

Slides das Aulas

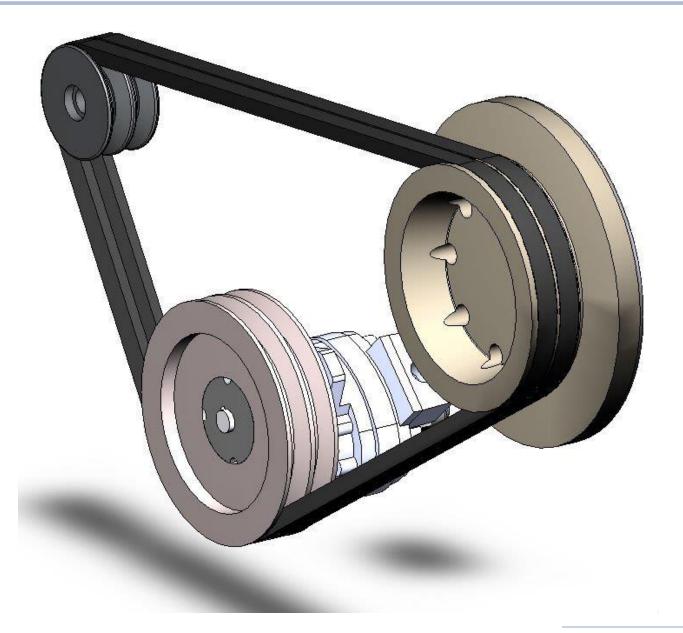
Capítulo 17

Elementos Mecânicos Flexíveis Parte II - Correias Trapezoidais

ELEMENTOS DE MÁQUINAS DE SHIGLEY

Sumário

1 7 Elementos mecânicos flexíveis


- 17-1 Correias 863
- 17-2 Transmissões por correias planas e redondas 867
- 17-3 Correias em V 883
- 17-4 Correias de sincronização 891
- 17-5 Corrente de roletes 892
- 17-6 Cabos de aço 901
- 17-7 Eixos flexíveis 911

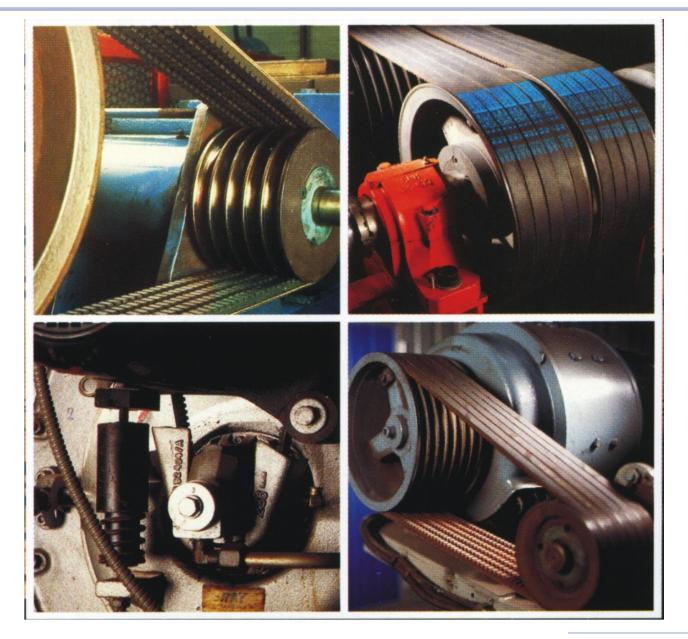
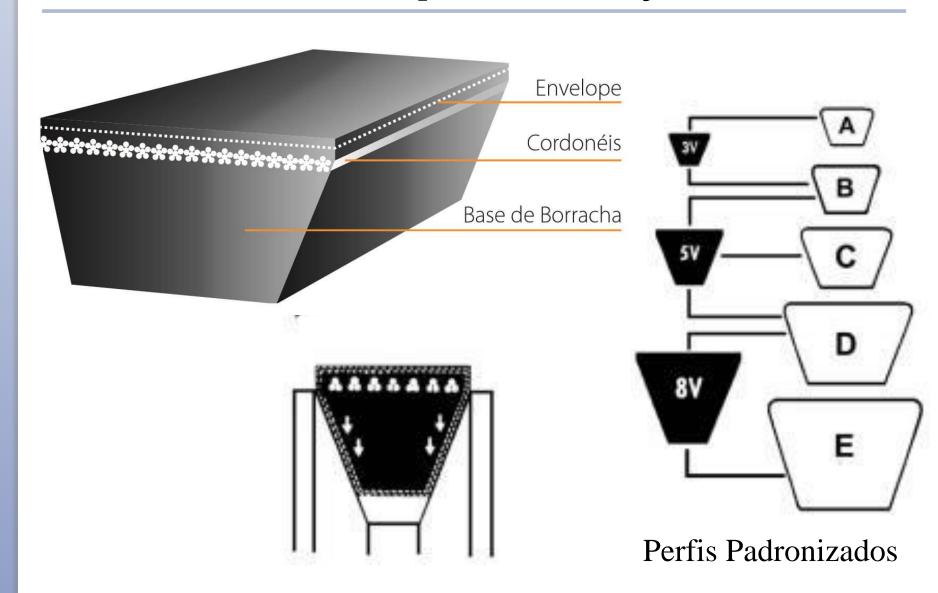

Características de Alguns Tipos Comuns de Correias

Tabela 17–1 Características de alguns tipos comuns de correia. As figuras representam as seções transversais, à exceção da correia sincronizadora, que mostra uma vista lateral.

	Tipo de correia	Figura	Junta	Intervalo de tamanho	Distância entre centros
	Plana	<u></u>	Sim	$t = \begin{cases} 0,03 \text{ a } 0,20 \text{ in} \\ 0,75 \text{ a 5 mm} \end{cases}$	Sem limite superior
	Redonda	$O^{\frac{1}{d}}$	Sim	$d = \frac{1}{8} \text{ a } \frac{3}{4} \text{ in}$	Sem limite superior
$\left(ight)$	v	\(\frac{\frac{1}{b}}{\frac{1}{b}} \)	Nenhuma	$b = \begin{cases} 0.31 \text{ a } 0.91 \text{ in} \\ 8 \text{ a } 19 \text{ mm} \end{cases}$	Limitada
	Sincronizadora	$\begin{array}{c} \\ \\ \\ \\ \end{array}$	Nenhuma	p = 2 mm ou acima	Limitada

Table 17–1

Variedades



Variedades

Estrutura e Tipos de Perfil (Seção)

Seções Padronizadas de Correias Trapezoidais

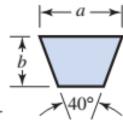


Tabela 17-9 Seções de correias em V padronizadas.

Seção de Correia	Largura a , mm	Espessura b , mm	Diâmetro mínimo de roldana, mm	Intervalo de kW, uma ou mais correias
A	12	8,5	75	0,2-7,5
В	16	11	135	0,7–18,5
C	22	13	230	11–75
D	30	19	325	37–186
Е	38	25	540	75 e acima

Circunferências Internas (L) de Correias Trapezoidais Padronizadas

Tabela 17-10 Circunferências internas das correias padronizadas em V.

Seção	Circunferência, mm
A	650, 775, 825, 875, 950, 1050, 1150, 1200, 1275, 1325, 1375, 1425, 1500, 1550, 1600, 1650, 1700, 1775, 1875, 1950, 2000, 2125, 2250, 2400, 2625, 2800, 3000, 3200
В	875, 950, 1050, 1150, 1200, 1275, 1325, 1375, 1425, 1500, 1550, 1600, 1650, 1700, 1775, 1875, 1950, 2000, 2125, 2250, 2400, 2625, 2800, 3000, 3200, 3275, 3400, 3450, 3950, 4325, 4500, 4875, 5250, 6000, 6750, 7500
С	1275, 1500, 1700, 1875, 2025, 2125, 2250, 2400, 2625, 2800, 3000, 3200, 3400, 3600, 3950, 4050, 4350, 4500, 4875, 5250, 2550, 6000, 6750, 7500, 8250, 9000, 9750, 10 500
D	3000, 3200, 3600, 3950, 4050, 4350, 4500, 4875, 5250, 6000, 6750, 7500, 8250, 9000, 9750, 10 500, 12 000, 13 500, 15 000, 16 500
Е	4500, 4875, 5250, 6000, 6750, 7500, 8250, 9000, 9750, 10 500, 12 000, 13 500, 15 000, 16 500

Circunferência Interna x Circunferência Primitiva

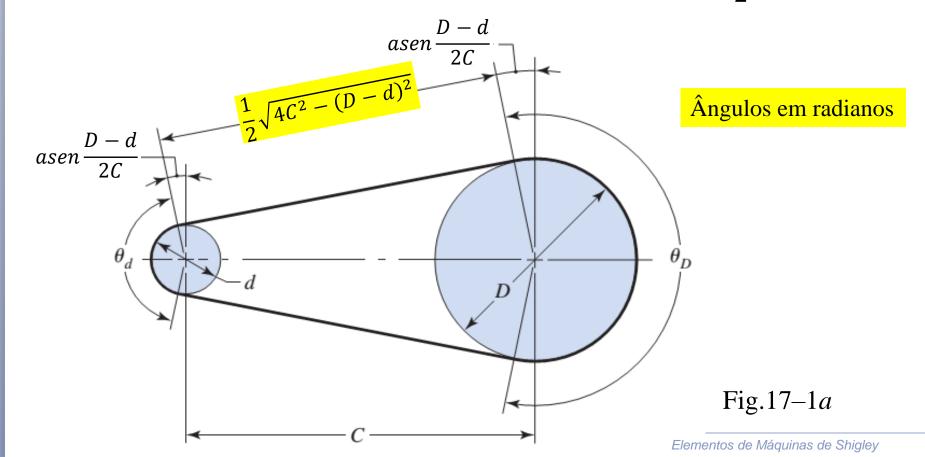
Comprimento Interno: L

Comprimento Primitivo: L_p

Correção: La

$$L_p = L + L_c$$

Tabela 17–11 Dimensões de conversão de comprimento (adicione a quantidade listada à circunferência interna para obter o comprimento primitivo em mm).


Seção da correia	A	В	C	D	Е
Quantidade a ser adicionada	32	45	72	82	112

Geometria da Correia Plana - Correia Aberta

Ângulo de contato na polia menor: $\theta_d = \pi - 2$. $asen \frac{D - d}{2C}$

Ângulo de contato na polia maior: $\theta_D = \pi + 2$. $asen \frac{D-d}{2C}$

Comprimento primitivo da correia: $L_p = \sqrt{4C^2 - (D-d)^2} + \frac{1}{2}(D\theta_D + d\theta_d)$

Comprimento Primitivo e Distância entre Centros

Comprimento primitivo (fórmula alternativa):

$$L_p = 2C + \pi (D+d)/2 + (D-d)^2/(4C)$$
 (17–16a)

Distância entre centros:

$$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2} (D+d) \right] + \sqrt{\left[L_p - \frac{\pi}{2} (D+d) \right]^2 - 2(D-d)^2} \right\}$$
 (17–16b)

- Grandes distâncias entre centros não são recomendadas (vibração excessiva do lado bambo).
- Em geral, D < C < 3(D + d)

Estimativa de Potência de Correias Padronizadas (H_{tab})

Tabela 17-12 Estimativas de potência (kW) de correias em V padronizadas.

	Diâmetro primitivo de		Velocid	reia, <i>m/s</i>		
Seção da correia	roldana, mm	5	10	15	20	25
A	65	0,35	0,46	0,40	0,11	
	75	0,49	0,75	0,84	0,69	0,28
	85	0,60	0,98	1,17	1,64	0,84
	95	0,69	1,16	1,43	1,49	1,28
	105	0,77	1,30	1,64	1,78	1,63
	115	0,83	1,41	1,82	2,01	1,93
	acima de 125	0,87	1,51	1,97	2,21	2,16
В	105	0,80	1,18	1,25	0,94	0,16
	115	0,95	1,48	1,71	1,55	0,92
	125	1,07	1,74	2,09	2,06	1,57
	135	1,19	1,95	2,42	2,49	2,10
	145	1,28	2,14	2,69	2,87	2,57
	155	1,36	2,31	2,94	3,19	2,98
	165	1,43	2,45	3,16	3,48	3,34
	acima de 175	1,50	2,58	3,35	3,74	3,66

Estimativa de Potência de Correias Padronizadas (H_{tab})

Tabela 17-12 Estimativas de potência (kW) de correias em V padronizadas. (Continuação)

	Diâmetro primitivo de	Velocidade da correia, m/s				
Seção da correia	roldana, mm	5	10	15	20	25
C	150	1,37	1,98	2,03	1,40	
	175	1,85	2,94	3,46	3,31	2,33
	200	2,21	3,66	4,54	4,74	4,12
	225	2,49	4,21	5,38	5,86	5,51
	250	2,72	4,66	6,05	7,16	6,63
	275	2,89	5,03	6,59	7,46	7,53
	acima de 300	3,05	5,33	7,06	8,13	8,28
D	250	3,09	4,57	4,89	3,80	1,01
	275	3,73	5,84	6,80	6,34	4,19
	300	4,26	6,91	8,36	8,50	6,85
	325	4,71	7,83	9,70	10,30	9,10
	350	5,09	8,58	10,89	11,79	11,04
	375	5,42	9,25	11,86	13,13	12,68
	400	5,71	9,85	12,76	14,32	14,17
	acima de 425	5,98	10,37	13,50	15,37	15,44

Elementos de Máquinas de Shigley

Estimativa de Potência de Correias Padronizadas (H_{tab})

Tabela 17-12 Estimativas de potência (kW) de correias em V padronizadas. (Continuação)

	Diâmetro primitivo de	Velocidade da correia, m/s					
Seção da correia	roldana, mm	5	10	15	20	25	
Е	400	6,48	10,44	13,06	13,50	11,41	
	450	7,40	12,46	15,82	17,16	16,04	
	500	8,13	13,95	18,05	20,07	19,69	
	550	8,73	15,14	19,84	22,53	22,75	
	600	9,25	16,11	21,34	24,54	25,22	
	650	9,70	17,01	22,60	26,19	27,38	
	acima de 700	10,00	17,68	23,72	27,68	29,17	

Potência Admissível por Correia

$$H_a = K_1 K_2 H_{\text{tab}}$$

(17-17)

 H_a = potência admissível por correia

 K_1 = fator de correção de ângulo de abraçamento (ϕ), Tabela 17-13

 K_2 = fator de correção de comprimento, Tabela 17-14

 H_{tab} = capacidade em potência de uma correia

- polias de mesmo diâmetro
- comprimento moderado
- carga estável

Tabela 17–13 Fator de correção do ângulo de contato (kW) para transmissões por correias VV* e V-plana.

*Um ajuste de curva para a coluna VV em termos de θ é: $K_1 = 0.143543 + 0.007468 \theta - 0.000015052 \theta^2$: no intervalo $90^{\circ} \le \theta \le 180^{\circ}$.

D-d		$oldsymbol{K}_1$			
C	θ , Graus	VV	V Plana		
0,00	180	1,00	0,75		
0,10	174,3	0,99	0,76		
0,20	166,5	0,97	0,78		
0,30	162,7	0,96	0,79		
0,40	156,9	0,94	0,80		
0,50	151,0	0,93	0,81		
0,60	145,1	0,91	0,83		
0,70	139,0	0,89	0,84		
0,80	132,8	0,87	0,85		
0,90	126,5	0,85	0,85		
1,00	120,0	0,82	0,82		
1,10	113,3	0,80	0,80		
1,20	106,3	0,77	0,77		
1,30	98,9	0,73	0,73		
1,40	91,1	0,70	0,70		
1,50	82,8	0,65	0,65		

Tabela 17–14 Fator de correção para comprimento de correia K_2 .*

		Comprimento primitivo da correia, m				
Fator de comprimento	Correias A	Correias B	Correias C	Correias D	Correias E	
0,85	até 0,88	até 1,15	até 1,88	até 3,2		
0,90	0,95-1,15	1,2-1,5	2,03-2,4	3,6-4,05	até 4,88	
0,95	1,2-1,38	1,55-1,88	2,63-3,0	4,33-5,25	5,25-6,0	
1,00	1,5-1,88	1,95-2,43	3,2-3,95	6,0	6,75-7,5	
1,05	1,95-2,25	2,63-3,0	4,05-4,88	6,75-8,25	8,25-9,75	
1,10	2,4-2,8	3,2-3,6	5,25-6,0	9,0-10,5	10,5-12,0	
1,15	acima de 3,0	3,95-4,5	6,75–7,5	12,0	13,5-15,0	
1,20		acima de 4,88	acima de 8,25	acima de 13,5	16,5	

^{*}Multiplique a potência estimada por correia por este fator para obter a potência corrigida.

"Equação da correia" para correias em V

$$\frac{F_1 - F_c}{F_2 - F_c} = e^{0.5123.\emptyset}$$

$$(17-18)$$

Eq. 17-7 com
$$f = 0.5123$$

Potência de Projeto

$$H_d = H_{nom} K_s n_d = H_a N_b {(17-19)}$$

 H_d = potência de projeto

 H_{nom} = potência nominal

 K_s = fator de serviço, Tabela 17-15

 n_d = fator de projeto

 H_a = potência admissível por correia, Eq. 17-17

 N_h = potência nominal

Número de correias:

$$N_b \ge \frac{H_d}{H_a}$$
 $N_b = 1, 2, 3, \dots$ (17–20)

Fator de segurança:

$$n_{fs} = \frac{H_a N_b}{H_{\text{nom}} K_s} \tag{17-26}$$

Tabela 17–15 Fatores de serviço K_S sugeridos para transmissões por correias em V.

	Fonte de p	ootência
Maquinaria acionada	Característica normal de torque	Torque alto ou não uniforme
Uniforme	1,0 a 1,2	1,1 a 1,3
Choque leve	1,1 a 1,3	1,2 a 1,4
Choque médio	1,2 a 1,4	1,4 a 1,6
Choque intenso	1,3 a 1,5	1,5 a 1,8

Trações em Correias Trapezoidais

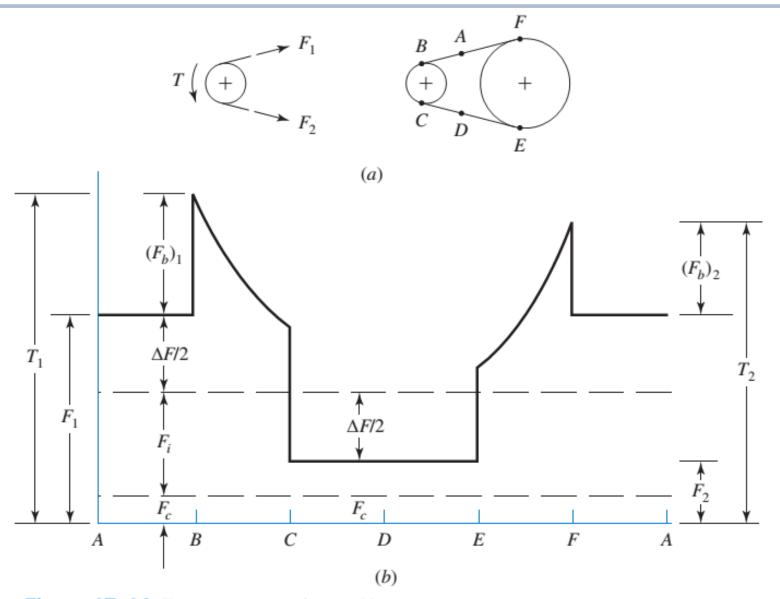


Figura 17-14 Trações em correias em V.

Trações em Correias - V

Tração centrífuga

$$F_c = K_c \left(\frac{V}{2.4}\right)^2 \tag{17-21}$$

- V em m/s
- *K_c* da Tab. 17-16

$$\Delta F = F_1 - F_2 = \frac{H_d/N_b}{V} \tag{17-22}$$

$$F_1 = F_c + \frac{\Delta F \exp(f\phi)}{\exp(f\phi) - 1} \tag{17-23}$$

$$F_2 = F_1 - \Delta F \tag{17-24}$$

$$F_i = \frac{F_1 + F_2}{2} - F_c \tag{17-25}$$

Tabela 17-16

Fonte: Shigley, 4a edição

Alguns parâmetros* de correias em V.

Seção da correia	K _b	K _c
A	25	0,561
В	65,0	0,965
С	180	1,716
D	642	3,498
E	1226	5,041
3V	26	0,425
5V	124	1,217
8V	546	3,288

^{*}Dados por cortesia de Gates Rubber Co., Denver, Colo.

Relação Tensão x ciclos para Correias Trapezoidais

Trações equivalentes:
$$T_1 = F_1 + (F_b)_1 = F_1 + \frac{K_b}{d}$$
 (17-27a)
$$T_2 = F_1 + (F_b)_2 = F_1 + \frac{K_b}{D}$$

K_b é obtido da Tabela 17-16.

A equação de compensação para a tração *versus* o número de voltas, utilizada pela Gates Rubber Company, é da forma

$$T^b N_P = K^b$$

em que N_p é o número de voltas, passagens, e b é aproximadamente 11; ver Tabela 17–17.

$$N_P = \left\lceil \left(\frac{K}{T_1} \right)^{-b} + \left(\frac{K}{T_2} \right)^{-b} \right\rceil^{-1} \tag{17-27}$$

Relação Tensão x ciclos para Correias Trapezoidais

A regra de Miner é utilizada para somar os danos causados pelos dois picos de tensão:

$$\frac{1}{N_P} = \left(\frac{K}{T_1}\right)^{-b} + \left(\frac{K}{T_2}\right)^{-b}$$

ou

$$N_P = \left\lceil \left(\frac{K}{T_1} \right)^{-b} + \left(\frac{K}{T_2} \right)^{-b} \right\rceil^{-1} \tag{17-27}$$

O tempo de vida t em horas é dado por

$$t = \frac{N_p L_p}{V} \tag{17-28}$$

Tabela 17–17 Parâmetros de durabilidade para algumas seções de correias em V.

		a 10 ⁹ de força	10 ⁹ a 10 ¹⁰ Picos de força		Diâmetro mínimo
Seção de correia	K	b	K	b	de roldana, mm
A	2999	11,089			75
В	5 3 0 9	10,926			125
C	9069	11,173			215
D	18726	11,105			325
Е	26791	11,100			540
3V	3 2 4 0	12,464	4726	10,153	66
5V	7360	12,593	10653	10,283	177
8V	16189	12,629	23 376	10,319	312

Fonte: M. E. Spotts, Design of Machine Elements, 6ª ed., Prentice Hall, Englewood Cliffs, N. J., 1985.

Análise de uma transmissão por correia em V

- 1. Encontrar $V, L_p, C \in \phi$.
- 2. Encontrar H_d , H_a e N_b (arredondar para cima).
- 3. Encontrar F_{c} , ΔF , F_{1} , F_{2} , F_{i} e n_{fs}
- 4. Encontrar a vida da correia em número de passagens ou em horas.

Exemplo 17–4

EXEMPLO 17-4

Um motor de fase dividida com 7,46 kW rodando a 1750 rev/min é utilizado para acionar uma bomba rotativa que opera 24 horas por dia. Um engenheiro especificou uma pequena roldana de 188 mm, uma roldana grande de 280 mm e três correias B2800. O fator de serviço de 1,2 foi aumentado de 0,1 por causa do requisito de trabalho contínuo. Analise a transmissão e estime a vida da correia em voltas e horas.

A velocidade periférica da correia é

$$V = \pi dn = \pi(0.188)1750/60 = 17 \text{ m/s}$$

Tabela 17–11:
$$L_p = L + L_c = 2800 + 45 = 2845 \text{ mm}$$

Equação (17–16*b*):
$$C = 0.25 \left\{ \left[2845 - \frac{\pi}{2} (280 + 188) \right] + \sqrt{\left[2845 - \frac{\pi}{2} (280 + 188) \right]^2 - 2(280 - 188)^2} \right\}$$

$$= 1054 \text{ mm}$$

Exemplo 17–4

Equação (17–1):
$$\phi = \theta_d = \pi - 2 \operatorname{sen}^{-1}(280 - 188)/[2(1054)] = 3,054 \operatorname{rad}$$

 $\exp[0,5123(3,054)] = 4,781$

Interpolando na Tabela 17–12 para V=17 m/s, temos $H_{\rm tab}=3,5$ kW. O ângulo de abraçamento em graus é $3,054(180)/\pi=175^\circ$. Da Tabela 17–13, $K_1=0,99$. Da Tabela 17–14, $K_2=1,05$. Portanto, da Equação (17–17)

$$H_a = K_1 K_2 H_{\text{tab}} = 0.99(1.05)3.5 = 3.64 \text{ kW}$$

Equação (17–19):
$$H_d = H_{\text{nom}} K_s n_d = 7,46(1,2+0,1)(1) = 9,7 \text{ kW}$$

Equação (17–20):
$$N_b \ge H_d/H_a = 9,7/3,64 = 2,67 \to 3$$

Da Tabela 17–16, $K_c = 0.965$. Assim, da Equação (17–21),

$$F_c = 0.965(17/2.4)^2 = 48.4 \text{ N}$$

Equação (17–22):
$$\Delta F = \frac{9700/3}{\pi (1750/60)0,188} = 188 \text{ N}$$

Equação (17–23):
$$F_1 = 48.4 + \frac{188(4.781)}{4.781 - 1} = 286 \text{ N}$$

Exemplo 17-4

Equação (17–24):
$$F_2 = F_1 - \Delta F = 286 - 188 = 98 \text{ N}$$

Equação (17–25):
$$F_i = \frac{286 + 98}{2} - 48,4 = 144 \text{ N}$$

Equação (17–26):
$$n_{fs} = \frac{H_a N_b}{H_{\text{nom}} K_s} = \frac{3,64(3)}{7,46(1,3)} = 1,13$$

Vida: Da Tabela 17–16,
$$K_b = 65$$

$$F_{b1} = \frac{K_b}{d} = \frac{65}{0,188} = 346 \text{ N}$$

$$F_{b2} = 65/0,28 = 232 \text{ N}$$

Exemplo 17–4

$$T_1 = F_1 + F_{b1} = 286 + 346 = 632 \text{ N}$$

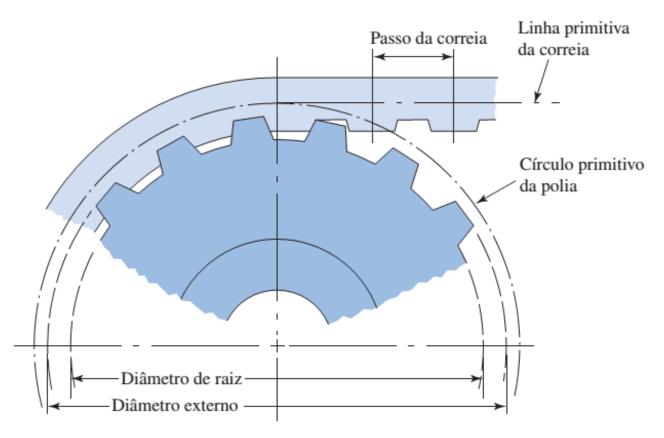
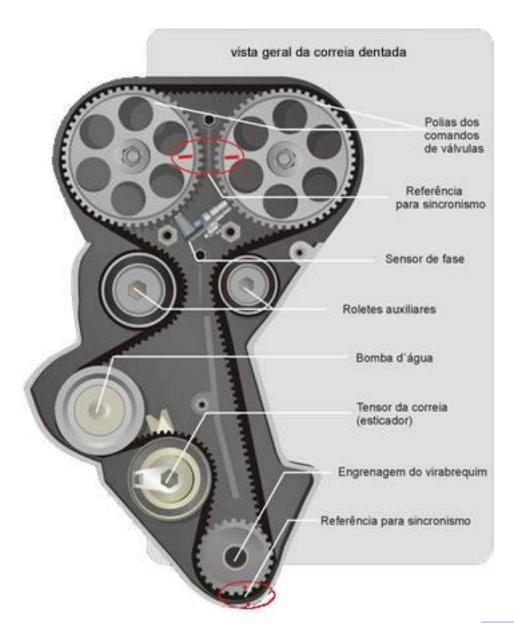
 $T_2 = F_1 + F_{b2} = 286 + 232 = 518 \text{ N}$

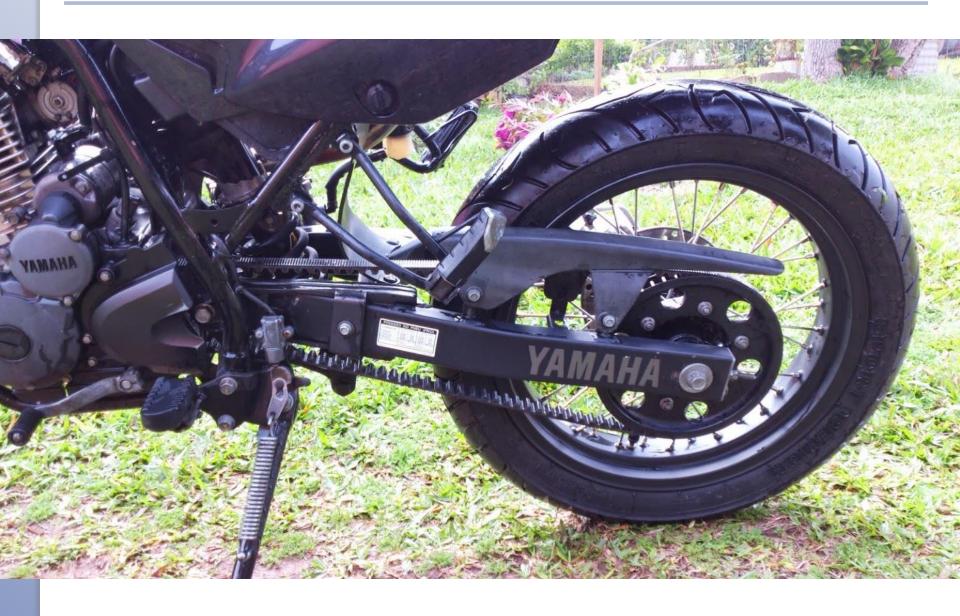
Da Tabela 17–17, K = 5309 e b = 10,926.

Equação (17–27):
$$N_P = \left[\left(\frac{5309}{632} \right)^{-10,926} + \left(\frac{5309}{518} \right)^{-10,926} \right]^{-1} = 11(10^9) \text{ passagens}$$

Uma vez que N_p está fora do intervalo de validade da Equação (17–27), a vida é maior que 10^9 voltas. Assim,

Equação (17–28):
$$t > \frac{10^9(2,845)}{3600(17)} = 46487 \text{ h}$$


Figura 17–15 Transmissão por correia sincronizadora mostrando porções da polia e correia. Observe que o diâmetro primitivo da polia é maior que a distância diametral de lado a lado dos círculos de topo dos dentes.

Exercícios Propostos

- 17–17 Uma só correia em V deve ser selecionada para levar potência de motor à transmissão de comando de roda de um trator. Um motor de um único cilindro de 3,7285 kW de potência é utilizado. Quando muito, 60% desta potência é transmitida à correia. A roldana motora possui um diâmetro de 157,48 mm, e a movida, de 304,8 mm. A correia selecionada deve ter um comprimento primitivo tão próximo a 2336,8 mm quanto possível. A velocidade do motor é controlada a um máximo de 324,63 rad/s. Selecione uma correia satisfatória e calcule o fator de segurança e a vida de correia em passagens.
- 17-18 Duas correias em V B2125 são utilizadas em uma transmissão composta de uma roldana motora de 135 mm, rodando a 1200 rev/min, e uma roldana movida de 400 mm. Encontre a capacidade em potência da transmissão com base em um fator de serviço de 1,25 e encontre a distância de centro a centro.
- 17-19 Um motor de combustão interna de quatro cilindros de 45 kW é utilizado a meia carga para acionar uma máquina de fabricar tijolos, sob um cronograma de dois turnos por dia. A transmissão consiste em duas roldanas de 650 mm espaçadas de cerca de 3,6 m, com uma velocidade de polia de 400 rev/min. Selecione um arranjo em V de correias Gates Rubber. Encontre o fator de segurança e calcule a vida em passagens e horas.
- 17-20 Um compressor alternativo de ar possui um volante de 1,5 m de diâmetro de 350 mm de largura e opera a 170 rev/min. Um motor de indução de gaiola de esquilo de oito polos possui dados de placa especificadora de 37 kW a 875 rev/min.
 - (a) Projete uma transmissão por correia em V.
 - (b) Pode o cortar de sulcos da correia em V no volante ser evitado pelo uso de um acionamento por correia V plana?

REFERÊNCIA

Programa para cálculo de correias:

GATES SOUTH AMERICA. Aplicativo de Cálculo de Correias. **Processos Industriais**, 2017. Disponivel em:

< http://www.gatesbrasil.com.br/processo-especialidades.php >. Acesso

em: 17 outubro 2017.