
Elementary 

Information on 

Gears

The Role Gears are Playing
Gears are some of the most important elements used in machinery.  There are few mechanical devices that do not 
have the need to transmit power and motion between rotating shafts.  Gears not only do this most satisfactorily, but 
can do so with uniform motion and reliability.  In addition, they span the entire range of applications from large to 
small.  To summarize:

                           
                          1.   Gears offer positive transmission of power.
                          2.   Gears range in size from small miniature instrument installations, that measure in only several 
                                millimeters in diameter, to huge  powerful gears in turbine drives that are several meters in ameter.
                          3.   Gears can provide position transmission with very high angular or linear accuracy, such as used in 
                                servomechanisms and precision instruments.
                          4.   Gears can couple power and motion between shafts whose axes are parallel, intersecting or skew.
                          5.   Gear designs are standardized in accordance with size and shape which provides for widespread 
                                interchangeability.  

  This introduction is written as an aid for the designer who is a beginner or only superficially knowledgeable about gearing. 
   It provides fundamental, theoretical and practical information.  When you select KHK products for your applications 
please utilize it along with KHK3009 catalog.
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1.1  Type of gears

In accordance with the orientation of axes, there are three 
categories of gears:

1.  Parallel axes gears
2.  Intersecting axes gears
3.  Nonparallel and nonintersecting axes gears

Spur and helical gears are the parallel axes gears.  Bevel gears 
are the intersecting axes gears.  Screw or crossed helical gears 
and worm gears handle the third category.  Table 1.1 Lists the 
gear types per axes orientation.

Also, included in table 1.1 Is the theoretical efficiency range of 
the various gear types.  These figures do not include bearing and 
lubricant losses.  Also, they assume ideal mounting in regard to 
axis orientation and center distance.  Inclusion of these realistic 
considerations will downgrade the efficiency numbers.

Categories of gears

Intersecting axes 

gears

�

(b)  Spur Rack

This is a linear shaped gear 
which can mesh with a spur 
gear with any number of teeth.  
The spur rack is a portion of 
a spur gear with an infinite 
radius.

(c)  Internal Gear

This is a cylindrical shaped 
gear but with the teeth inside 
the circular ring.  It can mesh 
with a spur gear.  Internal gears 
are often used in planetary 
gear systems and also in gear 
couplings.

(d)  Helical Gear

This is a cylindrical shaped 
gear with helicoid teeth.  
Helical gears can bear more 
load than spur gears, and work 
more quietly.  They are widely 
used in industry.  A negative is 
the axial thrust force the helix 
form causes.

(e)  Helical Rack

This is a linear shaped gear which 
meshes with a helical gear.  Again, 
it can be regarded as a portion of a 
helical gear with infinite radius.

(f)  Double Helical Gear

This is a gear with both left-
hand and right-hand helical 
teeth.  The double helical form 
balances the inherent thrust 
forces.

1 Gear Types and Terminology

Parallel axes 

gears

Nonparallel and
nonintersecting

 axes gears

Types of gears
Spur gear
Spur rack
Internal gear
Helical gear
Helical rack
Double helical gear
Straight bevel gear
Spiral bevel gear
Zerol bevel gear
Worm gear
Screw gear

Efficiency(%)

98.0 ~ 99.5

98.0 ~ 99.0

30.0 ~ 90.0
70.0 ~ 95.0

Fig.1.2  Spur rack

Fig.1.3  Internal
 gear and spur gear 

Fig.1.4  Helical gear

Fig.1.5  Helical rack

(1)  Parallel Axes Gears

(a)   Spur Gear

This is a cylindrical shaped 
gear in which the teeth are 
parallel to the axis.  It has the 
largest applications and, also, 
it is the easiest to manufacture.

Fig.1.1   Spur gear
Fig.1.6  Double helical gear

Table 1.1  Types of gears and their categories 
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(b)  Screw Gear 
(Crossed Helical Gear)

A pair of cylindrical gears used 
to drive non-parallel and non-
intersecting shafts where the teeth 
of one or both members of the 
pair are of screw form.
Screw gears are used in the 
combination of screw gear / screw 
gear, or screw gear / spur gear.
Screw gears assure smooth, quiet 
operation. However, they are not 
suitable for transmission of high 
horsepower.

(4)  Other Special Gears

(a)  Face Gear

This is a pseudobevel gear that 
is limited to 90O intersecting 
axes.  The face gear is a circular 
disc with a ring of teeth cut in 
its side face;  hence the name 
face gear

(b)  Enveloping Worm Gear
       Pair

This worm gear pair uses a 
special worm shape in that it 
partially envelops the worm 
wheel as viewed in the direction 
of the worm wheel axis.  Its big 
advantage over the standard 
worm is much higher load 
capacity.  However, the worm 
wheel is very complicated to 
design and produce.

(c)  Hypoid Gear

This is a deviation from a 
bevel gear that originated as 
a special development for the 
automobile industry.  This 
permitted the drive to the rear 
axle to be nonintersecting, and 
thus allowed the auto body 
to be lowered.  It looks very 
much like the spiral bevel gear.  
However, it is complicated to 
design and is the most difficult 
to produce on a bevel gear 
generator.

(2)  Intersecting Axes Gears

(a)  Straight Bevel Gear

This is a gear in which the teeth 
have tapered conical elements 
that have the same direction 
as the pitch cone base line 
(generatrix).  The straight bevel 
gear is both the simplest to 
produce and the most widely 
applied in the bevel gear family.

(b)  Spiral Bevel Gear

This is a bevel gear with a 
helical angle of spiral teeth.  
It is much more complex to 
manufacture, but offers a higher 
strength and lower noise.

(c)  Zerol Bevel Gear

Zerol bevel gear is a special case 
of spiral bevel gear.  It is a spiral 
bevel with a spiral angle of zero.  
It has the characteristics of both 
the straight and spiral bevel 
gears.  The forces acting upon 
the tooth are the same as for a 
straight bevel gear.

(3)  Nonparallell and 
       Nonintersecting Axes
       Gears

(a)  Worm Gear Pair

Worm gear pair is the name 
for a meshed worm and worm 
wheel.                  
The outstanding feature is 
that it offers a very large gear 
ratio in a single mesh.  It also 
provides quiet and smooth 
action.  However, transmission 
efficiency is very poor.

�

Fig.1.7  Straight bevel gear

Fig.1.8  Spiral bevel gear

Fig.1.9  Zerol bevel gear

Fig.1.11  Screw gear

Fig.1.12  Face gear

Fig.1.13  Enveloping worm gear pair

Fig.1.14  Hypoid gear 

Fig.1.10  Worm gear pair



Elementary Information on Gears

Terms

Terms

Terms

Angular speed
Tangential speed
Rotational speed
Profile shift coefficient
Normal profile shift coefficient
Transverse profile shift coefficient
Center distance modification coefficient

�

1.2    Symbols and Terminology

Table 1.2 through 1.6 indicate the symbols and the terminology 
used in this catalog.  JIS B 0121:1999 and JIS B0102:1999 cancel 
and replace former JIS B0121 (symbols) and JIS B0102 
(vocabulary) respectively.  This revision has been made to 
conform to International Standard Organization (ISO) Standard.

Table 1.2   Linear dimensions and circular dimensions

Table 1.3 Angular dimensions

Table 1.4  Size numbers, ratios & speed terms

Centre distance
Reference pitch
Transverse pitch
Normal pitch
Axial pitch
Base pitch
Transverse base pitch
Normal base pitch

Reference pressure angle
Working pressure angle
Cutter pressure angle
Transverse pressure angle
Normal pressure angle
Axial pressure angle
Transverse working pressure angle
Tip pressure angle
Normal working pressure angle

Number of teeth
Equivalent  number of teeth
Number of threads, or number of teeth in pinion
Gear ratio
Transmission ratio
Module
Transverse module
Normal module
Axial module
Diametral pitch
Transverse contact ratio
Overlap ratio
Total contact ratio

Reference cylinder helix angle
Pitch cylinder helix angle
Mean spiral angle
Tip cylinder helix angle
Base cylinder helix angle
Reference cylinder lead angle
Pitch cylinder lead angle
Tip cylinder lead angle
Base cylinder lead angle
Shaft angle
Reference cone angle
Pitch angle
Tip angle
Root angle
Addendum angle
Dedendum angle
Transverse angle of transmission
Overlap angle
Total angle of transmission
Tooth thickness half angle
Tip tooth thickness half angle
Spacewidth half angle
Angular pitch of crown gear
Involute function

Tooth depth
Addendum
Dedendum
Chordal height
Constant chord height
Working depth
Tooth thickness
Normal tooth thickness
Transverse tooth thickness
Crest width
Base thickness
Chordal tooth thickness
Constant chord
Span measurement over k teeth 
Tooth space 
Tip and root clearance
Circumferential backlash
Normal backlash
Radial backlash
Angular backlash
Facewidth
Effective facewidth
Lead
Length of path of contact
Length of approach path
Length of recess path
Overlap length
Reference diameter
Pitch diameter
Tip diameter
Base diameter
Root diameter
Center reference diameter
Inner tip diameter
Reference radius
Pitch radius
Tip radius
Base radius
Root radius
Radius of curvature of tooth profile
Cone distance
Back cone distance

Symbols

	 a
	 p
	 pt

	 pn

	 px

	 pb

	 pbt

	 pbn

	 α
	 α '
	 α o

	 α t

	 α n

	 α x

	 α 't

	 α a

	 α 'n

	 z
	 zv

	 z1

	 u
	 i
	 m
	 mt

	 mn

	 mx

	 P
	 εα

	 εβ

	 εγ

	 ω
	 v
	 n
	 x
	 xn

	 xt

	 y

	 β
	 β '
	 βm

	 β a

	 β b

	 γ
	 γ'
	 γa

	 γb

	 Σ
	 δ
	 δ '
	 δ a

	 δ f

	 θ a

	 θ f

	 ζα

	 ζβ

	 ζγ

	 ψ
	 ψ a

	 η
	 τ
	 invα

	 h
	 ha

	 hf

	 ha

	 hc

	 h'
	 s
	 sn

	 st

	 sa

	 sb

	 s
	 sc

	 W
	 e
	 c
	 jt

	 jn

	 jr

	 jθ
	 b
	 b'
	 pz

	 gα

	 g f

	 ga

	 gβ

	 d
	 d'
	 da

	 db

	 df

	 dm

	 di

	 r
	 r'
	 ra

	 rb

	 rf

	 r
	 R
	 Rv

Symbols

Symbols
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Upper case  
letters

Terms

Lower case 
letters Spelling

Table 1.7 indicates the Greek alphabet, the internatioal 
phonetic alphabet.

�

Table 1.5  Others

Table 1.7  The Greek alphabet

Table 1.6  Accuracy/Error terms

Tangential force
Axial force
Radial force
Pin diameter
Ideal pin diameter
Measurement over rollers (pin)
Pressure angle at pin center
Coefficient of friction
Circular thickness factor

Symbols

	 Ft

	 Fx

	 Fr

	 dp

	 d'p

	 M
	 φ
	 μ
	 Κ

Α
Β
Γ
Δ
Ε
Ζ
Η
Θ
Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π
Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
Ω

α
β
γ
δ
ε
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
lota
Kappa
Lambda
Mu
Nu
Xi
Omicron
Pi
Rho
Sigma
Tau
Upsilon
Phi
Chi
Psi
Omega

Terms

Single pitch deviation
Pitch deviation
Total cumulative pitch deviation
Total profile deviation
Runout
Total helix deviation

Symbols

	 fpt

	 fv or fpu

	 Fp

	 Fa

	 Fr

	 Fb

A numerical subscript is used to distinguish "pinion" from 
"gear" (Example: z1, z2),  "worm" from "worm wheel", "drive 
gear" from "driven gear", and so forth.
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The transmission ratio is then:

 Transmission ratio  =            =                                          (2.1)

Gear trains can be classified into three types:
Transmission ratio < 1 ,  increasing    : n1 < n2

Transmission ratio = 1 ,  equal speeds: n1 = n2

Transmission ratio > 1 ,  reducing       : n1 > n2

Figure 2.1 illustrates four basic forms.  For the very common 
cases of spur and bevel gear meshes, Figures 2.1(A) and (B), 
the direction of rotation of driver and driven gears are reversed.  
In the case of an internal gear mesh, Figure 2.1(C), both gears 
have the same direction of rotation.  In the case of a worm mesh, 
Figure 2.1(D), the rotation direction of z2 is determined by its 
helix hand.

The objective of gears is to provide a desired motion, either 
rotation or linear.  This is accomplished through either a simple 
gear pair or a more involved and complex system of several gear 
meshes.  Also, related to this is the desired speed, direction of 
rotation and the shaft arrangement.

2.1  Single-Stage Gear Train

A meshed gear is the basic form of a single-stage gear train.  It 
consists of z1 and z2 numbers of teeth on the driver and driven 
gears, and their respective rotations, n1 & n2.

2 Gear Trains

(A) A Pair of spur gears (B) Bevel gears

(C) Spur gear and internal gear

(D) Worm gear pair

Fig. 2.1 Single-stage gear trains

Gear 2 Gear 1 Gear 2 Gear 1

Gear 2 Gear 1 Right-hand worm gear Left-hand worm gear

Right-hand worm wheel Left-hand worm wheel

z1

z2

n2

n1

(z2 ,n2) (z1 ,n1) (z2 ,n2) (z1 ,n1)

(z2 ,n2) (z1 ,n1) (z1 ,n1) (z1 ,n1)

(z2 ,n2) (z2 ,n2)
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In the double-stage gear train, Figure 2.2, gear 1 rotates in 
the same direction as gear 4.  If gears 2 and 3 have the same 
number of teeth, then the train simplifies as in Figure 2.3.  In this 
arrangement, gear 2 is known as an idler, which has no effect on 
the transmission ratio.  The transmission ratio is then:

  Transmission Ratio =           ×          =                                   (2.4)

In addition to these four basic forms, the combination of a rack 
and pinion can be considered a specific type.  The displacement 
of a rack, l, for rotation θ of the mating pinion is:

  l =             × pm                                                  (2.2)

where:    pm is the reference pitch
	 z1 is the number of teeth of the pinion.

2.2  Double-Stage Gear Train
A double-stage gear train uses two single-stages in a series.  
Figure 2.2 represents the basic form of an external gear double-
stage gear train.
Let the first gear in the first stage be the driver.  Then the 
transmission ratio of the double-stage gear train is:
   

   Transmission Ratio =          ×          =          ×                   (2.3)

In this arrangement, n2  = n3

�

Gear 4 Gear 3 Gear 2 Gear 1

Fig.2.2  Double-stage gear train

Gear 3 Gear 2 Gear 1

Fig.2.3  Single-stage gear train with an idler

z1

z2

z3

z4

n2

n1

n4

n3

360
z1θ

z1

z2

z2

z3

z1

z3

(z4 ,n4) (z3 ,n3) (z2 ,n2) (z1 ,n1)

(z3 ,n3) (z2 ,n2) (z1 ,n1)
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The invoute profile is the one most commonly used today for 
gear-tooth forms that are used to transmit power.  The beauty 
of involute gearing is its ease of manufacture and its smooth 
meshing despite the misalignment of center distance in some 
degree.

3.1  Module Sizes and Standards
Module m represents the size of involute gear tooth.  The unit 
of module is mm.  Module is converted to pitch  p , by the 
factor π .                                                                                        
                p = πm                                                          (3.1)

Table 3.1 is extracted from JIS B 1701-1973 which defines the 
tooth profile and dimensions of involute gears.  It divides 
the standard module into three series.  Figure 3.1 shows the 
comparative size of various rack teeth.

Table 3.1  Standard values of module                              unit: mm

NOTE: The preferred choices are in the series order beginning with 1.

Diametral Pitch P(D.P.), the unit to denote the size of the gear-
tooth, is used in the USA, the UK, etc.  The transformation from 
Diametral Pitch P(D.P.) to module m is accomplished by the 
following equation:
  
     m = 25.4 / P                 

Series 1

0.10
0.10
0.20
0.10
0.30
0.10
0.40
0.10
0.50
0.10
0.60
0.65
0.10
0.10
0.80
0.10
1.00
1.25
1.50
0.10
2.00
0.10
2.50
0.10
3.

�

3 Involute Gearing

Series 2

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.65
0.65
0.70
0.75
0.8
0.90

1
1.25
1.5
1.75

2
2.25
2.5
2.75
3.25
0.1

Series 3

0
0.1
0

0.1
0

0.1
0

0.1
0

0.1
0.6
0.65
0.1
0.1
0

0.1
.00
0.1
0

0.1
.00
0.1
0

0.1
0.1
3.25

Series 1

4

5

6

8

10

12

16

20

25

32

40

50

Series 2

23.5
.6
.6

24.5

25.5

27.6

29.6

11.6

14.6

18.6

22.6

28.6
.6

36.6

45.6

Series 3

3.75

6.50

Fig.3.1   Comparative size of various rack teeth

M1

M1.5

M2

M2.5

M3

M4

M5

M6

M10
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3.2  The Involute Curve
Figure 3.3 shows an element of involute curve.  The definition 
of involute curve is the curve traced by a point on a straight line 
which rolls without slipping on the circle.  The circle is called 
the base circle of the involutes.  We can see, from Figure 3.3, the 
length of base circle arc ac equals the length of straight line bc.

 

         tanα =             =              = θ  (radian)                       	 (3.4)

The θ in Figure 3.3 can be expressed as invα + α , then Formula 
(3.4) will become:  

              invα  = tanα  - α                              		  (3.5)

Function of α, or invα, is known as involute function.  Involute 
function is very important in gear design.  Involute function 
values can be obtained from appropriate tables.  
With the center of the base circle O at the origin of a coordinate 
system, the involute curve can be expressed by values of x and y 
as follows:

    x = r cos ( invα  )

    =           cos ( invα  )

    y = r sin ( invα  )

    =           sin ( invα  )

    where,  r = rb  / cosα

The drawings of involute tooth-form can be easily created with 
this equation.

Pitch, p, is also used to represent tooth size when a special 
desired spacing is wanted, such as to get an integral feed in a 
mechanism.  In this case, a pitch is chosen that is an integer or 
a special fractional value.  This is often the choice in designing 
position control systems.  
Most involute gear teeth have the standard whole depth and a 
standard pressure angle α = 20°.  Figure 3.2 shows the tooth 
profile of a full depth standard rack tooth and mating gear.  It 
has an addendum of ha = 1m and dedendum hf ≥ 1.25m.  If tooth 
depth is shorter than full depth teeth it is called a “stub” tooth;  
and if deeper than full depth teeth it is a “high” depth tooth.
The most widely used stub tooth has an addendum ha = 0.8m 
and dedendum hf = 1m.  Stub teeth have more strength than a 
full depth gear, but contact ratio is reduced.  On the other hand, a 
high tooth can increase contact ratio.
In the standard involute gear, pitch (p) times the number of teeth 
becomes the length of reference circle:

               	dπ = πmz                                             		 (3.2)
Reference diameter (d) is then:
	 d = mz                                                       	 (3.3)

10




                     (3.6)





Fig.3.3  The involute curve

Fig.3.2   The tooth profile and dimension of standard rack

oc
bc

rb

rb θ

cosα
rb

cosα
rb

p
p/2

pb

α α

α

d
b

d

h f
h a

h

y

x
O

c
r

rb

a
invα

α

bα
θ

Module  m
Reference pressure angle  α = 20°
Addendum            ha = m
Dedendum            hf   1.25m
Tooth depth           h  2.25m
Working depth      h' = 2.00m
Tip and root clearance  c  0.25 m
Reference pitch     p = πm
Base pitch              pb = p cosα
Reference diameter  d = mz
Base diameter       db = d cosα
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3.3  Meshing of Involute Gear

Figure 3.4 shows a pair of standard gears meshing together.  The 
contact point of the two involutes, as Figure 3.4 shows, slides 
along the common tangent of the two base circles as rotation 
occurs.  The common tangent is called the line of contact, or line 
of action. 
A pair of gears can only mesh correctly if the pitches and the 
pressure angle are the same.  That the pressure angles must be 
identical becomes obvious from the following equation for base 
pitch:
	 pb = πmcosα                                                	 (3.7)
Thus, if the pressure angles are different, the base pitches cannot 
be identical.
The contact length ab shown Figure 3.4 is described as "Length 
of path of contact.

The contact ratio can be expressed by the following equation:

   Transverse Contact ratio εα =                                                        
                                                                                            	 (3.8)

It is good practice to maintain a transverse contact ratio of 1.2 or 
greater. 
Under no circumstaces should the ratio drop below 1.1.  Module 
m and the pressure angle α are the key items in the meshing of  
gears. 

3.4  The Generating of a Spur Gear
Involute gears can be readily generated by rack type cutters.  
The hob is in effect a rack cutter.  Gear generation is also 
accomplished with gear type cutters using a shaper or planer 
machine.
Figure  3.5 illustrates how an involute gear tooth profile is 
generated.  It shows how the pitch line of a rack cutter rolling on 
a pitch circle generates a spur gear.
Gear shapers with pinion cutters can also be used to generate 
involute gears.  Gear shapers can not only generate external 
gears but also generate internal gears.

Fig.3.4  The meshing of involute gear

Fig. 3.5  The generating of a standard spur gear

Rack form tool

Length of path of contact ab
 Base pitch pb

length of pass of Contact 

O1

O2

O1

O1

O2

O2

d1

db1

d2

db2

b

a

α

α 

α

db
d

O

I

si
n2 
α

d 2

( α = 20°, z = 10, x = 0 )
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2
zm

No.

3

Formula Example

  ψ a . dasaCrest width

    +                 + (invα - invαa)
(radian)

ψa

Tip tooth 
thickness half 
angle

2

m = 2  α = 20°  z = 16
x = + 0.3  d = 32
db = 30.07016
da = 37.2
αa = 36.06616°
inv αa = 0.098835
inv α = 0.014904
ψa = 1.59815°
      (0.027893 radian)
sa = 1.03762

   cos -1αa
Tip pressure 
angle1

SymbolItem

3.5  Undercutting

Undercutting is the phenomenon that some of tooth dedendum  
is cut by the edge of a generating tool.  In case gears with small 
number of teeth is generated as is seen in Figure 3.5, undercut 
occurs when the cutting is made deeper than interfering point I.
The condition for no undercutting in a standard spur gear is 
given by the expression:

         m                 sin 2 α                                     	 (3.9)

and the minimum number of teeth is:

       z =                                                                	 (3.10)

For pressure angle 20 degrees, the minimum number of teeth 
free of undercutting is 17.  However, the gears with 16 teeth  or 
under can be usable if its strength or contact ratio pose any ill
effect.

3.6  Profile Shifting

As Figure 3.5 shows, a gear with 20 degrees of pressure angle 
and 10 teeth will have a huge undercut volume.  To prevent 
undercut, a positive correction must be introduced.  A positive 
correction, as in Figure 3.6, can prevent undercut. Undercutting 
will get worse if a negative correction  is applied.  See Figure 3.7.
The extra feed of gear cutter (xm) in Figures 3.6 and 3.7 is 
the amount of shift or correction.  And x is the profile shift 
coefficient.

The condition to prevent undercut in a spur gear is:

 

                    m - xm             sin 2 α                  		  (3.11)

The number of teeth without undercut will be:

                z =                                                                      	 (3.12)

The profile shift coefficient without undercut is:
                 x = 1 -       sin 2 α                                       	 (3.13)

Profile shift is not merely used to prevent undercut.  It can be used 
to adjust center distance between two gears.
If a positive correction is applied, such as to prevent undercut in a 
pinion, the tooth tip is sharpened.
Table 3.2 presents the calculation of top land thickness ( Crest 
width ).

12

Table 3.2  The calculations of top land thickness ( Crest width )

Fig.3.6 Generating of positive shifted spur gear Fig.3.7  The generating of negative shifted spur gear Fig. 3.8  Top land thickness

( Crest width ) 

Rack form tool
Rack form tool

2
mz

sin 2 α
2

sin 2 α
2 (1-x)

2
z

da

db

2z
π

z
2x tan α

α
db

d
O

xm

si
n2 α

d 2

( α = 20°, z = 10, x = +0.5 )

xm

α

db

d
O

( α = 20°, z = 10, x =  - 0.5 )

(α)

(ψ)

αa

(S)

Sa

ψa
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Module

No.

13

Formula

To calculate the required strength                                               to determine the specifications, the materials to be used, and the degree of accuracy.
To calculate the dimensions                                                                                            in order to provide the necessary data for the gear shaping.                 
To calclate the tooth thickness                                                     in order to provide the necessary data for cutting and grinding.
To calculate the necessary amount of backlash 
To calculate the forces to be acting on the gear      to provide the necessary information useful for selecting the proper shafts                                       
                                                                                                                         and bearings.
To consider what kind of lubrication is necessary and appropriate.

Table 4.1 The calculation of standard spur gears

The following should be taken into consideration in due order at 
the early stage of  designing:

4 Calculation of Gear Dimensions

The explanation is given, hereafter, as to items necessary for 
the design of gears. The calculation of the dimentions comes 
first. The dimentions are to be calculated in accordance with the 
fundamental specifications of each type of gears.  The processes 
of turning etc. are to be carried out on the basis of that data.      

4.1  Spur Gears 

(1) Standard Spur Gear
Figure 4.1 shows the meshing of standard spur gears.  The 
meshing of standard spur gears means reference circles of two 
gears contact and roll with each other.  The calculation formulas 
are in Table 4.1.

1

2

3

4

5

6

7

8

9

10

Item

Reference pressure angle

Number of teeth

Center  distance

Reference diameter

Base diameter

Addendum

Tooth depth

Tip diameter
Root diameter

m

Symbol

α
z

a

d
db

ha

h
da

df

zm
d cosa
1.00m
2.25m
d + 2m
d - 2.5m

NOTE 

Example

Pinion

3
20˚

2412

54.000

36.000
33.829
03.000
06.750
42.000
28.500

72.000
67.658
03.000
06.750
78.000
64.500

Gear

NOTE : The subscripts 1 and 2 of z1 and z2 denote pinion and gear.

Fig.4.1  The meshing of standard spur gears

2
( z1 + z2 ) m

( α = 20°, z1 = 12, z2 = 24, x1 = x2 = 0 )

a

df2

O2

α

db2

da2d2

O1 α

d
f1

d
a1

db1

d1
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Formula Example

Table 4.2   The calculation of number of teeth

All calculated values in Table 4.1 are based upon given module 
(m) and number of teeth (z1 and z2).  If instead module (m), 
center distance (a) and speed ratio (i) are given, then the number 
of teeth , z1 and z2, would be calculated with the formulas as 
shown in Table 4.2.

1

2

3

4

5

Item

Module

Center distance

Transmission ratio

Sum of  No. of  teeth

Number of  teeth

Symbol

m
a
i

z1 + z2

z

03.000
54.000

0.8

36.000

16 20

 Note that the number of teeth probably will not be integer
values by calculation with the formulas in Table 4.2.  In that
case, it will be necessary to resort to profile shifting or
 to employ helical gears to obtain as near transmission ratio as
 possible.

m
2a

i +1
i ( z1 + z2 )

i +1
z1 + z2



Elementary Information on Gears

No.

15

15

8

Table 4.3  The calculation of profile shifted spur gear (1)

(2) Profile Shifted Spur Gear
Figure 4.2 shows the meshing of a pair of profile shifted gears.  
The key items in profile shifted gears are the operating 
(working) pitch diameters (d') and the working (operating) 
pressure angle (α'). 
These values are obtainable from the modified center distance 
and the following formulas:

                d'1 = 2a 

                d'2 = 2a

                α' = cos-
 
1

In the meshing of profile shifted gears, it is the operating pitch 
circle that are in contact and roll on each other that portrays gear 
action.
Table 4.3 presents the calculation where the profile shiht 
coefficient has been set at x1 and x2  at  the beginning.  This 
calculation is based on the idea that the amount of the tip and 
root clearance should be 0.25 m.

1

2

3

4

5

6

7

9

10

11

12

13

14

Item

Module

Reference pressure angle

Profile shift coefficient

Involute function α'

Working pressure angle

Center distance 
modification coefficient

Center distance

Reference diameter

Base diameter

Working pitch diameter

Addendum

Tooth depth

Tip diameter

Root diameter

Symbol

m
α
z
x

inv α'

α'

y

a

d
db

d'

ha1

ha2

h
da

df

Formula

2 tanα                     + invα

Find from Involute Function Table

                               - 1

                 + y   m

z m
d cosα

(1 + y-x2) m
(1 + y- x1) m  
{2.25 + y - ( x1 + x2 )}m
d + 2ha

da -2h

Example

Pinion (1)

3
20˚

24.000012.0000
00.6000 00.3600

0.034316

26.0886˚

0.83329

56.4999

36.0000
33.8289

37.6670

4.420

6.370
44.8400
32.1000

72.0000
67.6579

75.3330

3.700

79.4000
66.6600

Gear (2)





                    (4.1)





A standard spur gear is, according to Table 4.3, a
profile shifted gear with 0 coefficient of shift;
that is , x1 = x2 = 0.

 Fig. 4.2   The meshing of profile shifted gears







z1 + z2

z1

z1 + z2

z2

2a
db1 + db2


  


 z1 + z2

x1 + x2

cosα '
db





 2

z1 + z2

2
z1 + z2 



 cosα '

cosα

( α = 20°, z1 = 12, z2 = 24, x1 = + 0.6, x2 = + 0.36 )

df2

O2

α'

a

O1

db2

d2

d'2
da2

α'

df1

db1

d1

d'1

Number of teeth
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  cos 
-1

         -   

Formula Example

Table 4.4  The calculation of profile shifted spur gear (2)

Table 4.4 is the inverse formula of items from 4 to 8 of Table 
4.3.

2

3

4

5

Item

Center distance

Center distance 
modification coefficient

Working pressure angle

Sum of profile shift 
coefficient

Profile shift coefficient

Symbol

a

y

α '

 x1 + x2

x

56.4999

00.8333

26.0886˚

00.9600

0.6000 0.3600

There are several theories concerning how to distribute the sum 
of  profile shift coefficient (x1 + x2) into pinion (x1) and gear (x2) 
separately.  BSS (British) and DIN (German) standards are the 
most often used.  In the example above, the 12 tooth pinion was 
given sufficient correction to prevent undercut, and the residual 
profile shift was given to the mating gear.

m
a

2
z1  + z2





 z1 + z2

2y
cosα

+ 1

2 tanα
( z1 + z2 ) (invα '- invα)

1
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5

6

7

8

9

11

12

13

14

10

Formula
Example

Spur gear Rack

 Table 4.5  The calculation of dimensions of a profile shifted spur gear and a rack

(3) Rack and Spur Gear
Table 4.5 presents the method for calculating the mesh of a rack 
and spur gear.  
Figure 4.3(1) shows the the meshing of standard gear and a 
rack.  In this meshing, the reference sircle of the gear touches 
the pitch lin of the rack.
Figure 4.3(2) shows a profile shifted spur gear, with positive 

1

2

3

4

Item

Module

Reference pressure angle

Number of teeth

Profile shift coefficient

Height of pitch line

Working pressure angle

Mounting distance

Reference diameter

Base diameter

Addendum

Tooth depth

Tip diameter

Root diameter

Working pitch diameter

Symbol

m
α
z
x
H
α '

a

d
db

ha

h
da

df

d'

        + H + xm

zm
d cosα

m ( 1 + x )
2.25 m
d + 2ha

da - 2h

3
20°

12.
—

00.600
—

20°

51.800

36.000

—
33.829

04.800
06.750

45.600
32.100

36.000

32.000

03.000

—

One rotation of the spur gear will displace the rack l one 
circumferential length of the gear's reference circle, per the 
formula:	
             l = pmz                                                                    (4.2)

correction xm, meshed with a rack.  The spur gear has a larger 
pitch radius than standard, by the amount xm.  Also, the pitch 
line of the rack has shifted outward by the amount xm.

Table 4.5 presents the calculation of a meshed profile shifted 
spur gear and rack.  If the profile shift coefficient x1 is 0, then it 
is the case of a standard gear meshed with the rack.

The rack displacement, l, is not changed in any way by the 
profile shifting.  Equation (4.2) remains applicable for any 
amount of profile shift.

cosα'
db

2
zm

Fig.4.3(1)  The meshing of standard spur gear and rack
                                             ( α = 20°, z1 = 12, x1 = 0 )

Fig.4.3(2)  The meshing of profile shifted spur gear and rack
( α = 20°, z1 = 12, x1 = + 0.6 )

d
db

α

a

H
2d

d
db

α

a

H
2d

xm
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4.2  Internal Gears

(1)  Internal Gear Calculations

Figure 4.4 presents the mesh of an internal gear and external 
gear.  Of vital importance is the working pitch diameters (d' ) and 
working pressure angle (α ').  They can be derived from center 
distance (a' ) and Equations (4.3).

               d'1 
= 2

 
a

               d'2 = 2 a

               α ' = cos -1

Table 4.6 shows the calculation steps.  It will become a standard 
gear calculation if x1 = x2 = 0.

5

6

7

8

10

9

13

14

15

11

Formula
Example

External gear Internal gear

Table 4.6  The calculation of a profile shifted internal gear and externl gear (1)

1

2

3

4

Item

Module

Reference pressure angle

Number of teeth

Profile shift coefficient

Involute function α '

Working pressure angle

Center distance 
modification coefficient

Center distance

Base diameter

Reference diameter

Addendum

Tooth depth

Tip diameter

Root diameter

Working pitch diameter

Symbol

m
α
z
x

invα '

α '

y

a

db

d

ha1

ha2

h
da1

da2

df1

df2

d'

2 tanα                     + invα   

Find from involute Function Table

                                         - 1

                    +  y  m

d cosα
z m

( 1 + x1 ) m
( 1 - x2 ) m
2.25 m
d1 + 2ha1

d2 - 2ha2

da1- 2h
da2 + 2h

3
20°

16 24
0 + 0.5

00.060401

31.0937°00

00.3894260

13.16830

72.000
45.105 67.658
48.000

03.000

06.75000

54.000 69.000

40.500

52.673 79.010

01.500

82.500





	 (4.3)





z2 -z1

z1

z2 -z1

z2

2a
db2-db1 





cos α'
db

2
z2-z1 





2
z2-z1 



 cosα '

cosα

z2-z1

x2-x1 





Fig.4.4 The meshing of internal gear and external gear
( α = 20°, z1 = 16, z2= 24, x1 = x2 = + 0.5 )

O2

db2

da2

d2

df 2

O1

α '

α '

a
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(b)  Trochoid Interference

This refers to an interference occurring at the addendum of 
the external gear and the dedendum of the internal gear during 
recess tooth action.  It tends to happen when the difference 
between the numbers of teeth of the two gears is small.  
Equation (4.8) presents the condition for avoiding trochoidal 
interference.

          θ 1       + invα '- invα a2    θ 2	 (4.8)

  Here

     θ1 = cos-1                                                               + invα a1-invα ' 

     θ2 = cos-1

where α a1 is the pressure angle of the spur gear tooth tip:

                           α a1 = cos 
-1	    (4.10)

                           α a2 = cos 
-1

In the meshing of an external gear and a standard internal gear  
α  = 20°, trochoid interference is avoided if the difference of the 
number of teeth, z1 - z2, is larger than 9.   

cos -1 

        -

Formula Example

Table 4.7  The calculation of profile shifted internal gear and external gear (2)

If the center distance (a) is given, x1 and x2 would be obtained 
from the inverse calculation from item 4 to item 8 of Table 4.6.  
These inverse formulas are in Table 4.7.

1

2

3

4

5

Item

Center distance

Center distance 
modification coefficient

Working pressure angle

Difference of profile shift 
coefficient

Profile shift coefficient

Symbol

a

y

α '

x2- x1

x

13.1683

00.38943

31.0937°

00.5000

0 0.5

Pinion cutters are often used in cutting internal gears and 
external gears.  The actual value of tooth depth and root 
diameter, after cutting, will be slightly different from the 
calculation.  That is because the cutter has a profile shift 
coefficient.  In order to get a correct tooth profile, the profile 
shift coefficient of cutter should be taken into consideration.
(2)  Interference In Internal Gears

Three different types of interference can occur with internal 
gears:
   (a) Involute Interference, 
   (b) Trochoid Interference, and
   (c) Trimming Interference.

(a)  Involute Interference
This occurs between the dedendum of the external gear and the 
addendum of the internal gear.  It is prevalent when the number 
of teeth of the external gear is small.  Involute interference can 

be avoided by the conditions cited below:

                 1 -	 (4.4)

where  α a2 is the pressure angle at a tip of the internal gear 
tooth.

                       α a2  = cos -1  	    (4.5)

                        α ' :  working pressure angle

                       α ' = cos -1	 (4.6)

Equiation (4.5) is true only if the tip diameter of the internal 
gear is bigger than the base circle:
 
                    da2    db2	 (4.7)

For a standard internal gear, where α  = 20°, Equation (4.7) is 
valid only if the number of teeth is z2 > 34.



	 (4.9)



m
a

2
z2 - z1





 z2 - z1

2y
cosα

+ 1

2tanα
(z2 - z1) (inv α '- inv α)

z2

z1

tanα '
tanα a2

da2

db2 











 2a

(z2-z1) m cosα

z2

z1

2ara1

ra2
2-ra1

2-a2 





2ara2

a2+ ra2
2-ra1

2 





da1

db1 





da2

db2 




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z0

z0

z0

20

z2

z2

z2

(c) Trimming Interference

This occurs in the radial direction in that it prevents pulling the 
gears apart. Thus, the mesh must be assembled by sliding the 
gears together with an axial motion.  It tends to happen when 
the numbers of teeth of the two gears are very close.  Equation 
(4.11) indicates how to prevent this type of interference.

          θ 1 + invα a1-invα '  z1

z2 ( θ 2 + invα a2-invα ' )
	 (4.11)

                 θ1 = sin 
-1

                 θ2 = sin 
-1

This type of interference can occur in the process of cutting an 
internal gear with a pinion cutter.  Should that happen, there is 
danger of breaking the tooling.  
Table 4.8(1) shows the limit for the pinion cutter to prevent 
trimming interference when cutting a standard internal gear, 
with pressure angle a 0   = 20°, and no profile shift, i.e., x0 = 0.

Table 4.8(1)  The limit to prevent an internal gear 
                      From trimming interference a0  =20°  x0  = x2   =0




    (4.12)




15
34 34 35 36 37 38 39 40 42 43 45

16 17 18 19 20 21 22 24 25 27

44
62 66 68 74 78 82 84 98 114 118

48 50 56 60 64 66 80 96 100

28
46 48 49 50 51 52 53 56 58 60

30 31 32 33 34 35 38 40 42

There will be an involute interference between the internal gear 
and the pinion cutter if the number of teeth of the pinion cutter 
ranges from 15 to 22 (z0 

= 15 to 22).  
Table 4.8(2) shows the limit for a profile shifted pinion cutter to 
prevent trimming interference while cutting a standard internal 
gear.  The correction (x0) is the magnitude of shift which was 
assumed to be:  x0 = 0.0075 z0 + 0.05.

There will be an involute interference between the internal gear 
and the pinion cutter if the number of teeth of the pinion cutter 
ranges from 15 to 19 (z0 = 15 to 19).

Table 4.8(2) The limit to prevent an internal gear       
                    from trimming interference a0   = 20° , x2  =0

1-( z1/ z2) 2

1-(cosα a1 / cosα a2) 2

√

( z2/ z1) 2-1
(cosα a2 / cosα a1) 2-1

√

Fig.4.5  Involute interference and trochoid interference Fig.4.6  Trimming interference

Involute interference Trochoid interference

 Interference

Interference Interferenceθ1

θ2

θ1

θ2

z0

z0

z0

x0

x0

x0

z2

15
0.1625
36 38 39 40 41 42 43 45 47 48 50

0.17 0.1775 0.185 0.1925 0.2 0.2075 0.215 0.23 0.2375 0.2525
16 17 18 19 20 21 22 24 25 27

z2

44
0.38
71 76 78 86 90 95 98 115 136 141

0.41 0.425 0.47 0.5 0.53 0.545 0.65 0.77 0.8
48 50 56 60 64 66 80 96 100

z2

28
0.26
52 54 55 56 58 59 60 64 66 68

0.275 0.2825 0.29 0.2975 0.305 0.3125 0.335 0.35 0.365
30 31 32 33 34 35 38 40 42
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hob if module mn and pressure angle a n are constant, no matter 
what the value of helix angle b.

It is not that simple in the transverse system.  The gear hob 
design must be altered in accordance with the changing of helix 
angle b, even when the module mt and the pressure angle a t are 
the same.  
Obviously, the manufacturing of helical gears is easier with 
the normal system than with the transverse system in the plane 
perpendicular to the axis.   

In meshing helical gears,  they must have the same helix angle 
but with opposite hands.

4.3 Helical Gears

A helical gear such as shown in Figure 4.7 is a cylindrical gear in 
which the teeth flank are helicoid.  The helix angle in reference  
cylinder is b, and the displacement of one rotation is the lead, pz .

The tooth profile of a helical gear is an involute curve from an 
axial view, or in the plane perpendicular to the axis.  The helical 
gear has two kinds of tooth profiles – one is based on a normal 
system, the other is based on an transverse system.
	
Pitch measured perpendicular to teeth is called normal pitch, pn.  
And pn divided by p is then a normal module, mn.

            mn    =	 (4.13)

The tooth profile of a helical gear with applied normal module, 
mn, and normal pressure angle a n belongs to a normal system. 

In the axial view, the pitch on the reference is called the 
transverse pitch, p t.  And p t divided by p  is the transverse 
module, mt.

             mt    =	 (4.14)

These transverse module mt and transverse pressure angle  a t are 
the basic configuration of transverse system helical gear.
In the normal system, helical gears can be cut by the same gear 

π
pn

π
pt

Fig.4.7  Fundamental relationship of a helical gear (Right-hand)
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0.023405

 tan -1

1

6

5

(1)  Normal System Helical Gear
In the normal system, the calculation of a profile shifted helical 
gear, the working pitch diameter d' and transverse working 
pressure angle α 't is done per Equations (4.15).  That is because 
meshing of the helical gears in the transverse plane is just like 
spur gears and the calculation is similar.

                d'1 = 2a

                d'2 = 2a

                α 't  = cos - 
1

Table 4.9 shows the calculation of profile shifted helical gears 
in the normal system.  If normal profile shift coefficients xn1, xn2 
are zero, they become standard gears.





	 (4.15)





13

6

7

8

9

11

10

15

16

17

12

Formula
Example

Pinion Gear

Table 4.9  The calculation of a profile shifted helical gear in the normal system (1)

2

3

4

Item

Normal module
Normal pressure angle

Reference cylinder helix angle

Number of teeth &helical hand

Normal profile shift coefficient

Transverse pressure 
angle

Involute function α't

Transverse woking pressure angle

Center distance 
modification coefficient

Reference diameter

Center distance

Working pitch diameter

Addendum

Tooth depth

Tip diameter

Root diameter

Base diameter

Symbol

mn

αn

β
z

xn

α t

inv α't

α't

y

d

a

d'

ha1

ha2

h
da

df

db

2 tanα n                    + invα t

Find from involute Function Table

                            - 1

               + y   mn

( 1+ y-xn2 ) mn   

( 1+ y- xn1 ) mn    

{2.25 + y- (xn1+xn2 )} mn

d + 2ha

da -2h

d cosα t

3
20°
30°

12(L) 60(R)

+ 0.09809

22.79588°

0

23.1126°

000.09744

41.569 207.846

125.00000

41.667

03.292 002.998

6.748
48.153
34.657

38.322 191.611

208.333

213.842
200.346

z1 + z2

z1

z1 + z2

z2

2a
db1 + db2 





cosα't
db

cos β
zmn





 2cos β

z1 + z2

2cos β
z1  + z2 



 cosα 't

cosα t





 z1 + z2

xn1 + xn2





 cos β

tanα n
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If center distance, a, is given, the normal profile shift coefficients 
xn1  and xn2  can be calculated from Table 4.10.  These are the 
inverse equations from items 4 to 10 of  Table 4.9.

cos -1

        -

Formula Example

Table 4.10  The calculations of a profile shifted helical gear in the normal system (2)

1

2

3

4

5

Item

Center distance

Center distance 
modification coefficient

Transverse working 
pressure angle

Sum of profile shift 
coefficient

Normal profile shift coefficient

Symbol

a

y

α't

xn1  + xn2

xn

125

0.097447

23.1126°

0.09809

0.09809 0

The transformation from a normal system to a transverse system 
is  accomplished by the following equations:

       xt = xn cos β

       mt =

       α t = tan -1





	 (4.16)





mn

a
2cos β
z1 + z2





 z1 + z2

2y cos β
cosα t

+ 1

2tanα n

(z1 + z2) (invα 't - invα t)

cos β
mn





 cos β

tanα n
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(2) Transverse System Helical Gear

Table 4.11 shows the calculation of profile shifted helical gears 
in a transverse system.  They become standard if  xt1 = xt2 = 0.

12

5

6

7

8

10

9

13

14

15

16

11

Formula
Example

Pinion Gear

Table 4.11  The calculation of a profile shifted helical gear in the transverse system (1)

1

2

3

4

Item

Transverse module

Transverse pressure angle

Reference cylinder helix angle

Number of teeth & helical hand

Transverse profile shift coefficient

Involute function α't

Transverse working pressure angle

Center distance 
modification coefficient

Reference diameter

Center distance

Working pitch diameter

Addendum

Tooth depth

Tip diameter

Root diameter

Base diameter

Symbol

mt

α t

β
z
xt

invα't

α't

y

d

a

d'

ha1

ha2

h
da

df

db

2 tanα t                    + invα t

Find from Involute Function Table

                            - 1

zmt

              + y   mt  

( 1 + y-xt2 ) mt

( 1+ y -xt1 ) mt

{2.25 + y - (xt1 + xt2 )} mt

d + 2ha

da - 2h

d cosα t

3
20°
30°

12 (L) 60 (R)
0.34462 0

0.0183886

21.3975°

0.33333

36.0000 180.0000

109.0000

36.3333

04.0000 002.9660

6.716
44.0000
30.5680

33.8289 169.1447

181.6667

185.9320
172.5000

cos -1

       -

Formula Example

Table 4.12 The calculation of a profile shifted helical gear in the transverse system (2)

1

2

3

4

5

Item

Center distance

Center distance 
modification coefficient

Transverse working 
pressure angle

Sum of profile shift 
coefficient

Transverse profile shift coefficient

Symbol

a

y

α't

xt1  + xt2

xt

109

0.33333

21.39752°

0.34462

0.34462 0

The transformation from a transverse to a normal system is 
described by the following equations:

xn  =

mn = mt cosβ

α n = tan 
-1 ( tanα t cosβ )

Table 4.12 presents the inverse calculation of items 5 to 9 of 
Table 4.11.




	 (4.17)




cosα 't

db





 2

z1 + z2

2
z1 + z2 



 cosα 't

cosα t





 z1 + z2

xt1 + xt2

mt

a
2

z1 + z2





 z1 + z2

2y
cosα t

+ 1

2tanα t

(z1 + z2) (invα't - invα t)

cosβ
xt
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(3) Sunderland Double Helical Gear

A representative application of transverse system is a double 
helical gear, or herringbone gear, made with the Sunderland 
machine.  

The transverse pressure angle, α t, and helix angle, β , are 
specified as 20° and 22.5°, respectively.  

The only differences from the transverse system equations of 
Table 4.11 are those for addendum and tooth depth.  
Table4.13 presents equations for a Sunderland gear.

12

5

6

7

8

10

9

13

14

15

16

11

Formula
Example

Pinion Gear

Table 4.13  The calculation of a double helical gear of SUNDERLAND tooth profile

1

2

3

4

Item

Transverse module
Transverse pressure angle

Reference cylinder helix angle

Number of teeth

Transverse profile shift coefficient

 Involute function α't
Transverse working pressure 
angle
Center distance 
modification coefficient

Reference diameter

Center distance

 Working pitch diameter

Addendum

 Tooth depth

Tip diameter

 Root diameter

Base diameter

Symbol

mt

α t

β
z
xt

invα't

α't

y

d

a

d'

ha1

ha2

h
da

df

db

2 tanα t                    + invα t

Find from Involute Function Table

                             -1

zmt

               + y   mt

( 0.8796 + y -xt2 ) mt

( 0.8796 + y - xt1 ) mt

{1.8849 + y - (xt1 + xt2 )}mt

d + 2ha

da - 2h

d cosα t

3
20°

22.5°
12 60

0.34462 0

0.0183886

21.3975°

0.33333

36.0000 180.0000

109.0000

36.3333

03.6390 002.6050

5.621
43.2780
32.0360

33.8289 169.1447

181.6667

185.2100
173.9680

cosα 't

db





 2

z1 + z2





 cosα 't

cosα t





 z1 + z2

xt1 + xt2

2
z1 + z2
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(4) Helical Rack

Viewed in the transverse plane, the meshing of a helical rack 
and gear is the same as a spur gear and rack.  Table 4.14 presents 
the calculation examples for a mated helical rack with normal 

11

- 27.5

1

5

6

7

8

9

12

13

14

10

Formula
Example

Gear Rack

 Table 4.14   The calculation of a helical rack in the normal system

2

3

4

Item

Normal module

Normal pressure angle

Reference cylinder helix angle

 Number of teeth & helical hand

 Normal profile shift coefficient

Pitch line height

Transverse pressure 
angle

 Mounting distance

Reference diameter

Addendum

Tooth depth

Tip diameter

 Root diameter

Base diameter

Symbol

mn

α n

β
z
xn

H

α t

a

d

ha

h
da

df

db

 tan 
-1

             + H + xn mn

mn ( 1 + xn )
2.25mn

d + 2ha

da - 2h

d cosα t

2.5
20°

10°   57' 49"
20  (R) -  (L)

0 -

20.34160°

52.965

50.92956
-

2.5000 2.500
5.625

55.92900
44.67900

47.75343

-

The formulas of a standard helical rack are similar to those of 
Table 4.14 with only the normal profile shift coefficient  xn = 0.  
To mesh a helical gear to a helical rack, they must have the same 
helix angle but with opposite hands. 

The displacement of the helical rack, l, for one rotation of the 
mating gear is the product of the transverse pitch and number of 
teeth.

           l =              z	 (4.18)

According to the equations of  Table 4.14, let transverse pitch pt 
= 8 mm and displacement l = 160 mm.  The transverse pitch and 
the displacement could be modified into integers, if the helix 
angle were chosen properly.

cosβ
zmn





 cosβ

tanα n

2cosβ
zmn

cosβ
πmn

module and normal pressure angle.  Similarily, Table 4.15 
presents examples for a helical rack in the transverse system 
(i.e., perpendicular to gear axis).
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11

- 27.5

1

5

6

7

8

9

12

13

10

Formula
Example

Gear Rack

 Table 4.15   The calculation of a helical rack in the transverse system

2

3

4

Item

Transverse module

Transverse pressure angle

Reference cylinder helix angle

Number of teeth & helical hand

Transverse profile shift coefficient

Pitch line height

 Mounting distance

Reference diameter

Addendum

Tooth depth

 Tip diameter

 Root diameter

Base diameter

Symbol

mt

α t

β
z
xt

H

a

d

ha

h
da

df

db

             + H + xt mt

zmt

mt ( 1 + xt )
2.25mt

d + 2ha

da -2h

d cosα t

2.5
20°

10°   57′ ' 49"
20  (R) -  (L)

0 -

52.500

50.00000
-

2.5000 2.500
5.625

55.00000
43.75000

46.98463

-

  In the meshing of transverse system helical rack and helical 
gear, the movement, l, for one turn of the helical gear is the  
transverse pitch multiplied by the number of teeth.
      l = πmt z	 (4.19)

2
zmt
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4.4  Bevel Gears
Bevel gears, whose pitch surfaces are cones, are used to drive 
intersecting  axes.  Bevel gears are classified according to their 
type of the tooth forms into Straight Bevel Gear, Spiral Bevel 
Gear, Zerol Bevel Gear, Skew Bevel Gear etc.
The meshing of bevel gears means pitch cone of two gears 
contact and roll  with each other. 
Let z1 and z2 be pinion and gear tooth numbers;  shaft angle S;  
and reference cone angles δ 1 and δ 2;  then:

           tan δ 1 =

           tan δ 2 =

Generally, shaft angle S = 90° is most used.  Other angles 
(Figure 4.8) are sometimes used.  Then, it is called “bevel gear 
in nonright angle drive”.  The 90° case is called “bevel gear in 
right angle drive”.

When S = 90°, Equation (4.20) becomes:

              δ 1 = tan -1

              δ 2 = tan -1

Miter gears are bevel gears with S = 90° and z1 = z2.  Their 
transmission ratio z2 / z1 = 1.

Figure 4.9 depicts the meshing of bevel gears.  
The meshing must be considered in pairs.  It is because the 
reference cone angles δ1 and δ2 are restricted by the gear ratio  
z1 / z2.  In the facial view, which is normal to the contact line of 
pitch cones, the meshing of bevel gears appears to be similar to 
the meshing of spur gears.




	 (4.20)






	 (4.21)







 z2

z1





 z1

z2

+  cos S
sin S

z1

z2

+  cos S
sin S

z2

z1

 Fig. 4.8   The reference cone angle  of bevel gear

Fig. 4.9   The meshing of bevel gears

z2 m

z1
m

S
δ2

δ1

δ2

δ1

R v
2

R v
1

R

b

d2

d 1
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(1)  Gleason Straight Bevel Gears
A straight bevel gear is a simple form of bevel gear having  
straight teeth which, if extended inward, would come together 
at the intersection of the shaft axes.  Straight bevel gears can be 
grouped into the Gleason type and the standard type.
In this section, we discuss the Gleason straight bevel gear.  The 
Gleason Company defined the tooth profile as: tooth depth h 
= 2.188m;  tip and root clearance  c = 0.188m; and working 
depth  h'  = 2.000m.  
The characteristics are:
    • Design specified profile shifted gears:

In the Gleason system, the pinion is positive shifted and   
the gear is negative shifted.  The reason is to distribute the 
proper strength between the two gears.  Miter gears, thus, 
do not need any shifted tooth profile.

      

     • The tip and root clearance is designed to be parallel: 

The face cone of the blank is turnd parallel to the root cone 
of the mate in order to eliminate possible fillet interference 
at the small ends of the teeth. 

Table 4.16 shows the minimum number of teeth to prevent 
undercut in the Gleason system at the shaft angle S = 90°.

Table 4.16  The minimum numbers of teeth to prevent undercut

 Pressure angle

(14.5°  ) 29/29 and higher

20°

(25°  )

Combination of number of teeth z1 / z2

Table 4.17 presents equations for designing straight bevel gears 
in the Gleason system.  The meanings of the dimensions and 
angles are shown in Figure 4.10 above.  All the equations in 
Table 4.17 can also be applied to bevel gears with any shaft 
angle.

The straight bevel gear with crowning in the Gleason system is 
called a Coniflex gear.  It is manufactured by a special Gleason 
“Coniflex” machine.  It can successfully eliminate poor tooth 
contact due to improper mounting and assembly.

Fig. 4.10   Dimentions and angles of bevel gears

δ a

b
R

d i d d a

90°   - δ

δ aδδ f

X
Xb

θ f

θa

h
a

h
f

h

28/29 and higher
16/16 and higher 15/17 and higher 14/20 and higher 13/30 and higher

24/57 and higher25/40 and higher26/35 and higher27/31 and higher

13/13 and higher
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No.

13

12

5

6

7

8

10

9

14

15

16

17

18

11

Formula
Example

Pinion (1) Gear (2)

Tale 4.17  The calcultions of straight bevel gears of the gleason system

1

2

3

4

Item

 Shaft angle		

 Module

 Reference pressure angle

 Number of teeth

 Reference diameter

 Reference cone angle

 Cone distance

 Facewidth

 Dedendum

 Addendum

 Addendum angle

 Tip angle

 Root angle

 Tip diameter

 Pitch apex to crown

 Axial facewidth

 Inner tip diameter

 Dedendum angle

Symbol

      S
m
α
z
d

δ 1

δ 2

R

b

hf

ha1

ha2

θ a1

θ a2

δa

δ f

da

X

Xb

di

θ f

zm

 tan -1

S - δ1

It should not exceed R/3 or 10m

2.188m - ha

2.000m - ha2

0.540m +

θ f2

θ f1

δ  + θ a

δ  - θ f

d + 2ha cosδ
R cosδ  - ha sinδ

da - 

tan-1 ( hf  / R )

90°
3

20°
20 040
60 120

 26.56505°  63.43495°

67.08204

22

02.5290  0 4.599  

04.0350  0 1.9650  0

0 3.92194°

 30.48699°  65.59398°
 24.40602°  59.51301°
67.21800c
58.19550c

19.00290c

44.84250c

 02.15903°  3.92194°

 2.15903°

121.7575c
028.2425c

009.0969c

081.6609c

The first characteristics of a Gleason Straight Bevel Gear is its 
profile shifted tooth.  From Figure 4.11, we can see the tooth 
profile of Gleason Straight Bevel Gear and the same of Standard 
Straight Bevel Gear.





 z1 cosδ 2

z2 cosδ 1

0.460m

2 sinδ 2

d2





 z1

z2

sinS

 + cosS

cosθ a

b cosδ a

cosθ a

2b sinδ a

Fig. 4.11   The tooth profile of straight bevel gears

Gleason straight bevel gear Standard straight bevel gear
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(2) Standard Straight Bevel Gears

A bevel gear with no profile shifted tooth is a standard straight 
bevel gear.  The applicable equations are in Table 4.18.

13

12

5

6

7

8

10

9

14

15

16

17

18

11

Formula
Example

Pinion (1) Gear (2)

Table 4.18   Calculation of a standard straight bevel gears

1

2

3

4

Item

 Shaft angle

 Module

 Reference pressure angle

 Number of teeth

 Reference diameter

 Reference cone angle

 Cone distance

 Facewidth

 Dedendum

 Addendum

 Addendum angle

 Tip angle

 Root angle

 Tip ciameter

 Pitch apex to crown

 Axial facewidth

 Inner tip diameter              

 Deddendum angle

Symbol

      S
m
α
z
d

δ 1

δ 2

R

b

hf

ha

θ a

δ a

δ f

da

X

Xb

di

θ f

zm

tan -1

S - δ 1

It should not exceed R/3 or 10m

1.25m
1.00m

tan-1 ( ha  / R )
δ + θa

δ - θ f

d + 2ha cosδ
R cosδ  - ha sinδ

da -

tan-1 ( hf  / R )

90°
3

20°
20 040
60 120

 26.56505°  63.43495°

67.08204

22

03.7500
03.0000

 02.56064°
 29.12569° 0 65.99559°
 23.36545° 0 60.23535°
65.36660c
58.65840c

19.23740c

43.92920c

 03.19960°

122.68330c
027.31670c

008.95870c

082.44850c

These equations can also be applied to bevel gear sets with other 
than 90° shaft angle.

cosθ a

2b sinδ a

cosθ a

b cosδ a

2 sinδ 2

d2





 z1

z2

sinS

 + cosS
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Number of teeth in pinion

(3) Gleason Spiral Bevel Gears

A spiral bevel gear is one with a spiral tooth flank as in Figure 
4.12.  The spiral is generally consistent with the curve of a cutter 
with the diameter dc.  The spiral angle b is the angle between a 
generatrix element of the pitch cone and the tooth flank.  The 
spiral angle just at the tooth flank center is called mean spiral 
angle b m.  In practice, spiral angle means mean spiral angle.

All equations in Table 4.21 are dedicated for the manufacturing 
method of Spread Blade or of Single Side from Gleason.  If a 
gear is not cut per the Gleason system, the equations will be 
different from these.

The tooth profile of a Gleason spiral bevel gear shown here has 
the tooth depth h = 1.888m;  tip and root clearance c = 0.188m;  
and working depth h' = 1.700m.  These Gleason spiral bevel 
gears belong to a stub gear system.  This is applicable to gears 
with modules m > 2.1.

Table 4.19 shows the minimum number of teeth to avoid 
undercut in the Gleason system with shaft angle S = 90° and 
pressure angle a n = 20°.

Table 4.19    The minimum numbers of teeth to prevent undercut β = 35°
 Pressure angle

17/17 and higher

6
34 and
higher
1.500
1.666
0.215
1.285
0.911
0.803

─
─

20°
35°  ~ 40°

90°

7
33 and
higher
1.560
1.733
0.270
1.290
0.957
0.818
0.757

─

8
32 and
higher
1.610
1.788
0.325
1.285
0.975
0.837
0.777
0.777

9
31 and
higher
1.650
1.832
0.380
1.270
0.997
0.860
0.828
0.828

10
30 and
higher
1.680
1.865
0.435
1.245
1.023
0.888
0.884
0.883

11
29 and
higher
1.695
1.882
0.490
1.205
1.053
0.948
0.946
0.945

20°

Number of teeth in gear

Working depth

Tooth depth

Gear addendum

Pinion addendum

Tooth thickness of 
gear
s2

                         

Spiral angle

Normal pressure angle

Shaft angle                  

z1

z2

h'
h

ha2

ha1

30

40

50

60

α n

β
S

Combination of numbers of teeth  z1 / z2

Table 4.20    Dimentions for pinions with number of teeth less than 12

If the number of teeth is less than 12, Table 4.20 is used to 
determine the gear sizes.

 NOTE:  All values in the table are based on m = 1. 

Fig.4.12  spiral bevel gear (Left-hand)

δ

R
b

b/2 b/2

Rv

dc

βm

16/18 and higher 13/22 and higher 12/26 and higher14/20 and higher15/19 and higher
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No.

19

Table 4.21 shows the calculations of spiral bevel gears of the 
Gleason system

15

14

7

8

9

10

12

11

16

17

18

20

13

Formula
Example

Pinion Gear

Table 4.21   The calculations of spiral bevel gears of the Gleason system

1

2

3

4

5

6

Item

Shaft angle

Module

Normal pressure angle

Mean spiral angle

Number of teeth and spiral hand

Transverse pressure angle

Reference diameter

Reference cone angle

Cone distance

Facewidth

Dedendum

Addendum

Addendum angle

Tip angle

Root angle

Tip diameter

Pitch apex to crown

Axial facewidth

Inner tip diameter

Dedendum angle

Symbol

      S
m
α n

βm

z

α t

d

δ 1

δ 2

R

b

hf

ha1

ha2

θ a1

θ a2

δ a

δ f

da

X

Xb

di

θ f

zm

tan -1

S - δ 1

It should be less than 0.3R or 10m

1.888m - ha

1.700m - ha2

 0.460m +

θ f2

θ f1

δ  + θ a

δ  - θ f

d + 2hacosδ
Rcosδ  - ha sinδ

 da -

tan-1 ( hf  / R )

 90°
3

 20°
 35°

20 (L)

23.95680

040 (R)

60 120

 26.56505°

67.08204

20

02.23650c 003.99150c

03.42750 001.67250

 03.40519°

 29.97024°  065.34447°
 24.65553° 0 60.02976°
66.13130c
58.46720c

17.35630c

46.11400c

 01.90952° 00 3.40519°

0 01.90952°

121.49590c
028.50410c

098.34790c

85.1224

All equations in Table 4.21 are also applicable to Gleason bevel 
gears with any shaft angle.  A spiral bevel gear set requires 
matching of hands;  left-hand and right-hand as a pair.

(4)  Gleason Zerol  Bevel Gears

When the spiral angle bm = 0, the bevel gear is called a Zerol 
bevel gear.  The calculation equations of Table 4.17 for Gleason 
straight bevel gears are applicable.  They also should take 
care again of the rule of hands; left and right of a pair must be 
matched.

Figure 4.13 is a left-hand 
Zerol bevel gear.





 z1

z2

sinS
+ cosS

2 sinδ 2

d2





 z1 cosδ 2

z2 cosδ 1

0.390m

cosθ a

b cosδ a

cosθ a

2b sinδ a

 Fig. 4.13    Left-hand zerol bevel gear

tan -1
 ( cosβ

tanα n )



Elementary Information on Gears

34

4.5  Screw Gears

Screw gearing includes various types of gears used to drive 
nonparallel and nonintersecting shafts where the teeth of one or 
both members of the pair are of screw form.  Figure 4.14 shows 
the meshing of screw gears.
Two screw gears can only mesh together under the conditions that 
normal modules (mn1) and (mn2) and normal pressure angles (an1, 
an2) are the same.  

Let a pair of screw gears have the shaft angle S and helix angles 
b 1 and b 2:

    If they have the same hands, then:
         S  = β 1 + β 2

    If they have the opposite hands, then:
         S  = β 1 - β 2   or S = β 2 - β 1

	 (4.22)

If the screw gears were profile shifted, the meshing would become 
a little more complex.  Let  β'1,  β'2 represent the working pitch 
cylinder;

      If they have the same hands, then:
        S  = β '1 + β '2

    If they have the opposite hands, then:
        S  = β '1 - β '2 or S  = β '2 - β '1

	 (4.23)

Table 4.22 presents equations for a profile shifted screw gear pair.  
When the normal profile shift coefficients  
xn1 = xn2 = 0, the equations and calculations are the same as for 
standard gears.
	




   












Fig.4.14  Screw gears of nonparallel and nonintersecting axes

Gear 1

 Gear 2

(Right-hand) (Left-hand)

(Right-hand)

β 2 β2

β1

β 1   S

   S
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19

16

17

18

00.0228415

tan -1

1

7

6

5

15

8

10

9

11

13

12

20

21

14

Formula
Example

Pinion Gear

Table 4.22   The equations for a screw gear pair on nonparallel and 
                      Nonintersecting axes in the normal system

2

3

4

Item

Normal module

Normal pressure angle

Reference cylinder helix angle

Number of teeth & helical hand

Normal profile shift coefficient

Transverse pressure angle

Number of teeth  of an
Equivalent  spur gear

Involute function α 'n

Transverse working 
pressure angle

Normal working pressure angle

Center distance 
modification coefficient

Reference diameter

Center distance

Working pitch diameter

Working helix angle

Addendum

Tooth depth

Tip diameter

Root diameter

Base diameter

Shaft angle

Symbol

mn

α n

β
z

xn

α t

zv

invα 'n

α 't

α 'n

y

d

a

d'1

d'2

β '

ha1

ha2

h
da

df

db

Σ

2 tanα n                    + invα n

tan -1

Find from involute function table

      ( zv1  + zv2 )                - 1

                +                +  y   mn

 2a

 2a

  tan -1        tanβ

( 1 + y - xn2 ) mn

( 1 + y - xn1 ) mn

{2.25 + y - ( xn1 + xn2 )}mn

d + 2ha

da - 2h

d cosα t

β '1 + β '2 or β '1 - β '2

3
20°

20° 30°
15 (R) 24 (R)

0.4

21.1728° 22.7959°

18.0773 36.9504

0.2

24.2404° 26.0386°

22.9338°000

0.55977c

47.8880c 83.1384c

67.1925c

49.1155c

20.4706°

04.0793c

30.6319°

03.4793c

6.6293
56.0466c
42.7880c

44.6553c

51.1025°

76.6445c

85.2695c

90.0970c
76.8384c

Standard screw gears have relations as follows:

   d'1 = d1         d'2 = d2

   β '1 = β 1         β '2 = β 2


                    (4.24)






 d

d'

d1 + d2

d2

d1 + d2

d1

cosβ
zmn

2cosβ 1

z1 



 2cosβ 2

z2

2
1

cosα 'n

cosα n 









 cosβ

tanα 'n





 zv1 + zv2

xn1 + xn2





 cosβ

tanα n

cos3β
z



Elementary Information on Gears

36

Worm

mx = mn mt =

α x = tan-1 α n α t = tan-1

px = πmx pn = πmn pt = πmt

pz = πmxz pz = pz = πmtz tanγ

4.6  Cylindrical Worm Gear Pair

Cylindrical worms may be considered cylindrical type gears 
with screw threads.  Generally, the mesh has a 90O shaft angle.  
The number of threads in the worm is equivalent to the number 
of teeth in a gear of a screw type gear mesh.  Thus, a one-
thread worm is equivalent to a one-tooth gear;  and two-threads 
equivalent to two-teeth, etc.  Referring to Figure 4.15, for a 
reference cylinder lead angle g, measured on the pitch cylinder, 
each rotation of the worm makes the thread advance one lead  pz.

There are four worm tooth profiles in JIS B 1723, as defined on 
the right.

Type I Worm:  The tooth profile is trapezoidal on the axial plane.          
Type II Worm: The tooth profile is trapezoid on the plane 	
	 normal to the space.
Type III Worm:  The tooth profile which is obtained by inclining  	
	 the axis of the milling or grinding, of which cutter 	
	 shape is trapezoidal on the cutter axis, by the lead 	
	 angle to the worm axis. 
Type IV Worm:  The tooth profile is of involute curve on the 	
	 plane of rotation.

Type III worm is the most popular.  In this type, the normal 
pressure angle a n has the tendency to become smaller than  that 
of the cutter, a 0.
Per JIS, Type III worm uses a axial module mx and cutter 
pressure angle a 0 = 20° as the module and pressure angle.  A 
special worm hob is required to cut a Type III worm wheel.
Standard values of axial module, mx , are presented in Table 
4.23.

Because the worm mesh couples nonparallel and nonintersecting 
axes, the axial plane of worm does not correspond with the axial 
plane of worm wheel.  The axial plane of worm corresponds 
with the trsnsverse plane of worm wheel.  The transverse plane 
of worm corresponds with the axial plane of worm wheel.  The 
common plane of the worm and worm wheel is the normal 
plane.  Using the normal module, mn, is most popular.  Then, an 
ordinary hob can be used to cut the worm wheel.

Table 4.24 presents the relationships among worm and worm 
wheel axial plane, transverse plane, normal plane, module, 
pressure angle, pitch and lead.

Table 4.23  Axial module of cylindrical worm gear pair

1

6.30 8.00 10.00 12.50 16.00 20.00 25.00

1.25 1.60 2.00 2.50 3.15 4.00 5.00

Table 4.24   The relations of cross sections of worm gear pair

 Worm wheel

Axial plane 

Transverse plane

Normal plane 

Norml plane

Transverse plane

Axial plane





 cosγ
tanα n

cosγ
mn

cosγ
πmn z

sinγ
mn





 sinγ

tanα n

 Fig. 4.15   Cylindrical worm (Right-hand)

γ

β

px

α x
α n

α t

pn

pn

p t

d

π d

pz = πd tan γ

NOTE:  The transverse plane is the plane perpendicular to the axis.
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No.

13

10

2

Reference to Figure 4.15 can help the understanding of the 
relationships in Table 4.24.  They are similar to the relations in 
Formulas (4.16) and (4.17) that the helix angle b be substituted 
by (90° – g).  We can consider that a worm with lead angle g is 
almost the same as a helical gear with helix angle (90° – g).

(1) Axial Module Worm Gear Pair

Table 4.25 presents the equations, for dimensions shown in 
Figure 4.16, for worm gears with axial module, mx, and normal 
pressure angle a n = 20°.

Table 4.25  The calculations of axial module system worm gear pair

11

─ 0

1

5

6

7

8

9

12

Formula
Example

Worm Wheel

3

4

Item

Axial module

Normal pressure angle

No. of threads, no. of teeth

Reference diameter

Reference cylinder lead 
angle

Profile shift coefficient

Center distance

Addendum

Tip diameter

Throat diameter

Throat surface radius

Root diameter

Tooth depth

Symbol

mx

α n

z
d1

d2

γ

xt2

a

ha1

ha2

da1

da2

dt

ri

df1

df2

h

(Qmx)                               NOTE 1
z2 mx

tan -1

             + xt2 mx

1.00 mx

(1.00 + xt2) mx

d1 + 2ha1

d2 + 2ha2 + mx                                        NOTE 2
d2 + 2ha2

     - ha1

da1 - 2h
dt - 2h

2.25 mx

3
(20°  )

  Double(R) * 30 (R)

44.000 90.000

7.76517°

67.000

3.000 3.000

50.000 99.000

─ 96.000

─

36.500

6.750

19.000

82.500

Fig. 4.16  Dimentions of cylindrical worm gear pair

NOTE 1:  Diameter factor, Q, means reference diameter of worm, d1, over axial module, mx.

              Q = 

NOTE 2:  There are several calculation methods of worm wheel tip diameter da2 besides
                 those in Table 4.25.
NOTE 3:  The facewidth of worm, b1, would be sufficient if:
                  b1 = pmx (4.5+ 0.02z2)
NOTE 4:  Effective facewidth of worm wheel b' =  2mx√ Q + 1.  So the actual facewidth of  
                  b2      b' + 1.5 mx would be enough.

mx

d1





 d1

mx z1

2
d1 + d2

2
d1

γ

ri

a
d f

1 d 1 d a
1

d f
2 d 2 d t d a
2

* Double-threaded right-hand worm .
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13

14

11
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(2) Normal Module System Worm Gear Pair

The equations for normal module system worm gears are based 
on a normal module, mn, and normal pressure angle, a n = 20°. 
See Table 4.26.

Table 4.26    The calculations of normal module system worm gear pair

12

- - 0.1414

1

6

7

8

9

10

Formula
Example

Worm Worm Wheel

3

4

5

Item

Normal module

Normal pressure angle

No. of threads, No. of teeth

Reference diameter of worm

Reference cylinder lead 
angle

Reference diameter of 
worm wheel

Normal profile shift coefficient

Center distance

Addendum

Tip diameter

Throat diameter

Throat surface radius

Root diameter

Tooth depth

Symbol

mn

α n

z
d1

γ

d2

xn2

a

ha1

ha2

da1

da2

dt

ri

df1

df2

h

sin -1

             + xn2mn

1.00 mn

(1.00 + xn2) mn

d1 + 2ha1

d2 + 2ha2 + mn

d2 + 2ha2

     - ha1

da1 - 2h
dt - 2h

2.25 mn

3
( 20°  )

Double(R) *
44.000

30 (R)
-

7.83748°

- 90.8486

67.000

3.000 2.5758

50.000 99.000

- 96.000

-

36.500

6.750

19.000

82.500

(3)  Crowning of  the Tooth

Crowning is critically important to worm gears.  Not only can it 
eliminate abnormal tooth contact due to incorrect assembly, but 
it also provides for the forming of an oil film, which enhances 
the lubrication effect of the mesh.  This can favorably impact 
endurance and transmission efficiency of the worm mesh.  There 
are four methods of crowning worm gear pair:

(a) Cut Worm Wheel with a Hob Cutter of Greater Reference

      Diameter than the Worm.
A crownless worm wheel results when it is made by using a hob 
that has an identical pitch diameter as that of the worm.  This 
crownless worm wheel is very difficult to assemble correctly.  
Proper tooth contact and a complete oil film are usually not 
possible. 
However, it is relatively easy to obtain a crowned worm wheel 

by cutting it with a hob whose
reference diameter is slightly
larger than that of the worm.  

This is shown in Figure 4.17.  
This creates teeth contact in 
the center region with space 
for oil film formation.

NOTE:  All notes are the same as those of Table 4.25.

2
d1

2
d1 + d2

cosγ
z2mn





 d1

mn z1

Fig.4.17  The method of using
                a greater diameter hob

Worm

Hob

* Double-threaded  right-hand worm .
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(d)  Use a Worm with a Larger Pressure Angle than the Worm  
       Wheel.

This is a very complex method, both theoretically and 
practically.  Usually, the crowning is done to the worm wheel, 
but in this method the modification is on the worm.  That is, 
to change the pressure angle and pitch of the worm without 
changing base pitch, in accordance with the relationships shown 
in Equations 4.25:

             px cosα x = px' cosα x'   	                             (4.25)

In order to raise the pressure angle from before change, a x', to 
after change, a x , it is necessary to increase the axial pitch, px', to 
a new value, px , per Equation (4.25).  The amount of crowning 
is represented as the space between the worm and worm wheel 
at the meshing point A in Figure 4.21.  This amount may be 
approximated by the following equation:

    Amount of crowning     k	 (4.26)

  where  d1  :	  Reference diameter of worm
               k  :	  Factor from Table 4.27 and Figure 4.20
              px  :    Axial pitch after change
              px' :    Axial pitch before change

(b)  Recut With Hob Center Position Adjustment.

The first step is to cut the worm wheel at standard center 
distance.  This results in no crowning.  Then the worm wheel 
is finished with the same hob by recutting with the hob axis 
shifted parallel to the worm wheel axis by ± Dh.  This results in 
a crowning effect, shown in Figure 4.18.

(c)  Hob Axis Inclining Dq  From Standard Position.

In standard cutting, the hob axis is oriented at the proper angle to 
the worm wheel axis.  After that, the hob axis is shifted slightly 
left and then right, Dq, in a plane parallel to the worm wheel 
axis, to cut a crown effect on the worm wheel tooth.  

This is shown in Figure 4.19. Only method (a) is popular.  
Methods (b) and (c) are seldom used.

Table  4.27 The value of factor k

α x 14.5° 17.5° 20° 22.5°

k 0.55 0.46 0.41 0.375

Fig.4.18  Offsetting up or down

 Fig. 4.19  Inclining right or left

Fig. 4.20   The value of factor (k)

px'
px - px'

2
d1

Δh
Δh

Δθ
Δθ Axial pressure angle  a x

k
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 Table 4.28 shows an example of calculating worm crowning.

13

14

15

16

11

 After crowning

2

Table 4.28 The calculation of worm crowning

12

1

6

7

8

9

10

Formula ExampleNo.

3

4

5

Item

Axial module

Normal pressure angle

Number of threads of worm

 Reference diameter 
of worm

Reference cylinder 
lead angle

Axial pressure angle

Axial pitch

Lead

Amount of 
crowning

Axial pitch

Axial pressure angle

Axial module

Reference cylinder 
lead angle

Normal pressure angle

Lead

Factor

Symbol

mx'
α n'
z1

d1

γ '

α x'

px'
pz'

CR

px

α x

mx

γ

α n

pz

k

NOTE: These are the 
              data before  
              crowning.

tan -1

tan -1

πmx'
πmx z1

*

px'            + 1

cos -1          cosa x'

tan -1

tan -1    ( tanα x cosγ )
πmx z1

From Table 4.27

3
20°
2

44.000000c

7.765166°

20.170236°

18.849556c
09.424778c

00.040000c

09.466573c

20.847973°

03.013304c

7.799179°

20.671494°
18.933146c

00.410000c

(4) Self-Locking Of  Worm Gear Pair

Self-locking is a unique characteristic of worm meshes that 
can be put to advantage.  It is the feature that a worm cannot 
be driven by the worm wheel.  It is very useful in the design of 
some equipment, such as lifting, in that the drive can stop at any 
position without concern that it can slip in reverse.  However, 
in some situations it can be detrimental if the system requires 
reverse sensitivity, such as a servomechanism.

Self-locking does not occur in all worm meshes, since it requires 
special conditions as outlined here.  In this analysis, only the 
driving force acting upon the tooth surfaces is considered 
without any regard to losses due to bearing friction, lubricant 
agitation, etc.  The governing conditions are as follows:

Let   Ft1 = tangential driving force of worm

Then,
      Ft1 = Fn (cosα n sinγ  - μcosγ  )		 (4.27)

If Ft1 > 0 then there is no self-locking effect at all. Therefore, 
Ft1 ≤ 0 is the critical limit of self-locking.

Let an in Equation (4.27) be 20°, then the condition:
		  Ft1 ≤ 0   will become:
		  (cos20° sing  – mcosg ) ≤ 0

Figure 4.22 shows the critical limit of self-locking for lead angle 
g and coefficient of friction m.  Practically, it is very hard to 
assess the exact value of coefficient of friction m.  Further, the 
bearing loss, lubricant agitation loss, etc. can add many side 
effects.  Therefore, it is not easy to establish precise self-locking 
conditions.  
However, it is true that the smaller the lead angle g, the more 
likely the self-locking condition will occur.





 d1

mx z1

π
px

px

px' 









 kd1

2CR





 cosγ '

tanα n'





 d1

mx'z1

Fig. 4.22  The critical limit of self-locking of lead angle g  and 

Fig.4.21  Position A is the point of determining crowning amount

Lead angle g

m
 noitcirf fo tneiciffeo

C

A

d1

30°

* It should be determined by considering the size of tooth contact .
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