LEIS BÁSICAS DA TRANSFERÊNCIA DE CALOR

Lei de Fourier: $q = -k A \frac{\partial T}{\partial x}$

Lei de Newton do resfriamento: $q = h A(T_s - T_{\infty})$

Lei de Stefan-Boltzmann:

$$q = \sigma \varepsilon_1 A_1 (T_1^4 - T_2^4), \quad \sigma = 5,6697 \times 10^{-8} \text{ W/m}^2 \text{K}^4$$

Analogia entre convecção e radiação: $h_{rad} = \sigma \varepsilon_1 (T_1^2 + T_2^2) (T_1 + T_2)$

Energia gerada: $q_{ger} = \dot{q} V$

Energia acumulada: $q = m c_p \frac{\partial T}{\partial t} = \rho V c_p \frac{\partial T}{\partial t} = \dot{m} c_p \Delta T = \dot{m} h_{lv}$

EQUAÇÃO DA DIFUSÃO DE CALOR

COORDENADAS CARTESIANAS

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

COORDENADAS CILÍNDRICAS

$$\frac{1}{r}\frac{\partial}{\partial r}\left(k\,r\,\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\,\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\,\frac{\partial T}{\partial z}\right) + \dot{q} = \rho\,c_p\,\frac{\partial T}{\partial t}$$

COORDENADAS ESFÉRICAS

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(k\,r^{2}\,\frac{\partial T}{\partial r}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial}{\partial \phi}\left(k\,\frac{\partial T}{\partial r}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial}{\partial \theta}\left(k\,sen\theta\,\frac{\partial T}{\partial r}\right) + \dot{q} = \rho\,c_{p}\,\frac{\partial T}{\partial t}$$

ANALOGIA ENTRE CIRCUITOS ELÉTRICOS E TÉRMICOS

Taxa de transferência de calor: $q = \frac{\Delta T}{R_t}$

Parede plana (condução): $R_t = \frac{L}{kA}$

Parede cilíndrica (condução): $R_t = \frac{\ln(r_e/r_i)}{2\pi k L}$

Parede esférica (condução): $R_t = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$

Convecção: $R_t = \frac{1}{hA}$

SUPERFÍCIES ESTENDIDAS (ALETAS)

Excesso de temperatura: $\theta(x) = T(x) - T_{\infty}$

$$m^2 = \frac{h P}{k A_{tr}}$$

sendo: h o coeficiente convectivo, P o perímetro da aleta, k a condutividade térmica e A_{tr} a área da seção transversal da aleta.

Efetividade da aleta: $\varepsilon_a = \frac{q_a}{h A_{tr,b} \theta_b}$

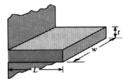
sendo $A_{tr,b}$ a área da seção transversal da aleta em sua base.

Eficiência da aleta: $\eta = \frac{q_a}{q_{\text{max}}} = \frac{q_a}{h A_a \theta_b}$

sendo A_a a área superficial da aleta.

Tabela 3.5 Eficiência de aletas com formas comuns

Aletas Planas

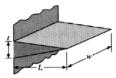

 $Retangular^a$

$$A_a = 2wL_c$$

$$L_c = L + (t/2)$$

$$A_P = tL$$

$$A_{\rm p} = tL$$



$$\eta_a = \frac{\tanh mL_c}{mL_c}$$

 $Triangular^a$

$$A_a = 2w[L^2 + (t/2)^2]^{1/2}$$

$$A_p = (t/2)L$$

$$\eta_a = \frac{1}{mL} \frac{I_1(2mL)}{I_0(2mL)}$$

Parabólica^a

$$\begin{split} A_a &= w[C_1L + \\ &\quad (L^2/t)\ln{(t/L + C_1)}] \\ C_1 &= [1 + (t/L)^2]^{1/2} \\ A_p &= (t/3)L \end{split}$$

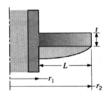
$$(L^{2}/t)\ln (t/L + C_{1})$$

$$C_{1} = [1 + (t/L)^{2}]^{1/2}$$

$$A_{p} = (t/3)L$$

$$y = (t/2)(1 - x/L)^2$$

$$\eta_a = \frac{2}{[4(mL)^2 + 1]^{1/2} + 1}$$


Aleta Circular

 $Retangular^a$

Retangular''
$$A_a = 2\pi (r_{2c}^2 - r_1^2)$$

$$r_{2c} = r_2 + (t/2)$$

$$V = \pi (r_2^2 - r_1^2)t$$

$$\begin{split} \eta_a &= C_2 \frac{K_1(mr_1)I_1(mr_{2c}) - I_1(mr_1)K_1(mr_{2c})}{I_0(mr_1)K_1(mr_{2c}) + K_0(mr_1)I_1(mr_{2c})} \\ C_2 &= \frac{(2r_1/m)}{(r_{2c}^2 - r_1^2)} \end{split}$$

Aletas em Forma de Pino

 $Retangular^b$

$$A_a = \pi D L_c$$

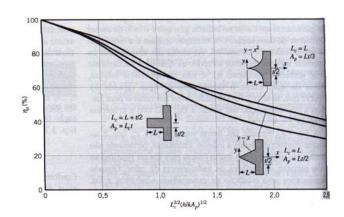
$$L_c = L + (D/4)$$

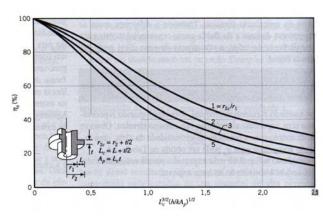
$$V = (\pi D^2/4)L$$

$$\eta_a = \frac{\tanh mL_c}{mL_c}$$

 $Triangular^b$

$$A_a = \frac{\pi D}{2} [L^2 + (D/2)^2]^{1/2}$$


$$V = (\pi/12)D^2L$$


$$V = (\pi/12)D^2L$$

$$\eta_a = \frac{2}{mL} \frac{I_2(2mL)}{I_1(2mL)}$$

 $^{^{6}}m = (2h/kt)^{1/2}.$ $^{6}m = (4h/kD)^{1/2}.$

B.5 Funções1 de Bessel Modificadas de Primeira e Segunda Espécies

x	$e^{-x}I_0(x)$	$e^{-x}I_1(x)$	$e^x K_0(x)$	$e^x K_1(x)$
0,0	1,0000	0,0000	∞	∞
0,2	0,8269	0,0823	2,1407	5,8334
0,4	0,6974	0,1368	1,6627	3,2587
0,6	0,5993	0,1722	1,4167	2,3739
0,8	0,5241	0,1945	1,2582	1,9179
1,0	0,4657	0,2079	1,1445	1,6361
1,2	0,4198	0,2152	1,0575	1,4429
1,4	0,3831	0,2185	0,9881	1,3010
1,6	0,3533	0,2190	0,9309	1,1919
1,8	0,3289	0,2177	0,8828	1,1048
2,0	0,3085	0,2153	0,8416	1,0335
2,2	0,2913	0,2121	0,8056	0,9738
2,4	0,2766	0,2085	0,7740	0,9229
2,6	0,2639	0,2046	0,7459	0,8790
2,8	0,2528	0,2007	0,7206	0,8405
3,0	0,2430	0,1968	0,6978	0,8066
3,2	0,2343	0,1930	0,6770	0,7763
3,4	0,2264	0,1892	0,6579	0,7491
3,6	0,2193	0,1856	0,6404	0,7245
3,8	0,2129	0,1821	0,6243	0,7021
4,0	0,2070	0,1787	0,6093	0,6816
4,2	0,2016	0,1755	0,5953	0,6627
4,4	0,1966	0,1724	0,5823	0,6453
4,6	0,1919	0,1695	0,5701	0,6292
4,8	0,1876	0,1667	0,5586	0,6142
5,0	0,1835	0,1640	0,5478	0,6003
5,2	0,1797	0,1614	0,5376	0,5872
5,4	0,1762	0,1589	0,5279	0,5749
5,6	0,1728	0,1565	0,5188	0,5633
5,8	0,1696	0,1542	0,5101	0,5525
6,0	0,1666	0,1520	0,5019	0,5422
6,4	0,1611	0,1479	0,4865	0,5232
6,8	0,1561	0,1441	0,4724	0,5060
7,2	0,1515	0,1405	0,4595	0,4905
7,6	0,1473	0,1372	0,4476	0,4762
8,0	0,1434	0,1341	0,4366	0,4631
8,4	0,1398	0,1312	0,4264	0,4511
8,8	0,1365	0,1285	0,4168	0,4399
9,2	0,1334	0,1260	0,4079	0,4295
9,6	0,1305	0,1235	0,3995	0,4198
10,0	0,1278	0,1213	0,3916	0,4108

 $^{{}^{1}}I_{n+1}(x) = I_{n-1}(x) - (2n/x)I_{n}(x)$