by Sander and Weiser [24]. Modifications to the
NT scheme were proposed by Kurganov and Tadmor [10]. These
schemes include the major advantages of the central schemes over
the upwind, first: Riemann-solver-free, second: extension to multi-
dimensional problem are considerably simpler than in the upwind
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case. We refer the interested reader to Refs. [9,15] and [16], for
more research works on multi-dimensional conservation laws.

A third-order central scheme was proposed by Liu and Tadmor
[18]. This scheme is based on the non-oscillatory third-order re-
construction of Liu and Osher [17]. The proposed scheme by Liu
and Tadmor can be viewed as natural next step in the sequel to
the LxF scheme, and NT scheme. This scheme has a major advan-
tage of the central schemes [3–5] over the upwind schemes, in that
no Riemann solvers are involved.

In this paper, we transform a fourth-order central scheme based
on staggered grids that was proposed by Peer et al. [20] into
a fourth-order central scheme based on non-staggered grids. In
order to do that, we reaverage the reconstructed values of the
staggered scheme. Here, we maintain the original high-resolution
without giving up simplicity, and like the former scheme, the non-
staggered central scheme is Riemann-solver-free. The main prop-
erty of non-staggered schemes is the further simplicity since they
avoid the need to alternate between two staggered grids, which is
particularly a challenge near the boundaries.

This paper is organized as follows: In Section 2 we give a
brief review of Godunov methods for one-dimensional hyperbolic
conservation laws and fourth-order staggered central scheme of
[20]. In Section 3 we describe a fourth-order non-staggered cen-
tral scheme for hyperbolic conservation laws. Finally in Section 4
we test the fourth-order central scheme with staggered and non-
staggered on the scalar equations and on the Euler equations.

2. One-dimensional central schemes

We approximate the solution of hyperbolic conservation laws in
the form of

ut + f (u)x = 0 (1)

with initial condition u(x,0) = u0(x). The Godunov central schemes
have two main ingredients:

1. A non-oscillatory piecewise polynomial is reconstructed from
cell-averages.

2. The evolution of these reconstructed polynomials are realized
at the next time level.

2.1. Non-oscillatory reconstruction

Using the formulation in [1,20] we consider a uniform spatial
grid where the cell Ix = [x − �x

2 , x + �x
2 ] has a width �x. Let x be

the mid-cell grid point of Ix , also let tn+1 = tn + �t and denote
u(x j, tn) by un

j . Let the approximation to the cell averages of u on
I j := Ix j and I j+ 1

2
:= Ix

j+ 1
2

be given by

ūn
j = 1

�x

∫
I j

u
(
x, tn)dx, ūn

j+ 1
2

= 1

�x

∫
I

j+ 1
2

u
(
x, tn)dx.

Integrating (1) over Ix , we obtain

ūt(x, t) + 1

�x

[
f

(
u

(
x + �x

2
, t

))
− f

(
u

(
x − �x

2
, t

))]
= 0

(2)

(ūt(x, t) = 1
�x

∫
Ix

ut(ξ, t)dξ), now integrating (2) over [tn, tn+1], we
reach

ū
(
x, tn+1) = ū

(
x, tn) − 1

�x

tn+1∫
tn

[
f

(
u

(
x + �x

2
, t

))

− f

(
u

(
x − �x

, t

))]
dt. (3)
2

So far, (3) is exact. The solution to (3) is now appeared at the
discrete time level tn = n�t by a piecewise polynomial approxi-
mation, w(x, tn) ∼ u(x, tn), which takes the form

w
(
x, tn) =

∑
j

P j(x)χ j(x), χ j(x) := 1I j .

Here, P j(x) is algebraic polynomial (which has to satisfy conserva-
tion, accuracy, and non-oscillatory requirements). In general, the
function w(x, tn) will be discontinuous along the boundaries of
each cell I j . Sampling (3) at x = x j+ 1

2
, we obtain the new stag-

gered cell averages, w̄n+1
j+ 1

2
,

w̄n+1
j+ 1

2
= 1

�x

∫
I

j+ 1
2

w
(
x, tn)dx

− 1

�x

[ tn+1∫
tn

f
(

w(x j+1, t)
)

dt −
tn+1∫
tn

f
(

w(x j, t)
)

dt

]
. (4)

The evaluation of the expressions on the right of (4) proceeds in
two steps, first: Assume that the cell averages are known, {w̄n

j },
which are used to reconstruct a non-oscillatory piecewise polyno-
mial approximation w(x, tn) = ∑

j P j(x)χ j(x).

Remark. Degree of P j(x) is determined with accuracy requirement
of method. For example, a piecewise linear polynomial is used
in the second-order case [19], a piecewise quadratic polynomial
in third-order case [18], and a piecewise cubic polynomial in the
fourth-order [20].

2.1.1. Fourth-order reconstruction with staggered grid
For the fourth-order reconstruction authors of [20] chose the

cubic polynomial P j(x) on I j in the form

P j(x) = wn
j + w ′

j

(
x − x j

�x

)

+ 1

2! w ′′
j

(
x − x j

�x

)2

+ 1

3! w ′′′
j

(
x − x j

�x

)3

, x ∈ I j.

Here, wn
j , w ′

j/�x, w ′′
j /(�x)2, and w ′′′

j /(�x)3 are the approximate
point values and the first, second, and third derivatives of w(x, tn)

at x = x j , which are reconstructed from the cell averages, {w̄n
j }.

Several approximations for these numerical derivatives are avail-
able, for further details see [18,19]. It should be noted that such
reconstruction should satisfy the following three properties:

• P 1—Conservation of cell averages: P̄ j(x)|x=x j = w̄n
j .

• P 2—Accuracy: w(x, tn) = u(x, tn) + O((�x)4).
• P 3—Non-oscillatory behavior of

∑
j P j(x)χ j(x).

In order to guarantee property P 1, wn
j must satisfy

wn
j = w̄n

j − w ′′
j

24
. (5)

Remark. Starting with third-order and higher-order accurate meth-
ods, point values aren’t equal with cell averages, wn

j �= w̄n
j .

The NT scheme uses a second-order accurate limiter for the nu-
merical derivative w ′

j in the form

w ′
j = MM(�w̄ 1 ,�w̄ 1 ). (6)
j− 2 j+ 2
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Here, �w̄ j+ 1
2

= w̄ j+1 − w̄ j and the MinMod limiter (MM) is de-

fined by

MM(x1, x2, . . .) =
⎧⎨
⎩

minp{xp} if xp > 0 ∀p ∈ N,

maxp{xp} if xp < 0 ∀p ∈ N,

0 otherwise.

It should be noted that the accuracy of (6) decreases when
�w̄ j− 1

2
.�w̄ j+ 1

2
< 0 �= w ′

j . The NT scheme modified the uniform

non-oscillatory (UNO) limiter of Harten and Osher [7] by adding
second-order differences to (6) to get high accuracy

w ′
j = MM

(
�w̄ j− 1

2
+ 1

2
MM

(
�2 w̄ j−1,�

2 w̄ j
)
,

�w̄ j+ 1
2

− 1

2
MM

(
�2 w̄ j,�

2 w̄ j+1
))

, (7)

where �2 w̄ j = �w̄ j+ 1
2

− �w̄ j− 1
2

.

Authors of [20], in order to satisfy properties P 2–P 3 utilize the
modified UNO limiter of [21]. Similar to the numerical derivative
(6), w ′′′

j depends on its two neighboring third-order differences

w ′′′
j = MM

(
�3 w̄n

j− 1
2
,�3 w̄n

j+ 1
2

)
, (8)

where �3 w̄n
j+ 1

2
= �2 w̄n

j+1 −�2 w̄n
j . Similar to the UNO limiter, for

obtaining fourth-order accurate approximations of the first deriva-
tive, they put

w ′
j = MM

(
�w̄n

j− 1
2

+ 1

2
MM

(
�2 w̄n

j−1 + 7

12
w ′′′

j−1,

�2 w̄n
j − 5

12
w ′′′

j

)
,

�w̄n
j+ 1

2
− 1

2
MM

(
�2 w̄n

j + 5

12
w ′′′

j ,

�2 w̄n
j+1 − 7

12
w ′′′

j+1

))
, (9)

for further details see [20,21]. In order to approximate the point
values wn

j of (5) from the cell averages, authors of [20], put

w ′′
j = MM

(
�2 w̄n

j−1 + w ′′′
j−1,�

2 w̄n
j ,�

2 w̄n
j+1 − w ′′′

j+1

)
. (10)

The staggered cell averages w̄n
j+ 1

2
which are used on the right of

(4) are given by

w̄n
j+ 1

2
= 1

�x

∫
I

j+ 1
2

w
(
x, tn)dx = 1

�x

∫
I

j+ 1
2

∑
j

P j(x)χ j(x)dx

= 1

�x

[ x
j+ 1

2∫
x j

P j(x)dx +
x j+1∫

x
j+ 1

2

P j+1 dx

]

= 1

2

(
w̄n

j + w̄n
j+1

) − 1

8

(
w ′

j+1 − w ′
j

)
− 1

384

(
w ′′′

j+1 − w ′′′
j

)
. (11)

2.2. Staggered evolution

Here, we describe the second step in the implementation of
the central scheme. The second step is the evolution of the re-
constructed point values {wn}. As is said in [1] if {ak(u)} are the
j
eigenvalues of the Jacobian A(u) := ∂ f
∂u , then by hyperbolicity, in-

formation regarding the interfacing discontinuities at x j± 1
2

propa-

gates no faster than maxk |ak(u)|. Hence, the mid-cell values, {wn
j },

remain free of discontinuities as long as the Courant–Friedrichs–
Lewy (CFL) restriction, �t � 1

2 maxk |ak(u)|, is met [1]. Then, the
flux integrals in the right of (4) involve only smooth integrands
and can be evaluated with proper quadrature rules to any de-
sired degree of accuracy. For example, authors of [19] use the mid
point’s quadrature rule

tn+1∫
tn

f
(

w(x j, t)
)

dt = �t f
(

w
(
x j, tn+ 1

2
)) + O

(
(�t)2),

while the third-order Liu–Tadmor scheme [18] and the fourth-
order scheme of Peer et al. [20] employ the Simpson’s rule

tn+1∫
tn

f
(

w(x j, t)
)

dt = �t

6

[
f
(

w
(
x j, tn)) + 4 f

(
w

(
x j, tn+ 1

2
))

+ f
(

w
(
x j, tn+1))] + O

(
(�t)5). (12)

As it can be seen from these quadrature formulae, we require the
computation of the intermediate point values wn+β

j , β = 0, 1
2 ,1.

There are various approaches for computing these intermediate
point values. A first approach employs Taylor’s expansion and the
differential equation, wt = − f (w)x [19]. Another approach em-
ploys Runge–Kutta solvers of the Ordinary Differential Equation
(ODE) wt = − fx|x=x j , w(x j,0) = wn

j , t > tn . Bianco, Puppo and
Russo [2] proposed the use of Natural Continuous Extension (NCE)
of Runge–Kutta (RK) schemes [29] in order to reduce the number
of computations. We shall briefly describe the NCE of RK methods.
We consider the Cauchy problem{

y′ = F
(
t, y(t)

)
,

y(t0) = y0.

The solution obtained at time tn+1 with a ν-step explicit RK
scheme of order p can be written as

yn+1 = yn + �t
ν∑

i=1

bi K (i),

where the K (i) ’s are the RK fluxes

K (i) = F

(
tn + �tci, yn + �t

i−1∑
j=1

aij K ( j)

)
, ci =

i∑
j=1

aij.

We can combine yn, yn+1 and K (i) , to obtain an extension of the
numerical solution of the ODE, in the sense that, there exist ν
polynomials bi(θ) of degree d � p, such that

1. y(tn + θ�t) = yn + �t
∑ν

i=1 bi(θ)K (i) , 0 � θ � 1,
2. y(tn) = yn , y(tn + �t) = yn+1,
3. max0�θ�1 |y(l)(tn + θ�t) − w(l)(tn + θ�t)| = O(�td+1−l),

where w(t) is the exact solution of ODE at time tn (wt = − fx|x=x j ,
w(x j,0) = wn

j , t > tn). For a uniformly fourth-order accurate
scheme in time, we need d + 1 = 4. The NCE of a fourth-order
RK scheme is

b1(θ) = 2(1 − 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

bi(θ) = 4(3ci − 2)biθ
3 + 3(3 − 4ci)biθ

2, i = 2,3,4,

where ci = ∑
j ai j and the coefficients bi and aij are given by
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b =

⎛
⎜⎜⎜⎝

1/6

1/3

1/3

1/6

⎞
⎟⎟⎟⎠ , a =

⎛
⎜⎜⎜⎝

0 0 0 0

1/2 0 0 0

0 1/2 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ .

Here, F (z,υi(z)) = − 1
�x f ′(υ(xi, tn + z)) � − fx(υ(xi, tn + z)). Since

we need to intermediate point values at time tn+ 1
2 and tn+1 for

computing the quadrature formula (12), we have

w

(
x j, tn + �t

2

)
= wn

j + �t
4∑

i=1

bi

(
1

2

)
K (i)

= wn
j + �t

6

(
5

4
K 1 + K 2 + K 3 − 1

4
K 4

)
,

w
(
x j, tn + �t

) = wn
j + �t

4∑
i=1

bi(1)K (i)

= wn
j + �t

6

(
K 1 + 2K 2 + 2K 3 + K 4).

Here, for computing the RK fluxes, i.e. K (i) we need to approxi-
mate f ′

j . For this purpose, similar to (9) by combining high-order
differences of f put

f ′
j = MM

(
� f j− 1

2
+ 1

2
MM

(
�2 f j−1 + 2

3
f ′′′

j−1,�
2 f j − 1

3
f ′′′

j

)
,

� f j+ 1
2

− 1

2
MM

(
�2 f j + 1

3
f ′′′

j ,�2 f j+1 − 2

3
f ′′′

j+1

))
,

(13)

where

f ′′′
j = MM

(
�3 f j− 1

2
,�3 f j+ 1

2

)
.

Remark. Since the derived scheme uses alternating, staggered
grids, one has to distinguish between the “odd” and “even” time
steps. The above formulae describe the “odd” steps. The “even”
steps are obtained by shifting the indexes in the aforementioned
equations by 1

2 . Obviously, the computational domain should be
extended by �x

2 from both sides at every “even” step. So, in
frameworks which involve complex geometries, the imposition of
boundary conditions is a complicated and tiresome work. There-
fore, we are now ready to construct non-staggered version of the
fourth-order staggered scheme.

3. Fourth-order non-staggered scheme

In this section, we transform the fourth-order staggered scheme
into fourth-order non-staggered scheme. For this work, first, we
have to reconstruct a piecewise cubic polynomial from the stag-
gered cell averages and project it on the non-staggered cell aver-
ages,

w
(
x, tn+1) :=

∑
j

Pn+1
j+ 1

2
(x)χ j+ 1

2
(x), (14)

where χ j+ 1
2
(x) := 1I

j+ 1
2

and

Pn+1
j+ 1

2
(x) = wn+1

j+ 1
2

+ w ′
j+ 1

2

( x − x j+ 1
2

�x

)
+ 1

2! w ′′
j+ 1

2

( x − x j+ 1
2

�x

)2

+ 1
w ′′′

j+ 1

( x − x j+ 1
2

)3

, x ∈ I j+ 1
2
.

3! 2 �x
The staggered discrete derivatives, w ′
j+ 1

2
, w ′′

j+ 1
2

and w ′′′
j+ 1

2
, are

given by

w ′′′
j+ 1

2
= MM

(
�3 w̄n+1

j ,�3 w̄n+1
j+1

)
, (15)

w ′′
j+ 1

2
= MM

(
�2 w̄n+1

j− 1
2

+ w ′′′
j− 1

2
,�2 w̄n+1

j+ 1
2
,

�2 w̄n+1
j+ 3

2
− w ′′′

j+ 3
2

)
,

w ′
j+ 1

2
= MM

(
�w̄n+1

j + 1

2
MM

(
�2 w̄n+1

j− 1
2

+ 7

12
w ′′′

j− 1
2
,

�2 w̄n+1
j+ 1

2
− 5

12
w ′′′

j+ 1
2

)
,

�w̄n+1
j+1 − 1

2
MM

(
�2 w̄n+1

j+ 1
2

+ 5

12
w ′′′

j+ 1
2
,

�2 w̄n+1
j+ 3

2
− 7

12
w ′′′

j+ 3
2

))
. (16)

Second, the cell averages at the next time step, w̄n+1
j , are obtained

by averaging the piecewise cubic polynomial (14), then we have

w̄n+1
j = 1

�x

∫
I j

w
(
x, tn+1)dx

= 1

�x

[ x j∫
x

j− 1
2

Pn+1
j− 1

2
(x)dx +

x
j+ 1

2∫
x j

Pn+1
j+ 1

2
(x)dx

]

= 1

2

(
wn+1

j+ 1
2

+ wn+1
j− 1

2

) − 1

8

(
w̃ ′

j+ 1
2

− w̃ ′
j− 1

2

)
+ 1

48

(
w̃ ′′

j+ 1
2

+ w̃ ′′
j− 1

2

) − 1

384

(
w̃ ′′′

j+ 1
2

− w̃ ′′′
j− 1

2

)
.

It should be noted that Pn+1
j+ 1

2
(x) should satisfy the three proper-

ties P 1–P 3 introduced in Section 2.1.1. Then, in order to guarantee
property P 1, wn+1

j± 1
2

must satisfy

wn+1
j± 1

2
= w̄n+1

j± 1
2

−
w̃ ′′

j± 1
2

24
,

therefore, we conclude that

w̄n+1
j = 1

2

(
w̄n+1

j+ 1
2

+ w̄n+1
j− 1

2

) − 1

8

(
w̃ ′

j+ 1
2

− w̃ ′
j− 1

2

)
− 1

384

(
w̃ ′′′

j+ 1
2

− w̃ ′′′
j− 1

2

)
. (17)

Here, {w̃ ′
j± 1

2
} and {w̃ ′′′

j± 1
2
} are discrete derivatives at time level

tn+1 given in (16) and (15) respectively. Also

w̄n+1
j+ 1

2
+ w̄n+1

j− 1
2

= 1

2

(
w̄n

j+1 + 2w̄n
j + w̄n

j−1

) − 1

8

(
w ′

j+1 − w ′
j−1

)
− 1

384

(
w ′′′

j+1 − w ′′′
j+1

)
− λ

6

[
f
(

wn
j+1

) + 4 f
(

w
n+ 1

2
j+1

) + f
(

wn+1
j+1

)
− f

(
wn

j

) − 4 f
(

w
n+ 1

2
j

) − f
(

wn+1
j

)]
.

Here, we combine the results of previous section with our new
non-staggered central scheme of this section. The derivation of the
resulting scheme is straightforward and is summarized in the fol-
lowing algorithm:
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Assuming that the cell averages {w̄n
j } are known, we look for

the cell averages {w̄n+1
j }.

Step 1. Compute the numerical derivatives w ′′′
j , w ′′

j , w ′
j given by

(8), (10) and (9).
Step 2. Compute the point values wn

j with (5). Compute the inter-
mediate point values with NCE-RK.

Step 3. Compute the numerical derivatives at tn+1 with (15)
and (16).

Step 4. Compute the non-staggered cell averages w̄n+1
j with (17).

4. Numerical results

In this section we report the numerical results of some test
problems to support our theoretical results. For this work, we com-
pare the fourth-order staggered central scheme with the fourth-
order non-staggered central scheme. The time step is determined
by imposing the Courant number. Peer et al. in [20] carried out
a linear stability of the central staggered scheme (4), in order to
obtain its critical Courant number. For one-dimensional case the
linear stability analysis carried out in [20] yields a Courant num-
ber C = 0.3408. We remark that the stencil used here is similar to
the one that used in [20], then we put C = 0.3408. Let u(x j, tn)

and wn
j be the exact solution and the reconstructed solution re-

spectively at (x j, tn). Then the norms of the error are given by:

L1 error: ‖u − w‖1 =
N∑

j=1

∣∣u(
x j, tn) − wn

j

∣∣�x,

L∞ error: ‖u − w‖∞ = max
1� j�N

∣∣u(
x j, tn) − wn

j

∣∣.
4.1. Scalar equation

We study the results of numerical experiments using four scalar
test cases.

Test 1.

ut + ux = 0,

u(x,0) = sin(x), x ∈ [0,2π ],
Periodic boundary condition

Integration time: T = 1.

This test is used to check the convergence rate. We solved this test
with λ = 0.9C . The L1 and L∞ errors and orders of convergence
are reported in Table 1. It can be seen that the scheme converges
Table 1
Errors and orders of convergence for Test 1.

N L∞ error L∞ order L1 error L1 order

40 2.5489(−4) – 3.4206(−4) –
80 2.7153(−5) 3.2307 2.3748(−5) 3.6551

160 3.1205(−6) 3.1213 1.6084(−6) 4.0774
320 3.4422(−7) 3.1804 1.0635(−7) 3.9187
640 3.7727(−8) 3.1897 6.8205(−9) 3.9628

Table 2
Errors and orders of convergence for Test 2.

N L∞ error L∞ order L1 error L1 order

Before the shock T = 0.12

40 5.2290(−5) – 2.3663(−5) –
80 5.4708(−6) 3.2567 1.6557(−6) 3.8371

160 5.7591(−7) 3.2478 1.1141(−7) 3.8935
320 1.6329(−7) 1.8184 8.3650(−9) 3.7354

After the shock T = 1.5

40 0.0681 – 0.0076 –
80 0.0730 −0.1002 0.0039 0.9625

160 0.0797 −0.1267 0.0022 0.8260
320 0.0764 0.0610 0.0014 1.1375

to fourth-order accuracy in L1, but converges to third-order accu-
racy in L∞ as the grids are refined.

Test 2. As the second test problem we use

ut +
(

1

2
u2

)
x
= 0,

u(x,0) = 1 + 1

2
sin(πx), x ∈ [−1,1],

Periodic boundary condition

Integration time: T = 0.12 and T = 1.5.

Here, T = 0.12 is chosen for convergence test, and T = 1.5 for
shock capturing test (it should be noted that shock develops at
Ts = 2/π ). In this test we solve the problem with λ = 0.9C . The
L1 and L∞ errors and orders of convergence before (T = 0.12)
and after (T = 1.5) shock are shown in Table 2. The L1 order of
convergence before the shock is almost 4, whereas the L∞ or-
der of convergence is near to 3. Numerical results are shown in
Fig. 1 at T = 1.5 by N = 40. We note that the staggered scheme
yields slightly better results than the non-staggered scheme when
N = 40.
Fig. 1. Test 2 by N = 40 at T = 1.5. Left non-staggered, right staggered. –: Exact, ◦: approximate.



M. Dehghan, R. Jazlanian / Computer Physics Communications 182 (2011) 1284–1294 1289
Fig. 2. Test 3 by N = 80 at T = 0.4, 1. Left non-staggered, right staggered. –: Exact, ◦: approximate. (a), (a′) are before the shock and (b), (b′) are after the shock.

Fig. 3. Test 4 by N = 80 at T = 0.4. Left non-staggered, right staggered. –: Exact, ◦: approximate.
Test 3. Let us consider the following test

ut +
(

1

2
u2

)
x
= 0,

u(x,0) =
{−1, |x| � 0.5,

2, |x| < 0.5,
x ∈ [−2,2],

Periodic boundary condition

Integration time: T = 0.4 and T = 1.
(It should be noted that shock develops at Ts = 2/3 � 0.67.)
In this test we put λ = 2

3 C . In Fig. 2 we show the solutions
at T = 0.4 before the shock and T = 1 after the shock. As ex-
pected the staggered central scheme produces slightly better re-
sults (not shown here) for all parts of the solutions while the non-
staggered central scheme is well comparable with the staggered
central scheme. The simplicity and efficiency of the non-staggered
scheme must be noted.
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Fig. 4. Test 5 by N = 100 at T = 0.16.
Test 4 (The Buckley–Leverett equation). It is a non-convex problem
and is given by [22].

ut +
(

4u2

4u2 + (1 − u)2

)
x
= 0,

u(x,0) =
{

1, −0.5 � x � 0,

0, otherwise,
x ∈ [−1,1],

Periodic boundary condition
Integration time: T = 0.4.
In this test we compute the solution at T = 0.4 and use the

λ = 2
3 C . The exact solution is a shock–rarefaction–contact discon-

tinuity mixture. We notice that some high-order schemes fail to

converge to the correct entropy solution for this problem. The re-

sults are presented in Fig. 3. As it can be seen for all parts of the

solution the non-staggered central scheme is well comparable with

the staggered central scheme.
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Fig. 5. Test 6 by N = 100 at T = 0.16.
4.2. Systems of equations

In this subsection we test fourth-order central schemes with
staggered and non-staggered grids on the system of Euler equa-
tions for a polytropic gas, with γ = 1.4,

∂

∂t

⎛
⎝ ρ

ρq

⎞
⎠ + ∂

∂x

⎛
⎝ ρq

ρq2 + p

⎞
⎠ = 0,
E q(E + p)
p = (γ − 1)

(
E − 1

2
ρq2

)
. (18)

Here, ρ,q, p and E are the density, velocity, pressure and total
energy of the conserved fluid, respectively. Also, we compare the
fourth-order non-staggered central scheme with the fourth-order
staggered central weighted essentially non-oscillatory (CWENO)
scheme [14]. There are various ways to extend the numerical
schemes for solving hyperbolic systems of conservation laws. We
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Fig. 6. Test 7 by N = 200 at T = 1.8.
shall mention two of them, the first approach is componentwise
extension, also, we can utilize characteristic decomposition. In the
present work, we utilize the first approach which is less costly
(because we don’t need the Jacobian matrix A(u) := ∂ f

∂u and eigen-
structure of the system). We choose the time step dynamically
with CFL restriction

�t = 0.9C�x

max j(c j + |q j|) ,

where c j and q j are the local sound speed and velocity, respec-
tively. This time step evaluation technique can accommodate for
problems where the characteristic speeds change wildly in time.

Test 5 (Sod’s problem). In this test which is taken from the literature
[26] we solve (18) with the initial condition and time integration:

u(x,0) =
{

(1,0,2.5)T , 0 � x < 0.5,

(0.125,0,0.25)T , 0.5 � x � 1,
x ∈ [0,1],

Integration time: T = 0.16.

Fig. 4 shows the performance of non-staggered, staggered grids
and CWENO schemes at T = 0.16 with N = 100. Comparing the
results in Fig. 4, we observe that the non-staggered central scheme
is still comparable with staggered central scheme. But, the non-
staggered scheme gives slightly lower resolution at the two ends
of the rarefaction wave, the contact and the shock. Also, we ob-
serve in Fig. 4 that the non-staggered is sharper than CWENO in
particular for the density profile of this Riemann problem.

Test 6 (Lax’s problem). In this test which is taken from the literature
[13] we solve (18) with the initial condition and time integration:

u(x,0) =
{

(0.445,0.31061,8.92840289)T , 0 � x < 0.5,

(0.5,0,1.4275)T , 0.5 � x � 1,

x ∈ [0,1],
Integration time: T = 0.16.

For this more severe shock tube problem, Fig. 5 shows the
performance of non-staggered, staggered central and CWENO
schemes at T = 0.16 with N = 100. Similar to the Sod’s prob-
lem, non-staggered central scheme is as well as staggered central
scheme. Our results show that non-staggered and staggered cen-
tral schemes generate slightly oscillation near discontinuities. In
the density profile shown in Fig. 5 (a), (a′), the non-staggered cen-
tral scheme produces undershoots whereas, the staggered central
scheme produces slightly overshoots. Also, non-staggered one gives
better solution near discontinuities than CWENO in particular for
the density profile of this Riemann problem.

Test 7 (Shock–entropy problem). In this test which is used by au-
thors of [25] we solve the Euler equations (18) with a moving
Mach = 3 shock interacting with sine waves in density, i.e.,
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Fig. 7. Test 8 by N = 320 at T = 0.038.
u(x,0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3.85714,10.1418096304,39.16655928489427)T ,

− 5 � x < −4,

(1 + 0.2 sin(5x),0,2.5)T ,

− 4 � x � 5,

x ∈ [−5,5],
Integration time: T = 1.8.
The flow contains physical oscillations which have to be resolved
by the numerical methods. The “reference solution”, which is a
converged solution computed by [20] with 2000 grid points. We
test the performance of the staggered, non-staggered and CWENO
schemes in smooth regions and the ability to capture shocks with
N = 200. We show the numerical solutions of the density profile in
Fig. 6 at T = 1.8. We note that the non-staggered central scheme
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gives slightly better solution with respect to the staggered central
scheme. Also, we observe in Fig. 6 that non-staggered is sharper
than CWENO in particular for the density profile.

Test 8 (Woodward and Colella’s problem). For the final test which is
taken from the literature [27] we solve the Euler equations (18)
with a shock interaction problem with solid wall boundary condi-
tions, applied to both ends given by the initial data

u(x,0) =

⎧⎪⎨
⎪⎩

(1,0,2500)T , 0 � x < 0.1,

(1,0,0.025)T , 0.1 � x < 0.9,

(1,0,250)T , 0.9 � x � 1,

x ∈ [0,1],

Integration time T = 0.038.

The computations are done, using N = 320, and the solution is
displayed together with a “reference solution”, obtained by [20]
with N = 2560. In Fig. 7 we show the density, the velocity, and
the pressure at T = 0.038. We note that the non-staggered cen-
tral scheme performs as well as the staggered central scheme.
Also, Fig. 7 shows the performance of non-staggered and CWENO
schemes. As is seen, the non-staggered scheme gives better solu-
tion than CWENO scheme.

5. Conclusion

In this work, we converted a fourth-order staggered central
scheme introduced by Peer et al. [20] into fourth-order non-
staggered central scheme. First, we would like to comment that
this scheme can be easily generalized to 2D problems, using
dimension-by-dimension reconstructions. We applied the non-
staggered and staggered central schemes to several test prob-
lems. Numerical experiments show that non-staggered scheme is
well comparable with the staggered scheme whereas the non-
staggered scheme is very simple to be implemented. Also the
non-staggered scheme has the non-oscillatory behavior as well as
the staggered scheme and the desired accuracy. In general, the
staggered scheme produces slightly better resolution for shocks
than the non-staggered scheme. The fourth-order non-oscillatory
non-staggered central scheme was extended for solving hyper-
bolic systems of conservation laws. Therefore we applied the non-
staggered, staggered and CWENO schemes to Euler equations of
gas dynamics. Numerical results demonstrate the staggered scheme
produces slightly better resolution near the discontinuous. Also,
the non-staggered central scheme gives better solution near dis-
continuities than CWENO scheme.
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