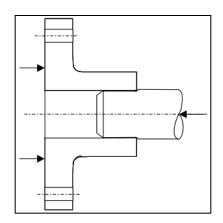


Eixos e árvores

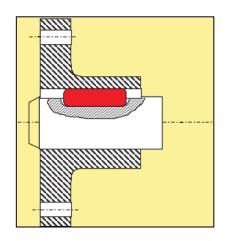
Projeto para eixos: restrições geométricas

Aula 8

Acoplamentos

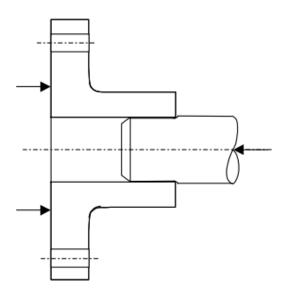

- São elementos utilizados para interligação de eixos, tendo as seguintes funções:
 - Ligar eixos de mecanismos diferentes;
 - Permitir a sua separação para manutenção;
 - Ligar peças de eixos (no caso de não ser viável ou vantajoso utilizar um eixo inteiriço);
 - Minimizar as vibrações e choques transmitidos ao eixo ou motor

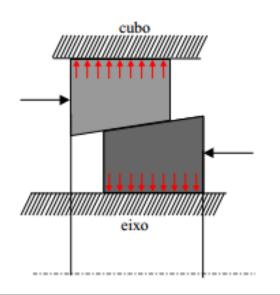
o Para a potência passar dos eixos para os cubos dos acoplamentos e das polias é necessário o uso de dispositivos genericamente denominados de **ligações cubo eixo**.


Acoplamentos: tipos de ligações

- Ligações por atrito:
 - Ajuste prensado
 - Elementos intermediários (anéis cônicos)

- o <u>Ligações por adesão</u>:
 - o Colas, soldas

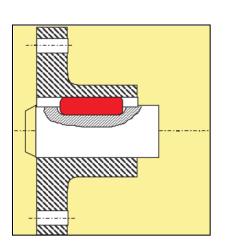

- o <u>Ligações por forma</u>:
 - Chavetas e eixos estriados



Ligações por atrito

- A carga se transmite entre os elementos sem alteração da forma da seção circular;
- Transmissão se dá pela força de atrito geradas nas superfícies conjugadas;
- o Apresentam algumas dificuldades:
 - Controle da pressão de contato na montagem;
 - o Promove concentração de tensão;
 - Pode ocasionar corrosão pela deterioração da superfície
 - Baixa confiabilidade: variabilidade do coeficiente de atrito
- o Acoplamentos simples de serem fabricados;

 Ligações mais difundidas no projeto e construção de máquinas

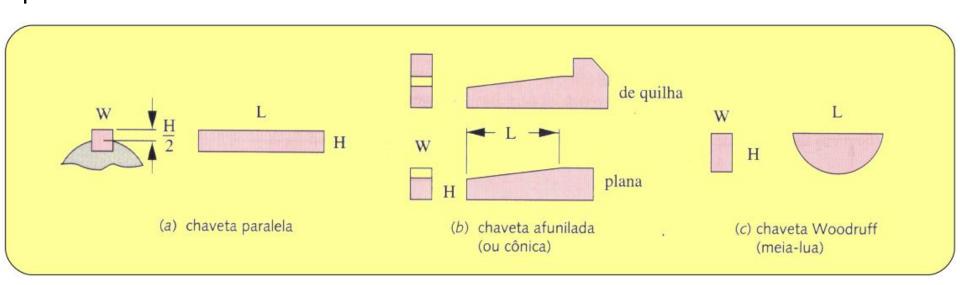


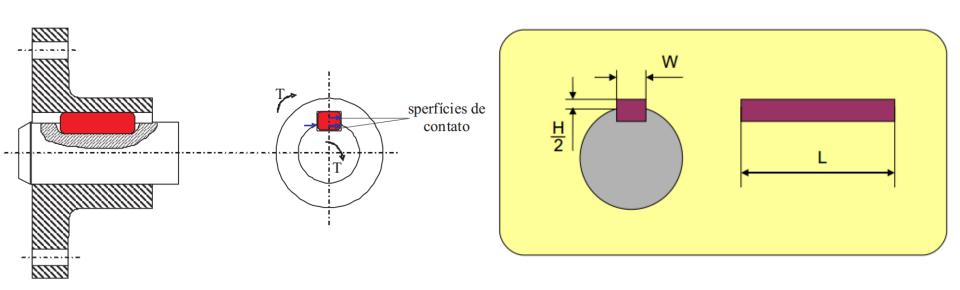
o Principais vantagens:

- O Simples montagem e desmontagem
- o Baixo custo: feitas de materiais menos nobres

o <u>Desvantagens</u>:

- Redução da capacidade de carga dos elementos menor área de seção transversal;
- Aumento da concentração de tensões devido aos rasgos;
- o Dificuldade de posicionar as peças com precisão




- <u>Chaveta paralela</u>: mais usadas; padronizações da ANSI e ISO definem suas dimensões (seção transversal);
- O Chaveta cônica: A conicidade é para seu travamento, bem como para aumentar a eficiência da transmissão da força por atrito do cubo com o eixo.
- <u>Chaveta Woodruff</u>: (chavetas meia lua) usadas em eixos com os menores diâmetros. São auto alinhantes na montagem, especialmente quando o eixo é cônico.

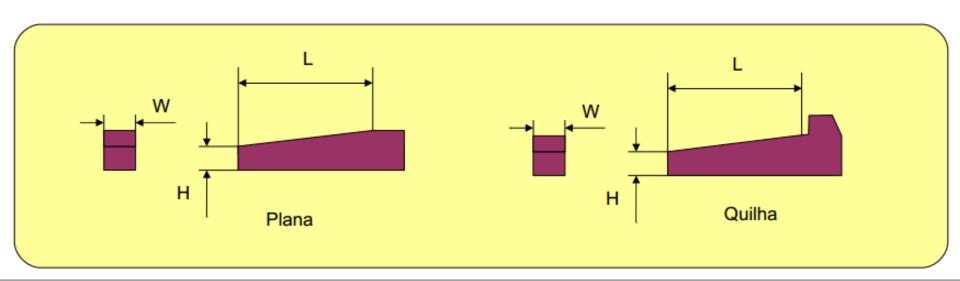
Chavetas paralelas

- Mais usuais: em geral, as polias para correias, rodas dentadas, volantes de inércia, entre outros elementos, são fixados aos eixos por meio de chavetas longitudinais;
- O Usualmente, a partir de barras laminadas a frio

Chavetas paralelas: recomendações

- Perfil quadrado eixos de até 22mm de diâmetro
- Perfil retangular eixos maiores
- Comprimento máximo 1,5 x diâmetro do eixo
- O Se necessário mais de uma chaveta ao longo do eixo:
 - o Defasar de 90 graus
- o Coeficiente de segurança:
 - 1,5: solicitações quase estáticas
 - o 2,5: solicitações com choques leves
 - o 4,5: solicitações com choques forte

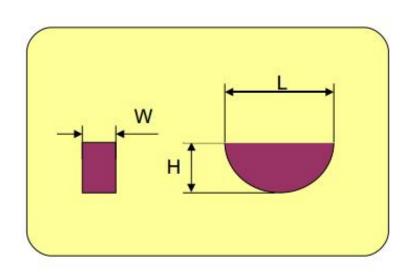
Chavetas paralelas: padrões


Chavetas paralelas - Padrões

Diâmetro do eixo (mm)	Largura x altura da chaveta (mm)
8 < d ≤ 10	3 x 3
10 < d ≤ 12	4 x 4
12 < d ≤ 17	5 x 5
17 < d ≤ 22	6 x 6
22 < d ≤ 30	8 x 7
30 < d ≤ 38	10 x 8
38 < d ≤ 44	12 x 8
44 < d ≤ 50	14 x 9
50 < d ≤ 58	16 x 10
58 < d ≤ 65	18 x 11
65 < d ≤ 75	20 x 12
75 < d ≤ 85	22 x 14
85 < d ≤ 95	25 x 14

Chavetas cônicas

- A largura de uma chaveta cônica para um dado diâmetro de eixo é a mesma estimada para chavetas paralelas (ver tabela anterior);
- A conicidade (afunilamento) e o tamanho da quilha são padronizados: 1/8 in por 1 ft (1:100);
- o A conicidade é para o travamento do elemento;
- o Tendem a criar uma excentricidade entre o cubo e o eixo, especialmente em velocidades baixas

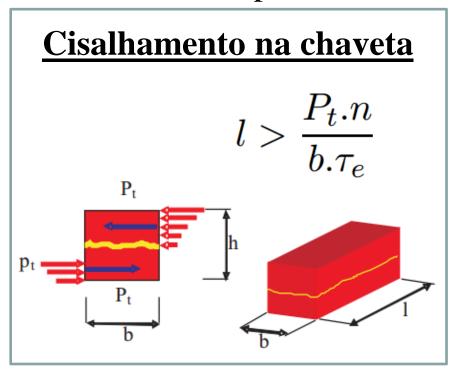


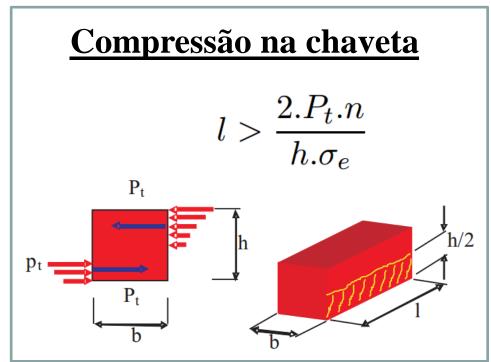
Chavetas Woodruff (meia-lua)

- As larguras em função do diâmetro são as mesmas utilizadas para as chavetas paralelas quadradas (ver tabela)
- Auto alinhantes: apresentam melhor concentricidade após a montagem, especialmente em altas velocidades (i.e. acoplamento eixo-turbina);

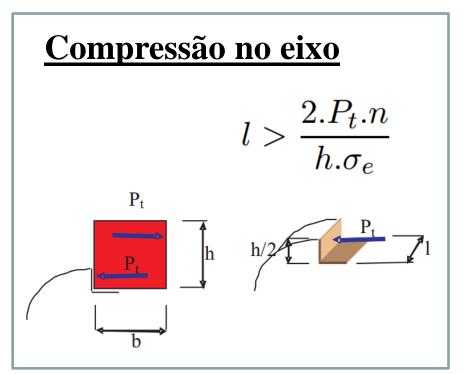
Projeto de chavetas

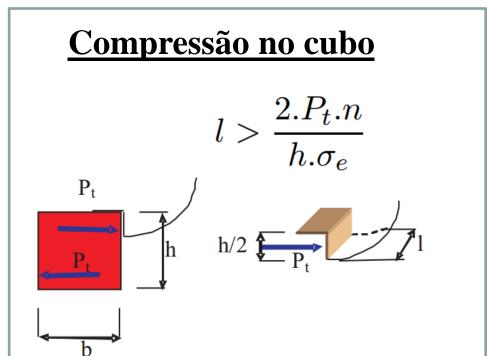
- o Restrições de projeto
 - <u>Diâmetro do eixo</u> → altura x largura da chaveta
- o Material: dúcteis pois chavetas estão sob tensão de cisalhamento
- o Variáveis de projeto:
 - o Número de chavetas e comprimento


Tensões em chavetas

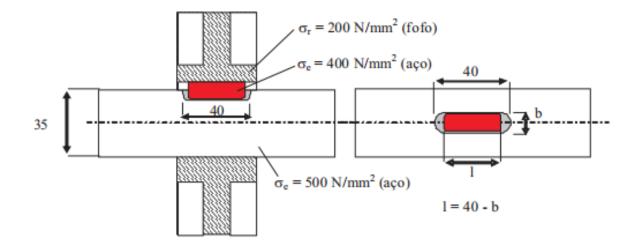

- As chavetas podem falhar por dois modos:
 - Cisalhamento;
 - o Amassamento.
- A falha por cisalhamento ocorre quando a mesma é cisalhada na sua largura na interface cubo eixo.
- A falha por amassamento, ocorre quando a mesma é amassada na região que o cubo ou eixo está em contato com ela (tensão de compressão)

Tensões em chavetas


- As tensões nas chavetas são de dois tipos principais:
 - Tensões provocadas pelo ajuste prensado (compressão e de difícil previsão)
 - Provocadas pelo momento torçor e deslizamento da chaveta:, produzindo cisalhamento e compressão.



Tensões em chavetas



Os fatores de segurança recomendados são:

- n = 1,5 para solicitações estáticas;
- n = 2,5 para solicitações com choques leves e
- n = 4,5 para solicitações com choques fortes

Considere a ligação mostrada na figura 3.44 entre uma polia de ferro fundido e um eixo de aço liga e determine: qual o maior torque que pode ser transmitido se a chaveta tiver forma alta e a carga aplicada for com choques leves.

Chavetas paralelas - Padrões

Diâmetro do eixo (mm)	Largura x altura da chaveta (mm)
8 < d ≤ 10	3 x 3
10 < d ≤ 12	4 x 4
12 < d ≤ 17	5 x 5
17 < d ≤ 22	6 x 6
22 < d ≤ 30	8 x 7
30 < d ≤ 38	10 x 8
38 < d ≤ 44	12 x 8
44 < d ≤ 50	14 x 9
50 < d ≤ 58	16 x 10
58 < d ≤ 65	18 x 11
65 < d ≤ 75	20 x 12
75 < d ≤ 85	22 x 14
85 < d ≤ 95	25 x 14

Dada uma árvore que recebe 20HP de um motor elétrico, girando a velocidade de 1200 rpm, dimensione a chaveta a ser adotada, sabendo que eixo tem 35mm de diâmetro. Considere o material um aço 1020 laminado a frio, com σ_{ult} = 379MPa e σ_{esc} = 207MPa e um coeficiente de segurança igual a 1,5.

Chavetas paralelas - Padrões

Diâmetro do eixo (mm)	Largura x altura da chaveta (mm)
8 < d ≤ 10	3 x 3
10 < d ≤ 12	4 x 4
12 < d ≤ 17	5 x 5
17 < d ≤ 22	6 x 6
22 < d ≤ 30	8 x 7
30 < d ≤ 38	10 x 8
38 < d ≤ 44	12 x 8
44 < d ≤ 50	14 x 9
50 < d ≤ 58	16 x 10
58 < d ≤ 65	18 x 11
65 < d ≤ 75	20 x 12
75 < d ≤ 85	22 x 14
85 < d ≤ 95	25 x 14

$$\sigma_x = \frac{F}{L \cdot H/2} = \sigma_{adm} = \frac{S_y}{n}$$

ou,

$$L = \frac{2Fn}{HS_{y}} = \frac{2 \times 6785, 1 \times 1,5}{0,008 \times 207 \times 10^{6}}$$

$$L = 0,0123 \text{ m}$$
 ou $L = 12,3 \text{ mm}$

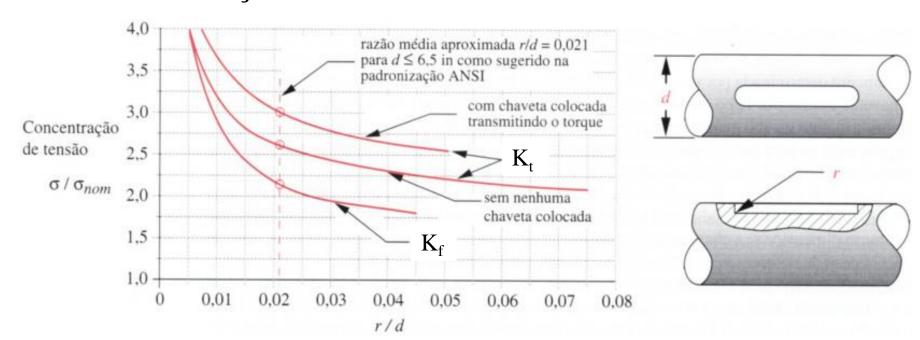
Aplicando Von Mises, esta tensão

$$\sigma' = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} = \sqrt{3 \times 55, 2^2}$$

 $\sigma' = 95, 5 \text{ MPa}$

$$\tau_{xy} = \frac{F}{W.L} = \frac{6785,1}{0,0123 \times 0,010}$$

$$\tau_{xy} = 55,2 \text{ MPa}$$

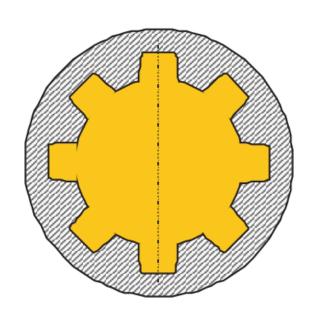

$$\sigma_{adm} = \frac{S_{y}}{n} \Rightarrow n = \frac{S_{y}}{\sigma_{adm}} = \frac{207}{95,5}$$

$$n = 2,2$$

Concentração de tensões

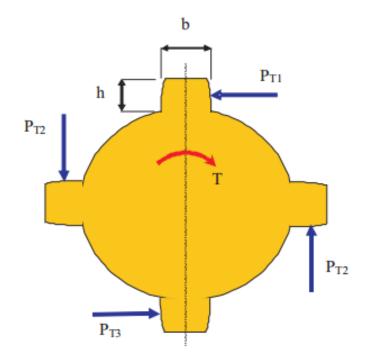
- Concentração de tensões em rasgos de chaveta:
 - Chavetas tem cantos relativamente afiados, o que causa concentrações significativas de tensões
- Peterson mostra curvas de concentração de tensões obtidas experimentalmente para assentos de chaveta em eixos sob flexão ou torção

Concentração de tensões


Dimensionamente de um eixo pela Teoria da máxima tensão cisalhante (Tresca) considerando o efeito de concentração de tensões

$$d = \sqrt[3]{\frac{32n}{\pi} \cdot \sqrt{\left(\mathbf{K_t} \frac{T}{\sigma_e}\right)^2 + \left(K_f \frac{M}{S_f}\right)^2}}$$

Ligações por forma: estrias


- <u>Estrias</u>: quando é necessário transmitir mais torque do que aquele passado pelas chavetas – maior superfície de contato
- São essencialmente "chavetas construídas nos eixos", formadas pelo contorno externo do eixo e pelo contorno interno do cubo

- Surgimento de tensões locais
 - Irregularidades na distribuição das cargas
- Necessidade de equipamentos especiais para fabricação

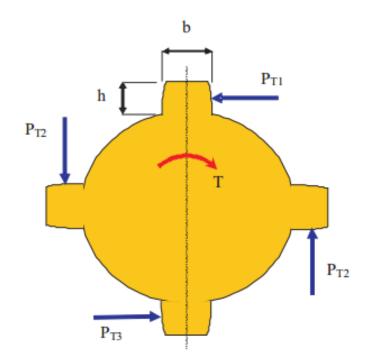
Ligações por forma: estrias

Valor do torque total transmitido:

$$T = \sum_{i=1}^{z} P_{Ti} \cdot \frac{d}{2}$$

Tensão de compressão no cubo:

$$\sigma = \frac{P_T}{z(h)l}$$


onde z é o número de dentes e L o comprimento da ranhura

Comprimento da ranhura ou estria

$$l > \frac{P_T.n}{z.\phi.h.\sigma_e}$$

Ligações por forma: estrias

Admitindo que o cisalhamento se dá na interface entre o eixo e o cubo, a área resistiva ao cisalhamento é

$$A_{cis} = \frac{\pi d_p l}{2}$$

onde d_p é a distância do centro do eixo até aproximadamente o meio do dente

Tensão de cisalhamento na interface eixo-cubo:

$$\tau \cong \frac{4T}{r_p A_{cis}} = \frac{16T}{\pi d_p^2 l}$$

