

TMEC001 - CÁLCULO NUMÉRICO

CAPÍTULO 02 – SOLUÇÕES NUMÉRICAS DE EQUAÇÕES DE UMA VARIÁVEL

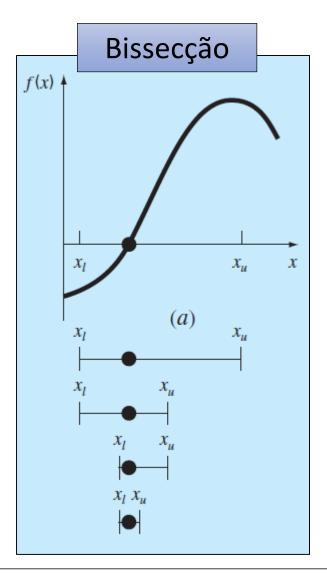
Prof. Felipe R. Loyola

Disciplina: Cálculo Numérico

1° Semestre de 2020

2.2 Métodos Abertos

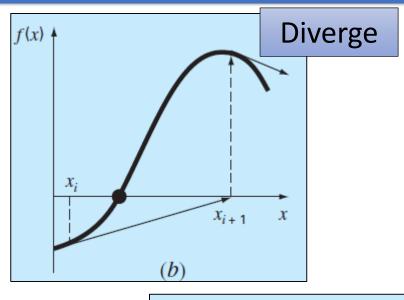
2.2 – Métodos Abertos

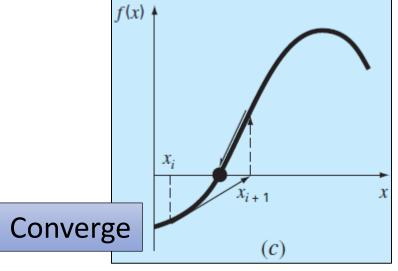


 Nos métodos intervalares, a raiz era localizada dentro de um intervalo prescrito por um limitante inferior e superior. As aplicações repetidas desses métodos sempre resultam em estimativas mais próximas do valor verdadeiro da raiz. Tais métodos são ditos convergentes porque se aproximam da raiz verdadeira à medida que os cálculos prosseguem.

2.2 – Métodos Abertos

• Em contraste, os métodos abertos são baseados em fórmulas que exigem apenas um único valor inicial de x valores iniciais não delimitam dois que ou necessariamente a raiz. Como tal, em algumas vezes divergem ou se afastam da raiz verdadeira à medida que os cálculos prosseguem. Quando os métodos abertos convergem, entretanto, eles em geral o fazem muito mais rapidamente que os métodos intervalares.





• Como mencionado anteriormente, os métodos abertos usam <u>uma fórmula</u> para prever a raiz. Tal fórmula pode ser reduzida para a iteração de ponto fixo simples (ou também chamada de iteração de um ponto, substituições sucessivas ou aproximações sucessivas) reescrevendo a equação f(x) = 0 de modo que x esteja <u>isolado</u> no lado esquerdo da equação:

$$x = g(x) \tag{01}$$

· Pode-se conseguir essa transformação ou por manipulação algébrica ou simplesmente somando x em ambos os lados da equação original. A utilidade da equação anterior (01) é que ela fornece uma fórmula para prever um novo valor de x e função de um valor x anterior. Portanto, dada uma aproximação inicial para a raiz x_i, a equação anterior pode ser usada para calcular uma nova estimativa x_{i+1}, expressa pela fórmula iterativa.

$$x_{i+1} = g(x) \tag{02}$$

• Exemplo: Usar o Método da Iteração de Ponto Fixo para localizar a raiz de:

$$f(x) = e^x - x$$

Solução: A função pode ser separada diretamente na forma da equação (02)

$$x_{i+1} = e^{-x_i}$$

i	Xi	ε _a (%)	ε _t (%)
0	0		100.0
1	1.000000	100.0	76.3
2	0.367879	1 <i>7</i> 1.8	35.1
3	0.692201	46.9	22.1
4	0.500473	38.3	11.8
5	0.606244	17.4	6.89
6	0.545396	11.2	3.83
7	0.579612	5.90	2.20
8	0.560115	3.48	1.24
9	0.571143	1.93	0.705
10	0.564879	1.11	0.399

(02)

Convergência

· Tomando-se a equação iterativa do método

$$x_{i+1} = g(x_i) \tag{03}$$

e supondo-se que a solução verdadeira seja

$$x_r = g(x_r) \tag{04}$$

ao se subtrair as equações obtém-se

$$x_r - x_{i+1} = g(x_r) - g(x_i)$$
(05)

• O Teorema do Valor Médio para derivadas afirma que , se a função g(x) e a sua primeira derivada forem contínuas sobre um intervalo a \le x \le b, então existe pelo menos um valor de x = ξ dentro do intervalo tal que:

$$g(\xi) = \frac{g(b) - g(a)}{b - a} \tag{06}$$

• O lado direito dessa equação é a inclinação da reta ligando g(a) e g(b). Logo, o Teorema do Valor Médio afirma que existe um ponto entre a e b que tem uma inclinação denotada por $g'(\xi)$ que é paralela à reta ligando g(a) a g(b). Fazendo-se, então, $a=x_i$ e $b=x_r$, o lado direito da equação anterior (06) pode ser expresso como:

$$g(x_r) - g(x_i) = (x_r - x_i)g'(\xi)$$
(07)

· Se o erro verdadeiro para a i-ésima iteração for definido por

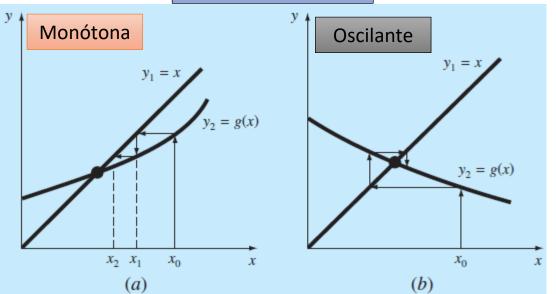
$$E_{t,i} = x_r - x_i \tag{08}$$

• Então a equação acima torna-se:

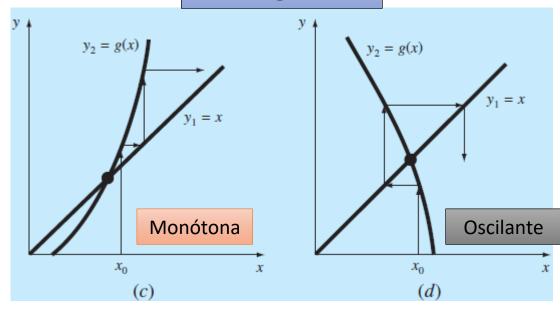
$$E_{t,i+1} = g'(\xi)E_{t,i} \tag{09}$$

- Consequentemente, se $|g'(\xi)| < 1$, os erros diminuem a cada iteração. Para $|g'(\xi)| > 1$, o erro cresce. Observa-se também que, se a derivada for positiva, os erros serão positivos e, portanto, a solução será monótona; se a derivada for negativa os erros oscilarão.
- Um desdobramento da análise é que ela também demonstra que, quando o método converge, o erro é aproximadamente proporcional e inferior ao erro no passo anterior. Por essa razão, a iteração do ponto fixo é dita <u>linearmente</u> convergente.

• A descrição gráfica da convergência e da divergência do método do ponto fixo é feita com o auxílio do método gráfico das duas curvas. Neste caso, se $f_1(x) = f_2(x)$, pode-se separar a equação em duas componentes: $y_1 = f_1(x)$ e $y_2 = f_2(x)$. Neste caso, os valores de x correspondentes às intersecções dessas funções representam as raízes da função original.



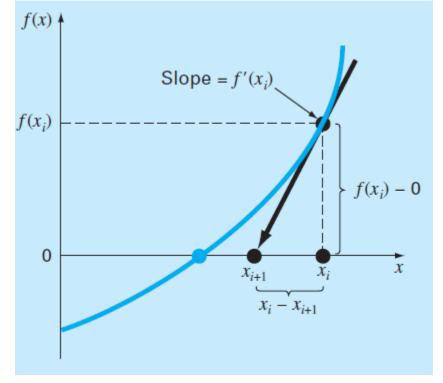
Divergentes



Algoritmo do Método de Iteração de Ponto Fixo

```
FUNCTION Fixpt(x0, es, imax, iter, ea)
 xr = x0
 iter = 0
    xrold = xr
    xr = g(xrold)
    iter = iter + 1
    IF xr \neq 0 THEN
      ea = \left| \frac{xr - xrold}{xr} \right| \cdot 100
    END IF
    IF ea < es OR iter ≥ imax EXIT
 END DO
 Fixpt = xr
END Fixpt
```

• Talvez seja a fórmula mais amplamente utilizada para localizar um zero de função seja a equação de Newton-Raphson. Se a aproximação inicial da raiz for x_i , podese estender uma reta tangente a partir do ponto $[x_i, f(x_i)]$. O ponto onde essa tangente cruza o eixo x usualmente representa uma estimativa melhorada da raiz



• O método de Newton-Raphson pode ser deduzido com base em sua interpretação geométrica (ou alternativamente, empregando-se a série de Taylor). Graficamente, a primeira derivada em x é equivalente a:

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}} \tag{10}$$

que pode ser reorganizada para fornecer

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{11}$$

A equação acima é chamada de fórmula de Newton-Raphson.

• Alternativamente, empregando-se a série de Taylor, tem-se:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(\xi)}{2!}(x_{i+1} - x_i)^2$$
 (12)

onde ξ está em algum ponto do intervalo de x_i a x_{i+1} . Uma versão aproximada é obtida truncando-se a série após o termo da primeira derivada:

$$f(x_{i+1}) \approx f(x_i) + f'(x_i)(x_{i+1} - x_i) \tag{13}$$

A equação (13) pode ser reescrita como

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{14}$$

que é idêntica à fórmula de Newton-Raphson (11). Além da dedução, a série de Taylor também pode ser usada para realizar uma estimativa do erro da fórmula, o que se consegue percebendo que, se a série de Taylor completa fosse empregada, seria obtido um resultado exato.

• Nessa situação, $x_{i+1} = x_r$, na qual x_r é o valor verdadeiro da raiz. Substituindo essa valor junto com $f(x_r) = 0$ na equação (12) obtém-se:

$$0 = f(x_i) + f'(x_i)(x_r - x_i) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$
 (15)

• A equação (13) pode ser substituída da equação (15) fornecendo:

$$0 = f'(x_i)(x_r - x_{i+1}) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$
 (16)

Erros no Método de Newton-Raphson

• Percebendo-se que o erro é igual à discrepância entre x_{i+1} e o valor verdadeiro de x_r , como em

$$E_{t,i+1} = x_r - x_{i+1} (17)$$

tem-se que a equação (16) pode ser expressa por:

$$0 = f'(x_i)E_{t,i+1} + \frac{f''(\xi)}{2!} (E_{t,i})^2$$
(18)

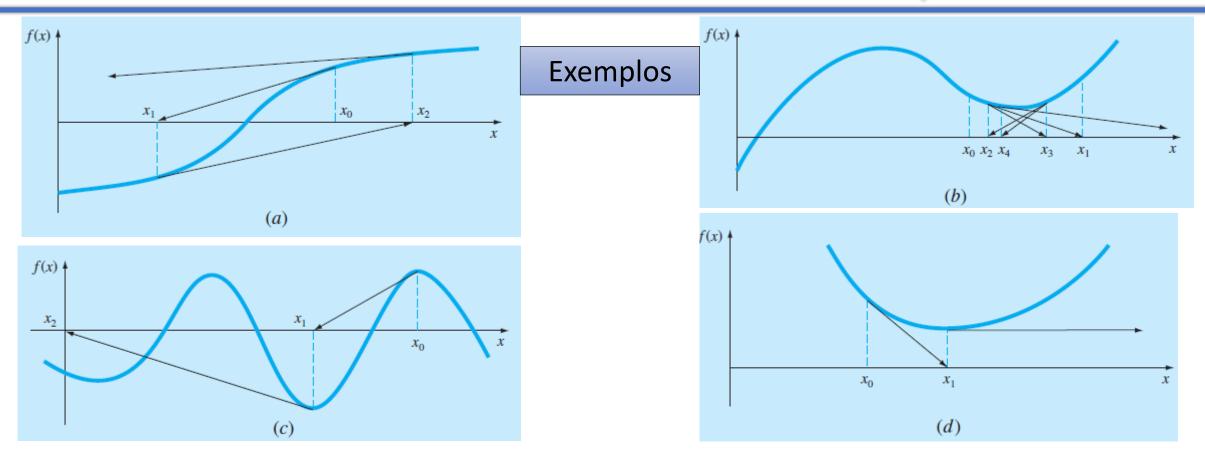
• Supondo—se a convergência, ambos os valores de xi e ξ deveriam eventualmente ser aproximados pela raiz x_r e a equação (18) pode ser reorganizada para fornecer

$$E_{t,i+1} = \frac{-f''(x_r)}{2f'(x_r)} (E_{t,i})^2$$
 (19)

• De acordo com a equação acima, o erro é aproximadamente proporcional ao quadrado do erro anterior. Isso significa que o número de casas decimais corretas aproximadamente dobra a cada iteração tem comportamento é chamado de convergência quadrática.

Armadilhas do método de Newton-Raphson

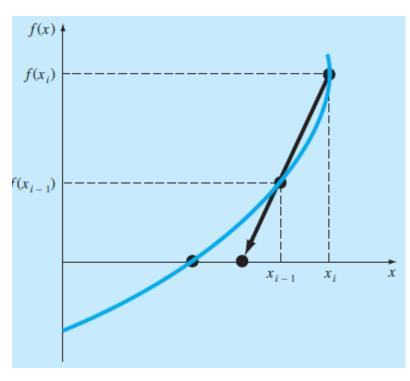
- Embora o método de Newton-Raphson seja em geral muito eficiente, há situações nas quais ele apresenta um desempenho insatisfatório. O ponto em comum de todas as situações, contudo, é o fato de a derivada da função f(x) ser nula ou apresentar um valor próximo a zero. Citam-se como exemplos dessas situações:
- i. Raízes múltiplas
- ii. Proximidades de pontos de inflexão
- iii. Proximidades de máximos ou mínimos (globais ou locais)



• Não existe critério geral de convergência para o método de Newton-Raphson. Sua convergência depende da natureza da função e da precisão da aproximação inicial Deve-se, assim, garantir que a aproximação inicial esteja "suficientemente" próxima da raiz, embora para algumas funções nenhuma aproximação funcionará.

Um problema em potencial na implementação do método de Newton-Raphson é
o cálculo da derivada. Embora isso não seja inconveniente para muitas funções,
como polinômios, para outras o cálculo das derivadas pode ser extremamente
inconveniente ou difícil. Nesses casos, a derivada pode ser aproximada por uma
diferença dividida regressiva, como em:

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$
 (20)



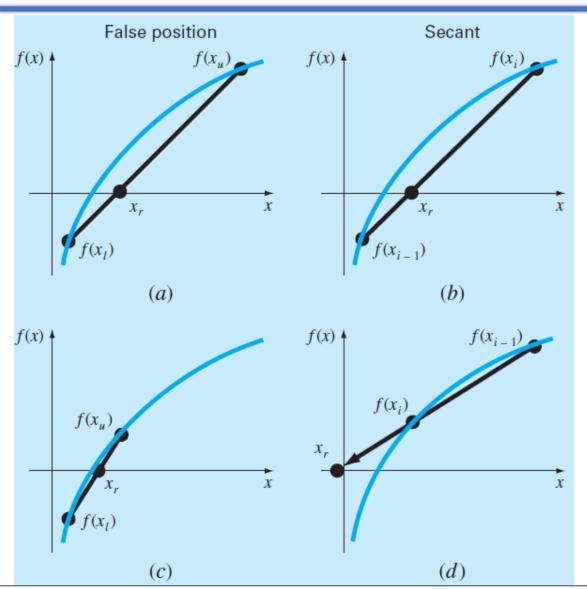
• Essa aproximação pode ser substituída na equação (11) para fornecer a seguinte equação iterativa

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
(21)

A equação acima é a fórmula do Método da Secante. Devese notar que a abordagem exige duas estimativas iniciais de x. Porém, como não é exigido que f(x) mude de sinal entre as estimativas, ele não é classificado como um método intervalar.

Diferença entre os métodos da secante e falsa posição

 Comparando-se as equações iterativas dos métodos da falsa posição e da secante, observa-se que as mesmas são idênticas em ambos os casos, são utilizadas duas estimativas iniciais para calcular uma aproximação da inclinação da função que é utilizada para projetar para o eixo x uma nova estimativa da raiz. Entretanto, uma diferença crítica entre os métodos é a forma com que um dos valores iniciais é substituído pela nova estimativa. Enquanto no método da falsa posição garante-se que as duas estimativas empregadas sempre delimitam a raiz, no método da secante há a substituição dos valores em sequência escrita, isto é, o novo valor x_{i+1} substitui x_i e o valor de x_i substitui x_{i-1}. Em certos casos, isso pode levar à divergência.



o método da secante Embora possa divergente, quando ele converge, usualmente, o faz a uma taxa mais rápida do que o método da falsa posição. A inferioridade do método da falsa posição resulta de uma extremidade permanecer fixa para continuar a limitar a raiz. Essa propriedade, que é vantajosa do ponto de impedir a divergência, é vista de com relação desvantagem de taxa convergência.

2.2.4 – Raízes Múltiplas

- Uma raiz múltipla corresponde a um ponto onde a função é tangente ao eixo x. Isso causa algumas dificuldades para muitos métodos numéricos:
- i. O fato de a função não mudar de sinal em raízes de multiplicidade par impede o uso dos métodos intervalares confiáveis, de modo que a análise deve recair nos métodos abertos, sujeitos à divergência.
- ii. Um outro problema possível está relacionado ao fato de que não só f(x), mas também f'(x) vai a zero na raiz. Isso introduz problemas tanto no método de Newton-Raphson quanto no da secante, uma vez que ambos contem a derivada (ou sua estimativa) no denominador. Uma forma simples de contornar esse problema baseia-se no fato de que f(x) sempre atingirá zero antes de f'(x). Portanto, se uma verificação do zero for incluída no programa, os cálculos podem ser parados antes de f'(x) atingir zero.

2.2.4 – Raízes Múltiplas

iii. É possível demonstrar que os métodos de Newton-Raphson e da secante são linearmente (ao invés de quadraticamente) convergentes para raízes múltiplas. Foram propostas formas alternativas (modificadas) para contornar tal problema, como empregar as seguintes formulações:

$$x_{i+1} = x_i - m \frac{f(x_i)}{f'(x_i)}$$
 (22)

onde m é a multiplicidade da raiz, ou ainda

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$
(23)

entre outras expressões

2.2 – Exemplos

• **Exemplo**: Considere a equação

$$f(c) = \frac{667,38}{c} [1 - e^{-0,146843c}] - 40$$

solucionada anteriormente pelos métodos da bissecção e da falsa posição. Resolva-a também utilizando os métodos do ponto fixo, Newton-Raphson e secante, empregando como critério de parada ε_a = 0,5%. Como estimativa inicial para os métodos de Newton-Raphson e do ponto fixo empregue x_0 = 12, no caso do método da secante, utilize x_0 = 12 e x_1 = 16.

2.2 – Exemplos

• **Exemplo**: Determine a raiz positiva de:

$$f(x) = x^{10} - 1$$

Empregando os métodos da bissecção, da falsa posição, de Newton-Raphson e da secante. Empregue o intervalo inicial [0; 1,5] para os métodos da bissecção e da falsa posição, a estimativa inicial $x_0 = 0,01$ para o método de Newton-Raphson e os valores de $x_0 = 0$ e $x_1 = 1,5$ para o método da secante. Em todos os casos, empregue uma tolerância de 10^{-12} .

