$ev(\alpha) := \tan(\alpha) - \alpha$	Função da envolvente	
Com deslocamento de perfil Vê:		
α:=20°	Ângulo de pressão	
$m \coloneqq 2 mm$	Módulo	
$c \coloneqq 0.25$	Folga no pé do dente	
k := (1+c) = 1.25	Fator de cálculo do dedendo	
x1 := 0.5	Deslocamento de perfil do pinhão	
x2 := 0	Deslocamento de perfil da coroa	
$i_r \coloneqq 2.6$	Relação de de transmissão mínima requerida	
a':=48 mm	Máximo a requerido	
$z_{min} \coloneqq \frac{2 \cdot (k - x1)}{\sin(\alpha)^2} = 12.823$	Número mínimo de dentes da engrenagem fabricada por processo de geração	
Dados para o Pinhão	Dados para a coroa	
$z1 \coloneqq 13 \qquad \qquad i_r \cdot z1 = 33.8$	<i>z</i> 2 := 34	Número de dentes
$i := \frac{z2}{z1} = 2.615$		Relação de transmissão
$a \coloneqq \frac{z1 + z2}{2} \cdot m = 47 \ mm$		Distância entre centros sem deslocamnto de perfil
$\phi 1 \coloneqq z 1 \cdot m = 26 \ mm$	$\phi 2 \coloneqq z 2 \cdot m = 68 \ mm$	Diâmetro primitivo
$p \coloneqq m \cdot \pi = 6.283 \ mm$		Passo primitivo
$\phi 1_b \coloneqq \phi 1 \cdot \cos(\alpha) = 24.432 \ mm$	$\phi 2_b \coloneqq \phi 2 \cdot \cos(\alpha) = 63.899 \ mm$	Diâmetro de base
$p_b \coloneqq \frac{\phi 1_b \cdot \pi}{z1} = 5.904 \ mm$	$p \cdot \cos(\alpha) = 5.904 \ mm$	Passo de base
$\alpha' = a\cos\left(\frac{a \cdot \cos(\alpha)}{a'}\right) = 23.057 \ deg$	ângulo de pressão com centro deslocado	
	solve, x1	(-)
$x1 := x1 + x2 = \frac{(ev(\alpha) - ev(\alpha)) \cdot (z1 + 2)}{2 \cdot \tan(\alpha)}$	$\frac{z2)}{z} \xrightarrow{explicit} -x2 - \frac{(z1+z2) \cdot (ev(\alpha) - ev(\alpha'))}{2 \cdot \tan(\alpha)} = 0.537$	
$-\frac{(z1+z2)\cdot(ev(\alpha)-ev(\alpha'))}{2\cdot\tan(\alpha)} = 0.537$	Fator de deslocamento de perfil ajustado	
_ 3000 (00)	x1 = 0.537	

$y \coloneqq \frac{a' - a}{m} = 0.5$	Fator de deslocamento	de centro
$m' \coloneqq m \cdot \frac{\cos(\alpha)}{\cos(\alpha')} = 2.043 \ mm$	Módulo de operação	
	$nm s2 := m \cdot \left(\frac{\pi}{2} + 2 \cdot x2 \cdot \tan(\alpha)\right) = 3.142 \ m$ $p = 6.283 \ mm$	nm Espessura dos dentes
$\phi 1' \coloneqq m' \cdot z 1 = 26.553 \ mm$ $\phi 2' \coloneqq m' \cdot z 2 = 69.447 \ mm$ Diâmetro primitivos de operação		
	$\dfrac{\phi 2'}{\phi 1'}$ = 2.615 Relação de t	ransmissão não muda
$s1' \coloneqq \phi 1' \cdot \left(\frac{s1}{\phi 1} + ev(\alpha) - ev(\alpha')\right) = 3.78$	87 mm $= \phi 2' \cdot \left(\frac{s2}{\phi 2} + ev(\alpha) - ev(\alpha')\right) = 2.63 mm$	Espessura do dente nos diâmetros primitvos de operação
s1'+s	$2' = 6.417 \ mm$	7 <i>mm</i>
$\phi 1_a := \phi 1 + 2 \cdot m \cdot (1 - x2 + y) = 32 \ mm$	$\phi_{2_a} := \phi_2 + 2 \cdot m \cdot (1 - x1 + y) = 71.9 \ mm$	Diâmetro de adendo
$\phi 1_d := \phi 1 - 2 \cdot m \cdot (1 + c - x1) = 23.1 \ m$	m $\phi 2_d \coloneqq \phi 2 - 2 \cdot m \cdot (1 + c + x^2) = 63 \ mm$	Diâmetro de dedendo
$\alpha 1_a \coloneqq \operatorname{acos}\left(\frac{\phi 1_b}{\phi 1_a}\right) = 40.226 \ \operatorname{deg}$	$\alpha 2_a \coloneqq a\cos\left(\frac{\phi 2_b}{\phi 2_a}\right) = 27.21 \ \textit{deg}$ Ângulo	o de pressão no adendo
$s1_a \coloneqq \phi 1_a \cdot \left(\frac{s1}{\phi 1} + ev\left(\alpha\right) - ev\left(\alpha 1_a\right) \right) = 0$	$s2_{a} \coloneqq \phi 2_{a} \cdot \left(\frac{s2}{\phi 2} + ev\left(\alpha\right) - ev\left(\alpha 2_{a}\right)\right) = 1.571 \text{ m}$	Espessura do mm dente no adendo
$\varepsilon_{\alpha} \coloneqq \frac{\sqrt{\left(\frac{\phi 1_{a}}{2}\right)^{2} - \left(\frac{\phi 1_{b}}{2}\right)^{2}} + \sqrt{\left(\frac{\phi 2_{a}}{2}\right)^{2} - \left(\frac{\phi 1_{b}}{2}\right)^{2}}}{p_{b}}$	$-rac{\left(\phi 2_b ight)^2}{2}-a'\cdot\sin(lpha')$ = 1.35	ão de condução
Com deslocamento de perfil Vê para a	perfeiçoar a razão de condução:	
α:=20°	Ângulo de pressão	
$m \coloneqq 2 mm$	Módulo	
$c\!\coloneqq\!0.25$	Folga no pé do dente	
k := (1+c) = 1.25	Fator de cálculo do dedendo	
x1 := -0.6	Deslocamento de perfil do pinhão	
x2 :=6	Deslocamento de perfil da coroa	

x1 + x2 = -1.2	Condição de engrenamen	to Vê-Zero	
$z_{min} \coloneqq \frac{2 \cdot (k - x1)}{\sin(\alpha)^2} = 31.63$	Número mínimo de dentes da engrenagem fabricada por processo de geração		
$i_r \coloneqq 3$	Relação de de transmissã	o mínima requerida	
Dados para o Pinhão	Dados para a coroa		
$z1 \coloneqq 32 \qquad \qquad i_r \cdot z1 = 96$	z2 = 100	Número de dentes	
$i := \frac{z2}{z1} = 3.125$		Relação de transmissão	
$a \coloneqq \frac{z1 + z2}{2} \cdot m = 132 \ mm$		Distância entre centros sem deslocamnto de perfil	
$\phi 1 \coloneqq z 1 \cdot m = 64 \ mm$	$\phi 2 \coloneqq z 2 \cdot m = 200 \ mm$	Diâmetro primitivo	
$p \coloneqq m \cdot \pi = 6.283 \ mm$		Passo primitivo	
$s1 := m \cdot \left(\frac{\pi}{2} + 2 \cdot x1 \cdot \tan(\alpha)\right) = 2.268$	mm $s2 := m \cdot \left(\frac{\pi}{2} + 2 \cdot x2 \cdot \tan x\right)$	$m(\alpha)$ = 2.268 mm Espessura dos dentes	
s1+s2=4.536 mm	p=6.283 mm		
$\phi 1_b \coloneqq \phi 1 \cdot \cos(\alpha) = 60.14 \ mm$	$\phi 2_b \coloneqq \phi 2 \cdot \cos(\alpha) = 187.93$	39 <i>mm</i> Diâmetro de base	
$\phi 1_b \! \cdot \! \pi$	()		
$p_b \coloneqq \frac{\phi 1_b \cdot \pi}{z1} = 5.904 \ mm$	$p \cdot \cos(\alpha) = 5.904 \ mm$	Passo de base	
$\alpha' \coloneqq \alpha$ $tan(\alpha') - \alpha' = tan(\alpha) - \alpha + \frac{2 \cdot (x1)}{z1 + x}$ $\alpha' \coloneqq find(\alpha') = 16.534 \ deg$			
$tan(\alpha') - \alpha' = tan(\alpha) - \alpha + \frac{2 \cdot (x1)}{z1 + x}$	$\frac{+x^2}{z^2} \cdot tan(\alpha)$	Solução numérica	
$ \stackrel{\text{b}}{=} $			
$a' \coloneqq a \cdot \frac{\cos(\alpha)}{\cos(\alpha')} = 129.39 \ mm$	Distânci	a entre centros para engrenamento Vê	
$y \coloneqq \frac{a' - a}{m} = -1.305$	Fator de	Fator de deslocamento de centro	
$m' \coloneqq m \cdot \frac{\cos(\alpha)}{\cos(\alpha')} = 1.96 \ mm$	Módulo	Módulo de operação	
$\phi 1' \coloneqq m' \cdot z 1 = 62.734 \ mm$	$\phi 2' \coloneqq m' \cdot z 2 = 196.045 \ m$	m Diâmetro primitivos de operação	

 $s1' \coloneqq \phi 1' \cdot \left(\frac{s1}{\phi 1} + ev\left(\alpha\right) - ev\left(\alpha'\right)\right) = 2.638 \ mm \\ s2' \coloneqq \phi 2' \cdot \left(\frac{s2}{\phi 2} + ev\left(\alpha\right) - ev\left(\alpha'\right)\right) = 3.521 \ mm \\ s1' + s2' = 6.159 \ mm > m' \cdot \pi = 6.159 \ mm$ Espessura do dente nos diâmetros primitvos de operação $\phi 1_a := \phi 1 + 2 \cdot m \cdot (1 - x2 + y) = 65.2 \ mm$ $\phi 2_a := \phi 2 + 2 \cdot m \cdot (1 - x1 + y) = 201.2 \ mm$ Diâmetro de adendo $\phi 1_d := \phi 1 - 2 \cdot m \cdot (1 + c - x1) = 56.6 \ mm$ Diâmetro $\phi 2_d := \phi 2 - 2 \cdot m \cdot (1 + c + x^2) = 197.4 \ mm$ de dedendo $\alpha 1_a \coloneqq \operatorname{acos}\left(\frac{\phi 1_b}{\phi 1_a}\right) = 22.678 \, \operatorname{\textit{deg}} \qquad \qquad \alpha 2_a \coloneqq \operatorname{acos}\left(\frac{\phi 2_b}{\phi 2_a}\right) = 20.903 \, \operatorname{\textit{deg}} \qquad \text{\^{A}ngulo de press\~{a}o no adendo}$ $s1_{a} \coloneqq \phi1_{a} \cdot \left(\frac{s1}{\phi1} + ev\left(\alpha\right) - ev\left(\alpha1_{a}\right)\right) = 1.844 \ \ \boldsymbol{mm} \\ s2_{a} \coloneqq \phi2_{a} \cdot \left(\frac{s2}{\phi2} + ev\left(\alpha\right) - ev\left(\alpha2_{a}\right)\right) = 1.84 \ \ \boldsymbol{mm}$ Espessura do dente no adendo Razão de condução