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Abstract

A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones
with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, arti-
ficial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method,
J. Comput. Phys. 195 (2004) 594–601] based on high-order derivative of the strain rate tensor is used. To capture temper-
ature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damp-
ing of ‘wiggles’ is controlled by the model constants and is largely independent of the mesh size and the shock strength. The
same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with
fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the
contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/
entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a
2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Supersonic combustion involves complex interactions between turbulence, shock waves and combustion.
Because of their capability to reproduce unsteady effects, Direct (DNS) or large-eddy numerical simulations
(LES) are attractive to model such supersonic reactive flows. In order to capture the physically important
turbulent and chemical scales, such simulations require the use of accurate numerical schemes. As they can
reproduce a wide range of wavenumbers, compact schemes [2] are well adapted. Unfortunately, the use of
high-order compact schemes to solve steep gradients like those in shock waves generates non-physical oscil-
lations [3]. The objective of this article is to develop and to validate a numerical methodology adequate for
resolving interactions between shocks, turbulence and combustion.
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Several approaches that modify or adapt high-order schemes to capture shock waves have been proposed in
the literature. For shock–turbulence interaction problems, Adams and Shariff [4,5] proposed a high-order
compact-ENO scheme and later Pirozzoli [6] introduced a conservative compact-WENO scheme. Deng and
Zhang [7] developed high-order compact schemes based on the weighted technique. Rizzetta et al. [8] proposed
a hybrid compact-Roe approach in order to simulate a supersonic compression-ramp flow. Visbal and Gait-
onde [9] introduced an adaptive filter methodology to maintain the same high-order compact scheme in all of
the numerical domain. An attractive alternative to these has been proposed by Cook and Cabot [1,10] who
avoid the use of a shock detector by adding an artificial dissipation term. A nonlinear artificial viscosity, based
on high-order derivatives of the strain rate tensor, is introduced. The capability of this approach to accurately
treats shock–turbulence interaction was successfully demonstrated.

In the context of supersonic combustion, high temperature and species gradients are expected in addition to
shock waves. In order to accurately predict the interactions between these phenomenon, the original method-
ology proposed by Cook and Cabot [1,10] is extended. In addition to the nonlinear viscosity, an artificial dif-
fusivity based on high-order derivatives of the entropy is introduced. Detailed analysis of the errors associated
with shock-capturing and contact-surface capturing was conducted for the new scheme. These have shown that
new scheme is able to capture both weak and strong shocks without any degradation of performance. Both the
numerical shock thickness, which is related to the number of points used to ‘capture’ the discontinuity, and the
magnitude of the spurious wiggles are shown to be largely independent of the mesh size and the shock/contact
surface strength. The original methodology and its extension are tested on the shock tube problem. It is
observed that when the temperature from each side of the shock is initially different the original method by
Cook and Cabot [1,10] is not sufficient. Introduction of an artificial diffusivity is required to accurately capture
the contact surface. The Shu–Osher problem [11] which consists of a shock wave crossing sinusoidal density
waves is then considered. This test case has been used by many authors [4,10,11] for one-dimensional shock
turbulence interactions. The computation of a Chapman–Jouguet detonation wave demonstrates the capability
of the model to reproduce interactions between shock wave and combustion. The formulation of the model in
multiple dimensions is then proposed and is illustrated by the computations of a 2D oblique shock, a 2D blunt
body flow and a Mach reflection problem.

2. Shock capturing model: 1D formulation

2.1. Governing equations

The governing equations of a one-dimensional compressible reactive flow are:
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where q is the density, p is the pressure, E is the total energy (per unit mass), c is the ratio of specific heats,
R is the gas constant, T is the gas temperature, k is the thermal conductivity, ll is the fluid viscosity, Nsp is
the number of species, Yk is the mass fraction of the kth species, h0

k is the enthalpy of formation of kth
species, Dk is the diffusivity of kth species and _xk is its reaction rate. Ideal gas law has been assumed here
for simplicity.
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2.2. Nonlinear artificial viscosity

When numerical discontinuities such as those due to shocks waves are present, the application of a high-
order compact scheme to solve the previous set of equations results in spurious oscillations. These oscillations
can be damped by adding a artificial viscous term to the momentum and energy equations [1,10]. A grid-
dependent artificial viscosity l, defined by the following relation, is introduced:
l ¼ ClqðDxÞrþ1 o
ru

oxr

����
����; ð6Þ
where Dx is the grid spacing and jfj is the absolute value of f. The overbar �f denotes a truncated-Gaussian
filter defined in [1]. Cl is a model constant and r is a user-specified integer.

For practical meshes, the discrete representation of shock waves involves numerical discontinuities in the
velocity and pressure fields. In terms of Fourier analysis, these numerical discontinuities correspond to the
largest wavenumbers. If r is sufficiently high, l will therefore be important in the location near the shock waves
and close to zero in the rest of the flow.
2.3. Nonlinear artificial diffusivity

In practical non-isothermal configurations, high temperature gradients can exist without being associated
to sharp velocity gradients. For instance, in contact surface regions, a temperature discontinuity exists,
whereas both velocity and pressure fields vary smoothly. Since l is only based on the velocity gradient, such
discontinuities are not detected by Eq. (6). Therefore, a grid-dependent artificial diffusivity, based on the
entropy gradient, needs to be defined:
vq ¼ Cq
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ðDxÞrþ1 o
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oxr
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where a0 is a reference speed of sound, cp is the specific heat at constant pressure, s is the entropy (per unit
mass), and Cq is a model constant. In supersonic reactive flows, steep gradients in species mass fractions
are also associated with entropy gradients. Therefore, a similar formulation can be employed to detect species
discontinuities:
vY ¼ CY
a0

cp

ðDxÞrþ1 ors
oxr

����
����; ð8Þ
where only the model constant CY differs from that in Eq. (7).

2.4. Model implementation

In the original model proposed by Cook and Cabot [10], artificial dissipative terms are added to the
momentum and the energy equations. In order to activate the nonlinear diffusivity defined by Eqs. (7) and
(8), an artificial dissipation term is also added to the mass and species transport equations. The governing
equations therefore become:
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In order to demonstrate that the model is suitable for a large variety of flow conditions, ll, k and Dk are set to
zero in the following test cases.

The addition of non-physical mass fluxes in the mass balance equation (9) requires a further comment. Such
a term can potentially cause a pressure imbalance and create additional consistency errors. However, as the
artificial dissipation operator is scaled by Dðrþ1Þ

x , the detrimental effects of the nonlinear diffusivity are mini-
mized when an appropriate large value of r is chosen. Typically a value of r P 4 is used. To see the effect
of the artificial diffusivity, we consider a ideal fluid moving at an uniform speed, at constant pressure and with
a sinusoidal density field q(x, 0) = q0(1 + 0.2sin(kx)) where k = 2p and 0 6 x 6 5. Three flow speed conditions
are investigated that correspond to a Mach number of 0.1, 1 and 10. Spatial derivatives are computed with a
6th order compact scheme. RMS error of density and velocity are plotted in Figs. 1 and 2, respectively, for
three different grids conditions corresponding to Dx = 0.1, 0.05 and 0.025. Solid and dashed lines are the solu-
tions of Eqs. (9)–(12) with model parameter (Cl = 0.0,Cq = 0.0; r = 5) and (Cl = 0.0, Cq = 0.01; r = 5), respec-
tively. As expected, the nonlinear diffusivity generates additional numerical error but its convergence
corresponds to (r + 1), which is the same than the truncation error of the spatial scheme. For detailed chem-
istry computations where N is the number of species, N � 1 species transport equations are solved in addition
to the continuity equation and the non-physical mass flux is associated with the Nth species. By choosing the
Nth component to be a major non-reactive species (N2 for instance in the case of air/fuel combustion), the
additional numerical error induced by the nonlinear diffusivity which is of the order of the truncation error
of the spatial scheme, will not create any significant numerical artifacts.

For one-dimensional test cases, in order to have the same conditions as in the original studies of Cook and
Cabot in [1,10], the spatial derivatives are computed with the 10th order compact scheme. A 4th order Runge–
Kutta method is used for time advancement. Numerical stability is guaranteed by applying an eight-order com-
pact filter to the conserved variables after each Runge–Kutta step [10]. It is important to note that high-order
compact filter if applied to discontinuous data may cause spurious oscillations. Nevertheless, as it will be fur-
ther demonstrated, the nonlinear viscosity and diffusivity smear the discontinuity over a small number of grid
points such that both compact derivative and filtering operators do not generate further overshoots.

Cook and Cabot [1] have demonstrated that for smooth flows in one dimension, a higher order of accuracy
can be obtained by using an appropriate large value of r. In terms of practical use, setting r to 5 allows accu-
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rate detection of the discontinuity without affecting the rest of the flow. The effects of the other model param-
eter Cl (and Cq and CY for the extended model proposed here) were not investigated. Although one can antic-
ipate that these coefficients determine the extent to which the discontinuity is smeared, it is less obvious how to
estimate the overall error induced by the model. Before applying the model to complex test cases, an investi-
gation of this point is proposed in the following section.

3. Performance of the nonlinear viscosity/diffusivity model

We first consider a stationary normal shock that corresponds to a pressure jump pl/pr = 4.3, where sub-
scripts l and r, respectively, denote the left and right shock conditions. The initial conditions were set equal
to the Rankine–Hugoniot solution. In this first computation, a constant mesh size Dx = 0.05 is used. Since
neither contact nor species discontinuity is present in this simple configuration, the nonlinear diffusivity is
not required and is therefore turned off (Cq = CY = 0). This allows for a focus on the effect of nonlinear arti-
ficial viscosity. Fig. 3 shows the dimensionless pressure distribution in the physical space for different values of
Cl ranging between 0 and 2. When the nonlinear viscosity model is turned off (Cl = 0), large amplitude wig-
gles surround the shock. As Cl increases, the shock is smeared and the amplitude of these spurious oscillations
decreases. A dimensionless maximum amplitude of the wiggles is defined by dividing the maximum wiggles
amplitude by the pressure jump Dp = pl � pr. The variation of the normalized wiggles amplitude with Cl is
plotted in Fig. 4 for three mesh sizes (Dx = 0.025;0.05; 0.1). Also shown is the data for a weaker shock con-
dition (pl/pr = 1.4). It is observed that the damping of wiggles is primarily controlled by the model constant,
Cl and is largely independent of the mesh size and the shock strength. For Cl = 1, the normalized wiggle
amplitude is about 0.7% (this level of wiggles will be accepted as a practical compromise). In order to measure
the impact of the artificial dissipation on the shock resolution, a dimensionless numerical shock thickness is
introduced:
d
Dx
¼ Dp

Dx op
ox jmax

: ð14Þ
Figs. 5 and 6 show the numerical shock thickness and the L2 error in pressure for the different shock and grid
spacings in terms of Cl. It is observed that the thickness of the shock, which is related to the number of grid
points used to capture the discontinuity, is controlled mainly by the dissipation strength. For a given Cl, the
shock front is smeared approximately over the same number of grid points. For example, 99% of the profile is
captured over 5 grid points when Cl = 1.0 is used. The L2 error shows a similar dependence on Cl as the
numerical shock thickness. This relationship is explained later.
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To test the nonlinear diffusivity model, a stationary surface discontinuity corresponding to a density jump
ql/qr = 10 is considered. A single-component fluid is used and CY is set to 0. The solution is computed for
three different mesh sizes (Dx = 0.025;0.05; 0.1) and for two density ratio conditions (ql/qr = 2;10). The wiggle
amplitude, the numerical front thickness and the L2 error for the density are plotted in Figs. 7–9, respectively.
The results are qualitatively similar to the shock wave case. Both the wiggle amplitude and the numerical front
thickness remain largely independent of the mesh size and the discontinuity strength.

If one assumes that the undesired wiggles are effectively damped by the artificial dissipation, the L2 error
induced by the nonlinear viscosity/diffusivity model is primarily associated with the smearing of the disconti-
nuity. Approximating the density field by the following relation:
qappr ¼
ðql þ qrÞ
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where d, the observed front thickness, allows an estimation of the L2 error. Fig. 10 compares the measured
and the estimated L2 error for a range of Cq. It shows that Eq. (15) gives a good approximation of the error
induced by the model.

This analysis shows that for a given value of the model constants, the discontinuity is smeared over a fixed
number of grid points and this smearing is the dominant L2 error. To demonstrate the capability of the pres-
ent approach to solve various complex shocks configurations, the same constant values will be used in all sim-
ulation presented in this paper. As suggested in [10], Cl is set to 1.00 with r = 5. The constants Cq and CY are,
respectively, set to 0.01 and 0.05. As will be shown further, this choice of constant allows capturing of surface
discontinuities (or steep entropy waves). The original nonlinear viscosity model proposed by Cook and Cabot
[1] gives unsatisfactory spurious oscillations near the contact surfaces.

4. Results for more complex 1D shock wave problems

In the following subsections, the accuracy of the present shock capturing scheme is demonstrated on more
complex configurations. Flow and thermo-chemical variables are made dimensionless as follows [12]:
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where asterisk and subscript ‘r’, respectively, represent dimensional and free-stream quantities. The equation
of state is expressed in terms of the free-stream Mach number Mr:
p ¼ qT

cM2
r

: ð17Þ
4.1. Shock tube problem

The first test case is a Mach 2 shock tube problem with an initial discontinuity at x = 0. Left and right side
initialization values are given in Table 1. Variables are made dimensionless according to Eq. (16). The same
temperature is set on either side of the diaphragm, therefore the configuration gives rise to a weak contact
discontinuity. The numerical method with nonlinear viscosity only is denoted NVI (Cl = 1.0, Cq = 0) and
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the numerical method with both nonlinear viscosity and diffusivity is denoted NVIDI (Cl = 1.0, Cq = 0.01).
Simulations were carried out on an uniform mesh of 160 grid points and are analyzed at the time s = 1.8.
A comparison between the exact solution, the NVI and the NVIDI solutions for the pressure, the velocity,
the density and the temperature is plotted in Fig. 11. A good agreement between the numerical simulation
and the theory is observed, in particular both the positions of the contact surface and of the right propagating
shock are well captured. The NVI and NVIDI methods give nearly identical solution except at the contact
surface where small differences are observed. This is visible on the temperature plot of Fig. 11, where the
NVIDI method improved slightly the contact discontinuity prediction. In this configuration, the pressure
jump is challenging to capture but the contact discontinuity is weak, therefore it explains why the impact
of the hyperdiffusivity is moderate.

A second shock tube problem with a stronger pressure ratio is computed. Initial value, specified in Table 1,
gives rise to a stronger contact discontinuity which presents a density ratio of 2. Simulations were carried out
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Table 1
Left and right initial conditions for the shock tube problems

Left Right

(a) Case 1

p 10 5
q 10 5
u 0 0

(b) Case 2

p 10 1
q 10 1
u 0 0

(c) Case 3

p 1.1 1
q 1.0 0.1
u 0 0
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on an uniform mesh of 400 grid points and are analyzed at the time s = 4.5. Due to the sharp pressure and
density discontinuities at (x = 0,s = 0), NVI alone has start up difficulty but NVIDI overcomes that problem.
Comparisons between theory and NVIDI solution are shown in Fig. 12. The numerical front thickness (in
terms of grid spacing) of both the shock wave and the surface discontinuity are about 3, which is consistent
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with the analysis of Section 3. Maximal wiggles amplitude are observed for the density field in the vicinity of
the surface discontinuity and are about 3%.

In the third shock tube problem configuration, fluids of different initial entropy are now separated by the
diaphragm. The (reference) free-stream Mach number is set to 1. Initial values are specified in Table 1. Such
changes in temperature are encountered inside a combustion chamber, where fresh gases and hot products are
present. Simulations were performed on an uniform mesh of 150 grid points and are analyzed at the time
s = 1.6. Comparisons between theory, NVI and NVIDI methods are plotted in Fig. 13. The propagation of
the shock wave is well captured by both models, but a large discrepancy is now observed in the contact surface
region. Differences are most visible in the temperature plot, where the NVI method shows high amplitude spu-
rious oscillation almost entirely damped by the NVIDI method.

4.2. Shu–Osher problem

The Shu–Osher problem [11], where a sinusoidal density field is crossed by a shock wave, is then investi-
gated. In order to validate the shock–turbulence interactions, the original model presented by Cook and Cabot
[10] was tested for this configuration. If the numerical dissipation is too high, the entropy waves will be
damped. In this sense, this canonical test case allows an assessment of the effect of nonlinear viscosity/diffu-
sivity on turbulence. The initial conditions are indicated in Table 2. The free-stream Mach number is equal to
3. The simulation of this problem is performed on the same 200 grid points mesh which was used in [10].
Numerical simulation of this configuration on a 1600 grid points mesh by Adams and Stolz [13] with a 5th
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in the contact discontinuity region) are expressed in terms of the physical space X. Thin solid line: theory; thick dashed line: NVI model;
thick solid line: NVIDI model.

Table 2
Left and right initial conditions for the Shu–Osher problem [11]

Left Right

p 10.33333 1
q 3.857143 1+0.2sin(5x)
u 2.629369 0
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order ENO-Roe scheme is chosen as a reference solution. The comparisons between the reference solution and
the NVI and the NVIDI solution at s = 1.8 are shown in Fig. 14. Predictions of the two models are very sim-
ilar and in good agreement with the reference solution. Solutions obtained with this numerical approach show
that the addition of a nonlinear diffusion term to the continuity equation prevents the formation of wiggles
without any noticeable detrimental effect on the physical oscillations resulting from the interaction with the
shock wave. We note in passing that if larger value of Cq are used (e.g. Cq = 0.03) the amplitude of the steep
entropy waves shows noticeable departure from the reference solution. The choice of Cq is thus a compromise
between controlling density wiggles and capturing high wavenumber physical entropy/density waves.

4.3. Chapman–Jouguet detonation wave

As a reactive test case, a Chapman–Jouguet detonation wave is investigated. To recover the correct ZND
structure, interactions between shock waves and combustion have to be accurately predicted [14]. We will
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assume for simplicity that the chemical kinetics are represented by a progress variable c which is 0 in the fresh
gases and 1 in the burnt products. The species transport equations (Eq. (12)) are then reduced to a single trans-
port equation for the progress variable c:
Table
Left an

p

q
u

c

oqc
ot
þ o

ox
ðqucÞ ¼ o

ox
ðvcÞ

oY c

ox

� �
þ _xc: ð18Þ
The reaction rate _xc is expressed by an Arrhenius law:
_xc ¼ K0 expð�Eþ=T Þ; ð19Þ

where E+ is the activation energy and K0 the rate constant. After introducing the dimensionless heat release
q0 ¼ q�0=u2

r , the equation of state becomes:
qE ¼ p
c� 1

þ 1

2
quuþ qq0c: ð20Þ
The initial conditions consist of totally burnt gas on the left-hand side and unburnt gas on the right-hand side.
Values of density, velocity, pressure and progress variable are given in Table 3. The other parameters are set to
E+ = 25, K0 = 50,000, q0 = 25 and the reference Mach number is 0.845. These values are chosen so that the
burnt and unburnt states are connected by a CJ detonation wave moving with a speed equal to 7.1247. The
simulation is performed on an uniform mesh of 800 grid points. Pressure, density, temperature and progress
variable are plotted in Fig. 15. The ZND structure is well predicted while the nonlinear viscosity/diffusivity
model prevents the formation of spurious oscillations around the shock.
3
d right initial conditions for the CJ detonation wave

Left Right

1 21.5672
1 1.6812
�7.1247 �4.238

1 0
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Fig. 15. Pressure, density, temperature, progress variable and reaction rate distribution for the Chapman–Jouguet detonation.
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A highly resolved numerical solution on 1600 grid points is set as a reference solution. The L2 error of the
density prediction relative to this solution can then be computed for the various mesh sizes. To separate the
contribution of the chemistry resolution from that of the shock capturing approach, the domain is split into
two regions from each side of the midpoint of the density discontinuity. The left part contains the chemical
structure of the detonation, whereas the shock is included the right part. The total L2 error and its compo-
nents are plotted in Fig. 16. Most of the contribution to the L2 error is due to the chemistry and not due
to the shock. It means that the number of grid points required to solve this problem will not be restricted
by the shock capturing but by the resolution of the chemical structure. For all mesh conditions the detonation
speed is well captured. As it was demonstrated in Section 3, the dimensionless shock thickness defined by Eq.
(14) is quasi-constant (d/DX � 2.5), meaning that the same number of grid points is used to capture the shock
for the various grid sizes.

5. Multi-dimensional formulation

For multiple dimensions the flow equations including the artificial diffusivity and viscosity become:
oq
ot
þr � qu�rðvqrqÞ ¼ 0; ð21Þ

oqu
ot
þr � ðq � uuþ pd� sÞ ¼ 0; ð22Þ
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Fig. 16. L2 error in density of the CJ case in terms of the mesh size. Line: total L2 error; dashed line: contribution of the L2 error in the
reaction zone; dashed dotted line: contribution of the L2 error in the shock region.
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oqE
ot
þr � ½ðqEuþ pd� sÞ � u� krT þ q

XN sp

k¼1

DkhkrY k� ¼ 0; ð23Þ

oqY k

ot
þr � ðquY kÞ � rððvY þ qDkÞrY kÞ ¼ _xk; ð24Þ

qE ¼ qRT
c� 1

þ 1

2
quuþ q

X
Y kh0

k ; ð25Þ
where d is the unit tensor and s. According to [10], the nonlinear viscosity is split into a shear and a bulk vis-
cosity, respectively, noted by ls and lb. This technique allows to capture shocks without destroying vorticity.
The viscous stress tensor s is then given by:
s ¼ ðls þ llÞð2SÞ þ lb �
2

3
ðls þ llÞ

� �
ðr � uÞd; ð26Þ
where S = 0.5 ($u + ($u)T) is the strain rate tensor. Expression for ls and lb is given by:
ls ¼ Cs
lg; lb ¼ Cb

lg; g ¼ qDrþ1jrr�1Sj; ð27Þ

where Cs

l and Cb
l are the model constants, D is the local grid spacing and S = (S:S)1/2 is the magnitude of the

strain rate tensor. $r�1 is the polyharmonic operator which denotes a sequence of Laplacians. For instance
r = 5 leads to $4S = $2($2S) .The overbar ð�f Þ denotes a truncated-Gaussian filter. The extension of the non-
linear diffusivity to multiple dimensions is done as follows:
vq ¼ Cqf; vY ¼ CY f; f ¼ a0

cp

ðDÞrþ1jrr�1jrsjj; ð28Þ
where Cq and CY are the model constants, j$sj is the norm of the fluid entropy gradient, a0 is the speed of
sound and cp is the specific heat at constant pressure.

These numerical procedure has been implemented in the 3D compressible Navier–Stokes solver FDL3DI
[15] developed at the Air Force Research Laboratory. The spatial derivatives are computed with a 6th order
compact scheme [2] and a 8th order filtering is used for stability purpose [15]. The code is explicit in time using
a 4th order Runge–Kutta method. Parameters used for the nonlinear viscosity model are r = 5, Cs

l ¼ 0:002,
Cb

l ¼ 1, as recommended in [10]. Concerning the artificial diffusivity components, we maintain the same
parameters that was used in the 1D formulation, i.e. r = 5, Cq = 0.01 and CY = 0.05.
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5.1. Oblique shock reflection

The first 2D considered test case is the reflection of a shock wave on an inviscid wall. The shock angle is 33�
from the Mach 3 free-stream. The mesh size is 151 · 51 and is uniformly distributed in both directions. The
jump conditions are imposed on the upper boundary whereas slip wall conditions are set at the bottom bound-
ary. Pressure field is plotted in Figs. 17 and 18. Although the shock wave is not aligned with the computational
mesh, no significant wiggles are present around the discontinuity which is well captured. The results are in
good agreement with the compact-Roe scheme solution presented in [9].

5.2. Blunt-body flow

As test case, a Mach 3 inviscid supersonic flow past a cylinder is computed. A 81 · 75 mesh, shown in
Fig. 19 was generated analytically [16] for the upper half of the domain. Symmetric flow conditions are
imposed at the centerline. The problem is initialized by a Mach 3 shock moving from the left while slip wall
conditions are imposed at the surface of the cylinder. Iso-contours of pressure are plotted in Fig. 19. Two
radial profiles of pressure, corresponding to h = 0� and h = 45�, where h is defined in Fig. 19, are shown in
Fig. 20. At the centerline, the shock, smeared over 4 grid points, is located at a distance of 1.7 from the cyl-
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Fig. 18. Pressure distribution along Y = 0.18 line for Mach 3 inviscid shock reflection.
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inder, which is in good agreement with the compact-Roe scheme results obtained by Visbal and Gaitonde [9]
on the same configuration. The maximal wiggles amplitudes are maintained below 2%.

5.3. Double Mach reflection

The last test case has been initially used to compare several numerical schemes [17]. The computational
domain has dimension [0, 4] · [0,2]. Grid spacing is Dx = Dy = 1/60. The problem involves a Mach 10 shock
wave in air (c = 1.4) which initially makes a 60� angle with the horizontal axis. The undisturbed air ahead of
the shock has a density of 1.4 and a pressure of 1. The shock intersects the axis at x = 1/6. Along the bottom
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boundary, at y = 0, the region from x = 0 to x = 1/6 is always assigned values for the initial post-shock flow,
whereas reflecting wall conditions are set from x = 1/6 to x = 4. The values along the top boundary condition
are set to describe the exact motion of the Mach 10 shock. A steady 1D shock wave which corresponds to the
normal jump conditions across the Mach 10 oblique shock was initially computed with the present shock cap-
turing model. This 1D shock solution that was also been obtained with a grid spacing Dx = 1/60 has been used
to properly interpolate the initial condition of the 2D Mach reflection problem.

Density contour of the solution at time s = 0.1 and s = 0.2 is, respectively, plotted in Fig. 21a and b. Only
the solution for x 2 [0,3] and y 2 [0,1] is shown. Visible on both figures is the formation of the two Mach
stems and the wall jet. In particular, the propagation of the two Mach stems and the formation of the jet which
are extremely difficult to compute are recovered. The results are very similar to solutions obtained on the same
grid with a 5th order WENO scheme [18] and a 7th order TVD scheme [19]. A comparison with these results
shows that the complex features of the flow are captured at the correct positions. The jet is better represented
with the 6th order shock-capturing scheme than with the 5th order WENO scheme [18], and the shocks pat-
terns are slightly less smeared with the 7th order TVD scheme [19].

6. Conclusions

A new, simple nonlinear viscosity method has been developed for capturing shocks and contact surfaces in
the context of supersonic reactive flows. By adding a nonlinear artificial diffusivity, it extends the nonlinear
artificial viscosity method proposed by Cook and Cabot [1,10] to treat entropy gradients associated with tem-
perature and species discontinuities.

Detailed analysis of the errors associated with shock-capturing and contact-surface capturing was con-
ducted. These have shown that new scheme is able to capture both weak and strong shocks without any deg-
radation of performance. Both the dimensionless numerical shock thickness, which is related to the number of
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points used to compute the discontinuity, and the damping of the spurious wiggles are shown to be largely
independent of the mesh size and the shock/contact surface strength.

This model has been successfully applied to complex 1D shock wave problems, including the shock tube
problem, the Shu–Osher problem and a Chapman–Jouguet detonation wave. It has been observed that the
introduction of a nonlinear artificial diffusivity is required to accurately capture contact surface discontinu-
ities. Multi-dimensional formulation of the model has been presented and was successfully applied to a 2D
oblique shock wave, to a supersonic blunt body flow and to a Mach reflection problem. For pure gas-dynamic
shock wave problems, other methodologies [4,6,7,19] may be superior than the present approach. However,
the method proposed in this paper is applicable to broader class of unsteady flow problems, such as those
involving shocks, turbulence, combustion and their interaction, and is also considerably simpler to implement.
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