

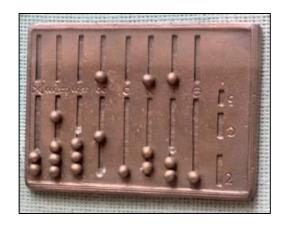
TMEC001- LINGUAGEM DE PROGRAMAÇÃO

AULA INAUGURAL

Prof. Felipe R. Loyola

Disciplina: Cálculo Numérico

1° Semestre de 2020



História dos Computadores

Ábaco

 O ábaco é um antigo instrumento de cálculo, formado por uma moldura com bastões ou arames paralelos, dispostos no sentido vertical, correspondentes cada um a uma posição digital (unidades, dezenas,...) e nos quais estão os elementos de contagem (fichas, bolas, contas,...) que podem fazer-se deslizar livremente. Teve origem provavelmente na Mesopotâmia, há mais de 5.500 anos. O ábaco pode ser considerado como uma extensão do ato natural de se contar nos dedos. Emprega um processo de cálculo com sistema decimal, atribuindo a cada haste um múltiplo de dez.

Régua de Cálculo

- A régua de cálculo é um dispositivo de cálculo que se baseia na sobreposição de escalas logarítmicas. Os cálculos são realizados através de uma técnica mecânica analógica que permite a elaboração dos cálculos por meio de guias deslizantes graduadas, ou seja, réguas logarítmicas que deslizam umas sobre as outras, e os valores mostrados em suas escalas são relacionados através da ligação por um cursor dotado de linhas estrategicamente dispostas, que têm a função de correlacionar as diversas escalas da régua de cálculo.
- Foi inventada pelo matemático inglês William Oughtred, em 1622, baseando-se na tábua de logaritmos que fora criada por John Napier pouco antes, em 1614.

Calculadora Mecânica de Wilhelm Schickard

• Bem antes de Blaise Pascal e Leibniz, Schickard é considerado como o primeiro a construir uma máquina de calcular mecânica (utilizada por Johannes Kepler), em 1623, capaz de realizar as 4 operações básicas com números de seis dígitos e indicar um overflow através do toque de um sino. Foram encontradas algumas cartas suas enviadas a seu a amigo Kepler em 1624, acompanhadas de vários esboços, onde explica o desenho e o funcionamento de uma máquina que havia construído e que que chamou de "relógio calculador".

Wilhelm Schickard (1592 – 1635)

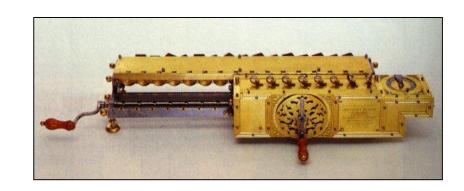
La Pascaline

- La Pascaline foi a primeira calculadora mecânica do mundo, planejada por Blaise Pascal em 1642.
- Originalmente, Pascal pretendia construir uma máquina que realizasse as quatro operações fundamentais, mas apenas conseguia fazer diretamente operações de adição e subtração. As operações de multiplicação e divisão podiam ser feitas por repetição.
- Blaise Pascal motivou-se a criar esta máquina porque seu pai era contador e precisava de ajuda com cálculos mais avançados. Pascal então, com seu conhecimento em física e em matemática, criou uma máquina com um engenhoso sistema de engrenagens que fazia contas de adição e subtração. Quando a engrenagem virasse à direita era feita a adição, quando virasse à esquerda era feita a subtração dos valores armazenados em 2 ou 3 engrenagens anteriores.

Blaise Pascal (1623 - 1662)

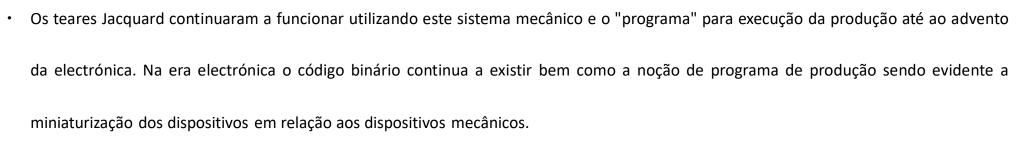
Calculadora Mecânica de Leibniz

Uma máquina calculadora foi inventada na Alemanha pelo

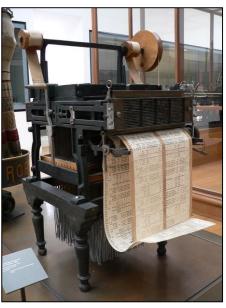

matemático Gottfried Wilhelm Leibniz. Foi a primeira calculadora

que podia executar às quatro operações aritméticas. Sua construção

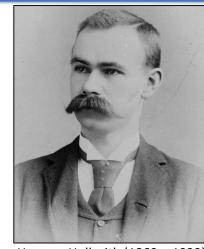
mecânica chegava a ser a frente do seu tempo.



Gottfried Wilhelm Leibniz (1646 – 1716)


Tear automático de Jacquard

Em 1804, <u>Joseph Marie Jacquard</u>, mecânico de teares Lyon - França, inventou um sistema para comando automático das operações repetitivas e sequenciais até então executadas manualmente pelos tecelões. O sistema era construído com um conjunto de cartões metálicos perfurados ligados uns aos outros por aros, também metálicos, constituindo uma "fita" continua (visível à esquerda no desenho) que avançava, cartão a cartão, sobre uma "estação de leitura". Na "estação de leitura" um conjunto de agulhas metálicas caía sobre os cartões. A combinação de agulhas que passavam através de uma perfuração e as que eram impedidas de o fazer por não existir a perfuração correspondente constituía um código binário para execução de uma operação.



Joseph Marie Jacquard (1752 – 1834)

Máquina de Hollerith

 Inventou, em 1880, uma maquina para realizar as operações de recenseamento da população. A maquina fazia a leitura de cartões de papel perfurados em código BCD (*Binary Coded Decimal*) e efetuava contagens da informação referente a perfuração respectiva.

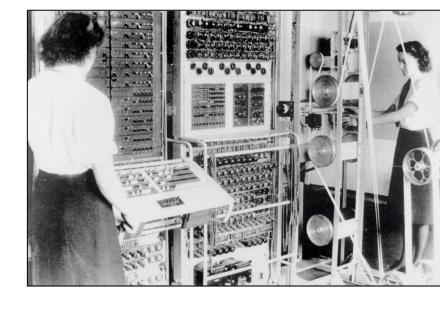
Herman Hollerith (1860 – 1929)

• Em 1911, quatro corporações, incluindo a firma de Hollerith, se fundiram para formar a *Computing Tabulating Recording Corporation*. Sob a presidência de Thomas

J. Watson, ela foi renomeada para IBM.

Máquina de Turing

- A Máquina de Turing é um dispositivo teórico conhecido como máquina universal, que foi concebido pelo matemático britânico Alan Turing (1912-1954), muitos anos antes de existirem os modernos computadores digitais (o artigo de referência foi publicado em 1936). Num sentido preciso, é um modelo abstrato de um computador, que se restringe apenas aos aspectos lógicos do seu funcionamento (memória, estados e transições), e não a sua implementação física. Numa máquina de Turing pode-se modelar qualquer computador digital.
- Turing também se envolveu na construção de máquinas físicas para quebrar os códigos secretos das comunicações alemãs durante a Segunda Guerra Mundial, tendo utilizado alguns dos conceitos teóricos desenvolvidos para o seu modelo de computador universal.



Alan Turing (1912 - 1954)

Colossus

 Colossus foi um computador inglês projetado em Bletchley Park durante a Segunda Guerra Mundial por um grupo liderado por Tommy Flowers, para fazer a criptoanálise de códigos ultrassecretos utilizados pelos nazistas, criados com a máquina Lorenz SZ 40/42. Com duas versões em 1943 e 1944, quando a guerra se encerrou dez Colossus estavam em operação. Utilizando símbolos perfurados em fitas de papel, o equipamento processava a uma velocidade de 25 mil caracteres por segundo.

Harvard Mark I

• Mark IO ASCC (Automatic Sequence Controlled Calculator, em português

"Calculadora de sequência automática controlada") foi projetado por

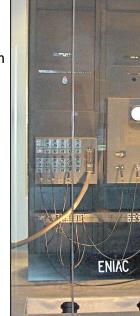
Howard Aiken em 1930, um estudante de pós-graduação em física teórica na

Universidade Harvard, chamado de Mark I, foi construído e desenvolvido

numa parceria da Universidade de Harvard e a IBM durante a Segunda

Guerra Mundial em 1944. Pesando cerca de 5 toneladas foi a primeira e

maior calculadora digital automática de larga escala desenvolvido nos



ENIAC

- Electronic Numerical Integrator and Computer (ENIAC em português: computador integrador numérico eletrônico) foi o primeiro computador digital eletrônico de grande escala. Muitos comentam que o primeiro foi o Mark I, mas este era apenas eletromecânico.
 O ENIAC entrou em funcionamento em fevereiro de 1946 pelas mãos dos cientistas norte-americanos John Eckert e John Mauchly, da Electronic Control Company.
- O ENIAC começou a ser desenvolvido em 1943 durante a II Guerra Mundial para computar trajetórias táticas que exigiam conhecimento substancial em matemática com mais agilidade, mas só se tornou operacional após o final da guerra.
 - Sua capacidade de processamento era de 5.000 operações por segundo;
 - Criado na segunda guerra, tinha como principal finalidade cálculos balísticos;
 - Possuía 17.468 válvulas termiônicas, de 160 kW de potência;
- O "sistema operacional" da máquina era através de cartões perfurados.
- A calculadora efetua os cálculos a partir das teclas pressionadas, fazendo interação direta com o hardware, como no ENIAC, no qual era preciso conectar fios, relês e sequências de chaves para que se determinasse a tarefa a ser executada. A cada tarefa diferente o processo deveria ser refeito. A resposta era dada por uma sequência de lâmpadas.

IBM 650

 Máquina de processamento de dados de bateria magnética IBM 650 é um computador digital inicial produzido pela IBM Corporation em meados da década de 1950. O primeiro foi instalado no final de 1954 e foi o computador mais popular nos próximos 5 anos.

IBM HDD (1956)

O primeiro disco rígido foi construído pela IBM

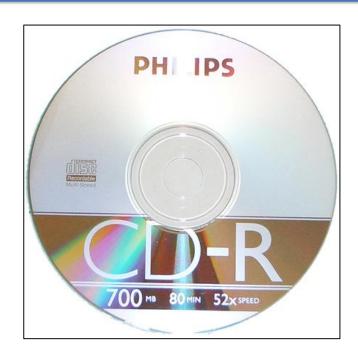
em 1956

50 discos magnéticos contendo

• 50.000 setores

5 megabytes

Armazenamento de Dados



1972 - 660 kB por cada lado.

- 8" (1 MB)
- 5 ¼" (1.3 MB) e 3
- ½" (5.76 MB)

Armazenamento de Dados

1986 - 640 MB por cada lado.

11/03/2020

2000 – 8 MB
 IBM DiskOneKey

Armazenamento de Dados

2000 - 32 MB

• 2008 – 64 GB

Histórico da Internet

- 1969 ARPANET, criada pela ARPA, sigla para Advanced ResearchProjects Agency
- 1987, pela primeira vez foi liberado seu uso comercial nos EUA.
- O cientista Tim Berners-Lee, do CERN, criou a World Wide Web em 1992.
- Netscape criou o protocolo HTTPS (HyperText Transfer Protocol Secure)
- Armazenamento na nuvem

Maior fenômeno midiático do século 20, único meio de comunicação que em apenas 4 anos conseguiria atingir cerca de 50 milhões de pessoas.

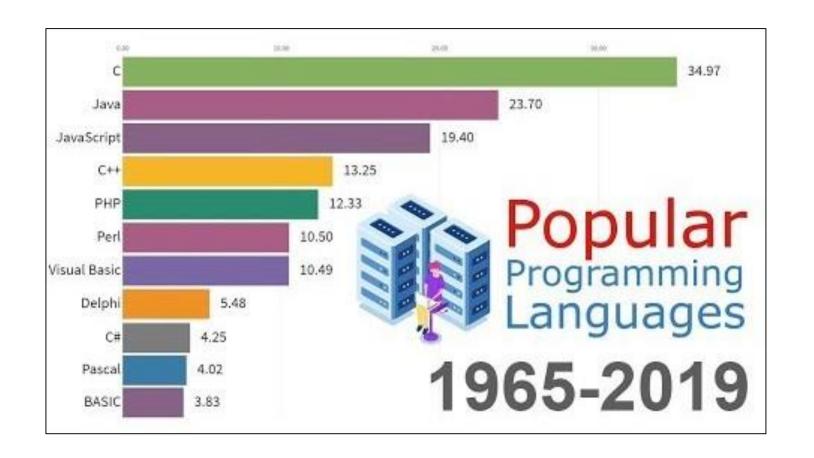
Linguagem de Programação

Definições

- linguagem de programação → método padronizado →instruções para um computador
- conjunto de regras sintáticas e semânticas ! um programa de computador.
- conjunto de palavras → regras → código fonte → linguagem de máquina → executado pelo microprocessador
- objetivo → maior produtividade → expressar suas intenções → código de maquina.

Compilação x Interpretação

• Se o método utilizado traduz todo o texto do programa para só depois executar o programa, então diz-se que o programa foi compilado e que o mecanismo utilizado para a tradução é um compilador. Se o texto do programa é executado à medida que vai sendo traduzido num processo de tradução de trechos seguidos de sua execução imediata, então diz-se que o programa foi interpretado e que o mecanismo utilizado para a tradução é um interpretador



Conceitos

- Programação estruturada três estruturas: sequencia, decisão e repetição.
- · Programação modular rotinas de programação são feitas através de módulos.
- Programação orientada a objetos
- Programação linear são usados em problemas de otimização nos quais a função objetivo e as restrições são todas lineares.

Evolução do uso das linguagens de programação

Ranking das linguagens mais utilizadas

https://www.tiobe.com/tiobe-index/

Mar 2020	Mar 2019	Change	Programming Language	Ratings	Change
1	1		Java	17.78%	+2.90%
2	2		С	16.33%	+3.03%
3	3		Python	10.11%	+1.85%
4	4		C++	6.79%	-1.34%
5	6	^	C#	5.32%	+2.05%
6	5	•	Visual Basic .NET	5.26%	-1.17%
7	7		JavaScript	2.05%	-0.38%
8	8		PHP	2.02%	-0.40%
9	9		SQL	1.83%	-0.09%
10	18	*	Go	1.28%	+0.26%
11	14	^	R	1.26%	-0.02%
12	12		Assembly language	1.25%	-0.16%
13	17	*	Swift	1.24%	+0.08%
14	15	^	Ruby	1.05%	-0.15%
15	11	*	MATLAB	0.99%	-0.48%
16	22	*	PL/SQL	0.98%	+0.25%
17	13	*	Perl	0.91%	-0.40%
18	20	^	Visual Basic	0.77%	-0.19%
19	10	*	Objective-C	0.73%	-0.95%
20	19	•	Delphi/Object Pascal	0.71%	-0.30%

Por que aprender Python na engenharia?

Tudo é objeto

- Python é uma linguagem de alto nível orientada ao objeto. Alguns desses objetos já estão embutidos na própria linguagem (inteiros, listas e *strings*).
- Engenheiros estão sempre trabalhando com objetos em seus trabalhos. O uso do

Python facilita a manipulação e a criação de objetos de estudos

Pacotes disponíveis

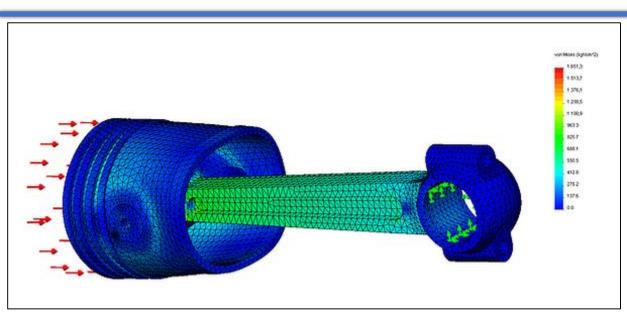
- Existem centenas de milhares de pacotes disponíveis para Python.
- Alguns deles são instalados junto com o Python e outros o usuário mesmo pode instalar (PIP).
- Os pacotes facilitam o trabalho do usuário que pode utilizá-los como base dos seus próprios códigos.

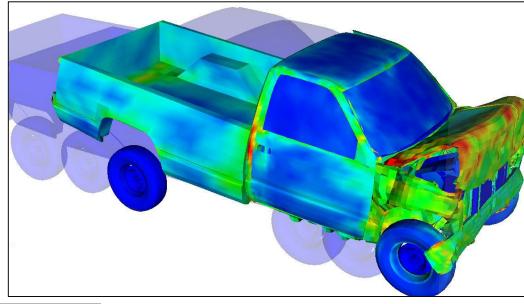
Fácil aprendizado

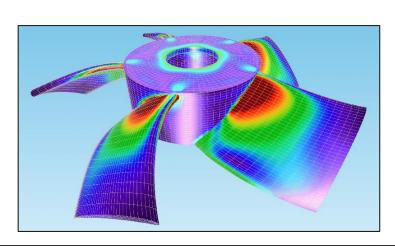
- A linguagem roda diretamente do seu computador sem necessitar de um compilador.
- · Sintaxe de fácil compreensão.
- Comunidade grande que pode ajudar o usuário (https://stackoverflow.com/)
- Alguns softwares de análise rodam em <u>shells</u> do Python, o que facilita o trabalho do usuário.

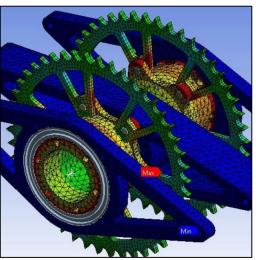
Uso crescente

- O ensino da linguagem vem <u>crescendo</u> em universidades e seu uso em empresas
- O engenheiro mecânico pode utilizar a linguagem em diversas áreas
 - Análise numérica

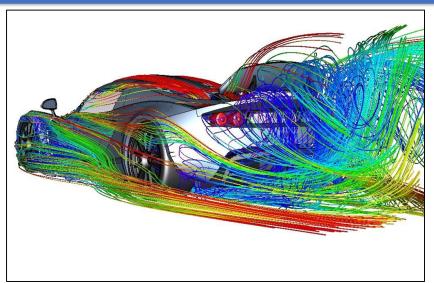

- CFD
- Engenharia térmica
- Engenharia estrutural

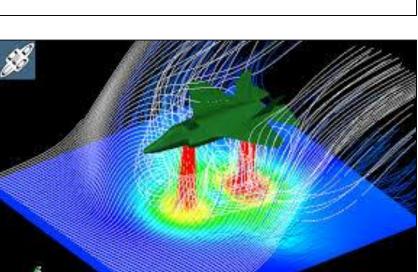


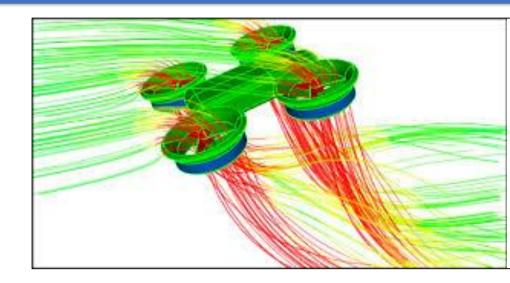

Computação na Engenharia Mecânica

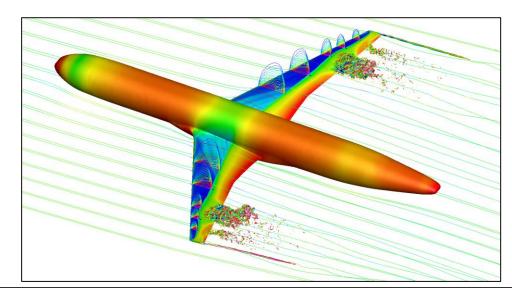


Análise Estrutural / Dinâmica - FEA

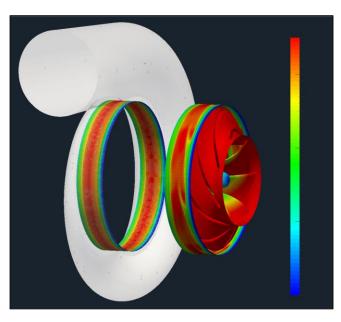


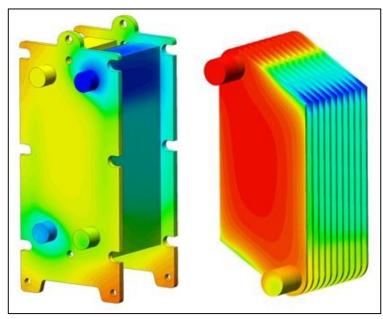


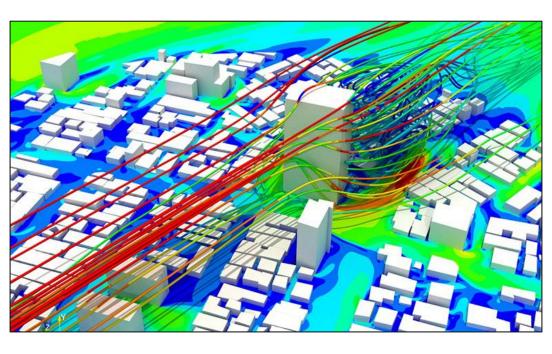


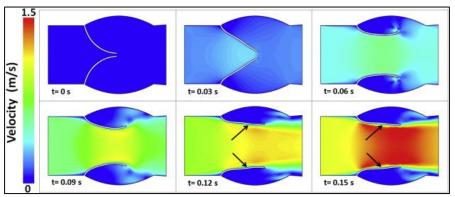


Computational Fluid Dynamics - CFD









Computational Fluid Dynamics - CFD

