Practical
Information on
Gears

This chapter provides fundamental theoretical and practical information about gearing. It also introduces various gear-related
standards as an aid for the designer who is going to use gears for his planning.
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GEAR TOOTH MODIFICATIONS

Intentional deviations from the involute tooth profile are used to
avoid excessive tooth load deflection interference and thereby
enhances load capacity. Also, the elimination of tip interference
reduces meshing noise. Other modifications can accommodate
assembly misalignment and thus preserve load capacity.

(1) Tooth Tip Relief

There are two types of tooth relief. One modifies the
addendum, and the other
the dedendum. See Figure
1.1. Tip relief is much
more popular than root
modification.

Care should be taken,
however, not to modify
excessively since that will

cause bad effect in meshing.

Fig. 1.1 Tip relief

(2) Crowning and End Relief

Crowning and end relief are tooth surface modifications in the
axial direction.

Crowning is the removal of a slight amount of tooth from the
center on out to reach edge, making the tooth surface slightly
convex. This method allows the gear to maintain contact in the
central region of the tooth and permits avoidance of edge contact
with consequent lower load capacity. Crowning also allows a
greater tolerance in the misalignment of gears in their assembly,
maintaining central contact. The crowning should not be larger
than necessary as otherwise it would reduce dimentions of tooth
contact, thus weakening durable strength.

End relief is the chamfering of both ends of tooth surface. See
Figure 1.2.

Crowning End relief

Fig. 1.2 Crowning and end relief
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(8) Topping And Semitopping

In topping, often referred to as top hobbing, the top or tip
diameter of the gear is cut simultaneously with the generation
of the teeth. See page 387 "The Generating of a Spur Gear".
Also, refer to Figure 3.5, 3.6 and 3.7 in that section. An
advantage is that there will be no burrs on the tooth top. Also,
the tip diameter is highly concentric with the pitch circle.
Semitopping is the chamfering of the tooth's top corner, which
is accomplished simultaneously with tooth generation. Figure
1.3 shows a semitopping cutter and the resultant generated
semitopped gear. Such a tooth tends to prevent corner damage.
Also, it has no burr. The magnitude of semitopping should not go
beyond a proper limit as otherwise it would significantly shorten the
addendum and contact ratio.

Teeth form of semitopping cutter Semitopped teeth form

Fig.1.3 Semitopping cutter and the gear profile generated

Fig.1.4 Recommended
magnitude of
semitopping
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GEAR TRAINS

2.1 Planetary Gear System

The basic form of a planetary gear system is shown in Figure
2.1. It consists of a sun gear A, planet gears B, internal gear C
and carrier D.

Internal gear C
z.=48

Carrier D

Sun gear A
z,=16

Planet gear B
Zp= 16

Fig.2.1 An example of a planetary gear system

The input and output axes of a planetary gear system are
on a same line. Usually, it uses two or more planet gears to
balance the load evenly. It is compact in space, but complex
in structure. Planetary gear systems need a high-quality
manufacturing process. The load division between planet gears,
the interference of the internal gear, the balance and vibration of
the rotating carrier, and the hazard of jamming, etc. are inherent

problems to be solved.

Figure 2.1 is a so called 2K-H type planetary gear system. The

sun gear, internal gear, and the carrier have a common axis.

Zym Zam Zym 0
- —— - /—'.‘
B A B
N hd
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(1) Relationship Among the Gears in a Planetary Gear System
In order to determine the relationship among the numbers of
teeth of the sun gear A (z,), the planet gears B (z,) and the
internal gear C (z.) and the number of planet gears (N) in
the system, the parameters must satisfy the following three
conditions:

Condition No.1:

Condition No.2:

ze=z,+ 2z, 2.1
This is the condition necessary for the center distances of
the gears to match. Since the equation is true only for the
standard gear system, it is possible to vary the numbers of
teeth by using profile shifted gear designs.

To use profile shifted gears, it is necessary to match the
center distance between the sun A and planet B gears, a,,
and the center distance between the planet B and internal C
gears, a.

2.2)

a, = a,

= Integer (2.3)

Zit Z
N
This is the condition necessary for placing planet gears
evenly spaced around the sun gear. If an uneven placement
of planet gears is desired, then Equation (2.4) must be

satisfied.

(z.+ z.)0

180 = Integer

2.4)

Where 6 : half the angle between adjacent
planet gears (° )

Zem ) ¢

Condition No.1 of planetary
gear system

4

C

Condition No.2 of planetary
gear system

C
Condition No.3 of planetary
gear system

Fig.2.2 Conditions for selecting gears
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— . 180°
ondition No.3 z,+2 < (z,+z,) sin N (2.5)

Satisfying this condition insures that adjacent planet
gears can operate without interfering with each other.
This is the condition that must be met for standard gear
design with equal placement of planet gears. For other
conditions, the system must satisfy the relationship:

dw<2a,sin 0 (2.6)
Where:
dy: tip diameter of the planet gears

a, : center distance between the sun and
planet gears
Besides the above three basic conditions, there can be
an interference problem between the internal gear C and
the planet gears B. See Section 4.2 Internal Gears (Page
394).

(2) Transmission Radio of Planetary Gear System

In a planetary gear system, the transmission ratio and the
direction of rotation would be changed according to which
member is fixed. Figure 2.3 contain three typical types of
planetary gear mechanisms,

(b) Solar type (c) Star type

(a) Planetary type

Fig.2.3 Planetary gear mechanism

(a) Planetary Type
In this type, the internal gear is fixed. The input is the sun gear

and the output is carrier D. The transmission ratio is calculated
as in Table 2.1.

Table 2.1 Equations of transmission ratio for a planetary type

No. Description Sun gear A |Planet gear B| Intgrnal gearC Carrier D
Za Zy Ze
Rotate sun gear z z
1 |aonce while +1 —_f — Z 0
holding carrier Zy Ze
System is fixed
2 |as a whole while + ? + 2 + ? + ?
rotating ¢ Ze c c
Za | Za _ Za 0 Za
3 | Sumofland?2 1+ 2 | 2T 3| (fixed) + -

c c
T T
BT BL
I | . I E D(Fixed)
A(Fixed) A
|+ LT
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Transmission ratio = < == 2.7)

Note that the direction of rotation of input and output axes
are the same. Example: z,= 16, z,= 16, z. =48,
then transmission ratio = 4.

(b) Solar Type

In this type, the sun gear is fixed. The internal gear C is the
input, and carrier D axis is the output. The speed ratio is
calculated as in Table 2.2.

Table 2.2 Equations of transmission ratio for a solar type

No. Description Sun gearA |Planet gearB| Internal gearC Carrier D
2, Zp Z
Rotate sun gear
1 |aonce whil%_ +1 - — 0
holding carrier Zb Ze
System is fixed
2 | asawhole while -1 -1 -1 -1
rotating
0 Za e
3 |Sumof1and2 (fixed) | 2 -1 - - -1 =1
-2 1 241
Transmission ratio = °1 =— 1 (2.8)

Note that the directions of rotation of input and output axes
are the same.

Example: z,=16, z,=16, z.=48,

then the transmission ratio = 1.3333333

(c) Star Type

This is the type in which Carrier D is fixed. The planet gears
B rotate only on fixed axes. In a strict definition, this train
loses the features of a planetray system and it becomes an
ordinary gear train. The sun gear is an input axis and the
internal gear is the output. The transmission ratio is :

Z (2.9)

Za

Transmission Ratio = —

Referring to Figure 2.3(c), the planet gears are merely idlers.
Input and output axes have opposite rotations.

Example: z,=16, z,=16, z=48;

then transmission ratio = =3 .
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2.2 Hypocycloid Mechanism

In the meshing of an internal gear and an external gear, if the
difference in numbers of teeth of two gears is quite small, a
profile shifted gear could prevent the interference. Table 2.3 is
an example of how to prevent interference under the conditions
of z, = 50 and the difference of numbers of teeth of two gears
ranges from 1 to 8.

Table 2.3 The meshing of internal and external gears
of small difference of numbers of teeth ;= 1, ¢ = 20°

2| 49 [ 48 [ 47| 46| a5 [ 4| 4 |2
X 0

Z 50

X2 | 1.00 | 0.60 | 040 | 0.30 | 0.20 | 0.11 | 0.06 | 0.01
ay | 6LOGOS® | 46.0324° | 374155° | 324521° | 282019° | 4.5356° | 223755 | 203854°
a | 0971 | 1354 | 1.775 | 2.227 | 2.666 | 3.099 | 3.557 | 4.010
1105 | 1.512 | 1.726 | 1.835 | 1.933 | 2.014 | 2.053 | 2.088

All combinations above will not cause involute interference or
trochoid interference, but trimming interference is still there.
In order to assemble successfully, the external gear should be
assembled by inserting in the axial direction. A profile shifted
internal gear and external gear, in which the difference of
numbers of teeth is small, belong to the field of hypocyclic
mechanism, which can produce a large reduction ratio in single
step, such as 1/100.

Z

Transmission ratio = ——_—
2 1

(2.10)

In Figure 2.4 the gear train has a difference of numbers of teeth
of only 1; z =30 and z, = 31. This results in a transmission
ratio of 30.

Fig.2.4 The meshing of internal gear and external gear
in which the numbers of teeth difference is 1

KHK

2.3 Constrained Gear System

A planetary gear system which has four gears is an example of
a constrained gear system. It is a closed loop system in which
the power is transmitted from the driving gear through other
gears and eventually to the driven gear. A closed loop gear
system will not work if the I
gears do not meet specific
conditions.

Let z, z, and z; be the
numbers of gear teeth, as in
Figure 2.5. Meshing cannot
function if the length of
the heavy line (belt) does
not divide evenly by pitch.
Equation (2.11) defines this
condition.

Fig.2.5 Constrained gear system

2,0, z, (180 + 0,+ 92) z0,
180 180 7180

= integer (2.11)

Figure 2.6 shows a
constrained gear system
in which a rack is meshed.
The heavy line in Figure
2.6 corresponds to the belt
in Figure 2.5. If the length
of the belt cannot be evenly
divided by pitch then the

system does not work. It | Rack .
is described by Equation le- a -
(2.12). Fig.2.6 Constrained gear system
containing a rack
2,0, z, (180 +0) a .
130 + 180 + Zm = integer (2.12)
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TOOTH THICKNESS

There are direct and indirect methods for measuring tooth
thickness. In general, there are three methods:

* Chordal tooth thickness measurement

* Span measurement

* Over pin or ball measurement

3.1 Chordal Tooth Thickness Measurement

This method employs a tooth caliper that is referenced from
the gear's tip diameter. Thickness is measured at the reference

circle. See Figure 3.1.
(1) Spur Gears ]

Table 3.1 presents equations for each chordal tooth thickness Fig.3.1 Chordal tooth thickness method
measurement.
Table 3.1 Equations for spur gear chordal tooth thickness
No. Item Symbol Formula Exmple
. T m =10
1 Tooth thickness s (7 + 2x tana) m o =20°
z =12
2 | Tooth thickness half angle v 20, 360xtana * =+03
z nz h, =13.000
3 | Chordal tooth thickness K3 zm siny s =17.8918
v =8.54270°
. - zm 5 =17.8256
4 Chordal height h, —— (1 = cosy) + h, =
£ 2 ¢ v) h, =13.6657

(2) Spur Racks and Helical Racks
The governing equations become simple since the rack tooth
profile is trapezoid, as shown in Table 3.2.

Table 3.2 Chordal tooth thickness of racks

No. Item Symbol Formula Example
m m, m=3
1 Chordal tooth thickness s 5 o T 5 o =20°
_ 5 =4.7124
2 | Chordal height ha hq h, =3.0000

NOTE: These equations are also applicable to helical racks.
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(3) Helical Gears

The chordal tooth thickness of helical gears should be measured
on the normal plane basis as shown in Table 3.3. Table 3.4
presents the equations for chordal tooth thickness of helical
gears in the transverse system.

Table 3.3 Equations for chordal tooth thickness of helical gears in the normal system

KHK

No. Iltem Symbol Formula Example
3 m, =5
1 Normal tooth thickness Sn (7 + 2x, tana“)m“ o = 20°
B =25°00"00"
o Number of teeth of an z z 16
Zy =
equivalent spur gear cos*f X =402
. 90, 360 x, tana, h, = 6.0000
3 | Tooth thickness half angle vy . + T s — 85819
4 | Chordal tooth thickness 5 | zymasing, 7y =21.4928
Wy = 4.57556°
. - v My s = 8.5728
5 Chordal height h, 2l - cos SEN s 8.57
2 v) h, = 6.1712
Table 3.4 Equations for chordal tooth thickness of helical gears in the transverse system
No. ltem Symbol Formula Example
P m =4
1 Normal tooth thickness Sn (7 + 2xltanal) m,cosf o =20°
- B =22°30'00"
Numer of teeth in an z _
2 . zy 3 z =20
equivalent spur gear cos’p ¥, =+03
90 360x, tancr, h, = 4.7184
3 Tooth thickness half angle W, Tv + Zizfna s = 66119
v =25.3620
4 Chordal tooth thickness s zymycosf sin vy, ; — 4.04196°
. - zymcosP 3T = 6.6065
5 Chordal height h, ————— (1 —cosy, )+ h, 2
2 F, = 4.8350
NOTE: Table 3.4 equations are also for the tooth profile of a Sunderland gear.
(4) Bevel Gears
Table 3.5 shows the the equations for chordal tooth thickness
of a Gleason straight bevel gear. Table 3.6 shows the same
of a standard straight bevel gear. And Table 3.7 the same of a
Gleason spiral bevel gear.
Table 3.5 Equations for chordal tooth thickness of gleason straight bevel gears
No. Iltem Symbol Formula Example
Tooth thickness factor m =4
1 (Coefficient of horizontal profile K Obtain from Figure 3.2 — (o
. a =20
shift)
X =90°
S Tm — S, z1 =16 z, =40
2 | Tooth thickness m 2,/2,= 04
52 - - (Ao = by )tan a — Km K = 0.0259
& ha= 55456  ho = 24544
3 | Chordal tooth thickness s ST i S5 =21.8014° 5, = 68.1986°
s = 7.5119 s, = 5.0545
_ 2 - = s, =
4 | Chordal height e | ot Sic0sO 5= 74946 % = 5.0536
4d hy = 57502 o = 2.4692
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Fig.3.2 Chart to determine the tooth thickness factor k for gleason straight bevel gear
Table 3.6 Equations for chordal tooth thickness of standard straight bevel gears
No. Item Symbol Formula Example
m =4
1 Tooth thickness s ﬂ?m a =20°
X =90°
o Nurleelr of teeth of an - - OZS5 J 2 =40
equival ent Spur gear d] =64 dz =160
d =
3 | Back cone distance R, 2088 ha 4.0000
cos 5, =21.8014° 6 = 68.1986°
) 90 s = 6.2832
4 | Tooth thickness half angle Wy -, za =17.2325 2o =107.7033
R, =34.4650 R, =215.4066
5 | Chordal tooth thickness s zymsiny, W = 52227°  y, = 0.83563°
] _ 51 = 6.2745 5 = 6.2830
6 |Chordal height h h,a+R(1 = cosy,) T = 41431 e = 4.0229

If a straight bevel gear is cut by a Gleason straight bevel cutter,
the tooth angle should be adjusted according to:

Tooth angle (° ) =

180
TR

(

K
—— 4+l tana

) 3.1)

This angle is used as a reference in determining the tooth

thickness, s, in setting up the gear cutting machine.
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Fig.3.3 Chart to determine the tooth thickness
factor k for gleason spiral bevel gears
Table 3.7 Equations for chordal tooth thickness of gleason spiral bevel gears
No. Iltem Symbol Formula Example
. . > =90° m=3 o, =20°
1 | Tooth thickness factor K Obtain from Figure 3.3 2, =20 2, =40 o= 35°
; s h,=3.4275 ho=1.6725
‘ ? K =0.060
2 Tooth thickness P tana, D =9.4248
S$2 7‘(}!31_1’!::2)7_ ' _
2 cosfnm 5, =5.6722 s, =3.7526

The calculations of chordal tooth thickness of a Gleason
spiral bevel gear are so complicated that we do not intend to go

further in this presentation.

10
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(5) Worm Gear Pair

Table 3.8 presents equations for chordal tooth thickness of axial
module worm gear pair. Table 3.9 presents the same of normal
module worm gear pair.

Table 3.8 Equations for chordal tooth thickness of axial module worm gear pair

Practical Information on Gears

No. Item Symbol Formula Example
Axial tooth thickness of worm . Tmy
otl 2
1 . my =
Transverse tooth thickness of T o =20°
heel Sp (T + 2xp tanon) m, "
worm whee z; = z =30
No. of teeth in an equivalent 2 di =38 dy =90
2 | spur gear Zy 08 7 a =65
(Worm wheel) Xo =+ 033333
3 Tooth thickness half angle 90 360 x,, tana, ha = 3.0000 ha = 4.0000
(Worm wheel) Vv Zn Lz y = 8.97263°
. s, 5uc0s 7 o, =20.22780
4 Chordal tooth thickness _ . sy = 4.71239 So = 5.44934
5 Zy MMy COSY SINYv2 2, =31.12885
| g4 Susinyeosy)® Y= 3.34335°
al al 4d, 51 = 4.6547 Ez = 5.3796
5 | Chordal height ha = 3.0035 ho = 4.0785
ha hot w (1 = coswz)
Table 3.9 Equations for chordal tooth thickness of normal module worm gear pair
No. Item Symbol Formula Example
Axial tooth thickness of worm . T 31"
1 Transverse tooth thickness of T \ " =3
worm wheel Sn2 (T + 2xpp tanat, | my an =20°
) z =2 Z, =30
5 No. of teeth in an equivalent 2 dy =38 dy, =91.1433
spur gear (Worm wheel) e cos’y a =65
X, =
3 Tooth thickness half angle 90 n 360 x,, tana, ha = 3.0000 hnz 3 0.14278
(Worm gear) Ve Zn mzv v @ = 342835
Y = 9.08472°
4 | Chordal tooth thickness o S ) Smo= 471239 Smo= 5.02419
52 Zv2 Ma SINY 2 Zy =31.15789
A ot (Smisiny)? - Y2 = 3.07964°
al al 4d] f] = 47124 52 = 50218
5 | Chordal height hy = 3.0036 hy = 3.4958
T o + % (1 = cosy.)
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3.2 Span Measurement of Teeth

Span measurement of teeth, /¥, is a measure over a number of
teeth, £, made by means of a special tooth thickness micrometer.
The value measured is the sum of normal tooth thickness on the
base circle, s, and normal pitch, P, (k— 1). See Figure 3.4.

(1) Spur and Internal Gears
The applicable equations are presented in Table 3.10.

Table 3.10 Span measurement of spun and internal gear teeth

No. ltem Symbol Formula Example
m =3
kn=zK +0.5 See NOTE =9(0°
1 Span number of teeth k w=2K(/) e @ =20
Select the nearest natural number of z,, as z,, z =24
X =404
5 Span measurement over k W m cosa {m (k= 0.5) +zinva} k]:. = 2.78787
+ i -
teeth 2xm sina W =32.8266
NOTE:

K(f)= %{seca V (1+2f) ? = cos’at —inva-2f tana} (3.2)

where f =%

Figure 3.4 shows the span measurement of a spur gear. This
measurement is on the outside of the teeth.

For internal gears the tooth profile is opposite to that of the
external spur gear. Therefore, the measurement is between the
inside of the tooth profiles.

(2) Helical Gears

Tables 3.11 and 3.12 present equations for span measurement of
the normal and the transverse systems, respectively, of helical
gears.

_/

/1
Fig.3.4 Span measurement over k teeth (spur gear)
Table 3.11 Equations for span measurement of the normal system helical gears

No. Item Symbol Formula Example
ka—zK(f 0.5 SeeNOTE | M™n=3, e =20°, 2 =24
th — s + 0. — e} ' "
1 Span number of teeth k =2 K(f.5) e B =25°00"00
Select the nearest natural number of z,,g, as zi, X, =+04
o, =21.88023°
o Span measurement over k W m, cosat, {m(k — 0.5 )+ z inva, } ks = 4.63009
. k =35
teeth +2x0 My n
c TSR 40 0085
NOTE:
Krp)y= L1+ —30B S (cosB + tan‘an) (secB + 2f )= 1 — inva, — 2f tana (3.3)
’ T cos?B + tan’a, " ! " ’

X,
where f =7"

12
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Table 3.12 Equations for span measurement of the transverse system helical gears

No. Item Symbol Formula Example
m =3, o, =20°, z =24
kn=zK(f, +0.5 See NOTE =22°30' 00"
1 Span number of teeth k w=zK(f.B) ¢ B =22°30"00
Select the nearest natural number of z, as z, | x, = + 0.4
a, =18.58597°
n k—0.5) + ke = 431728
2 | Span mesurement over k teeth w m cosf cosa {.7[ ¢ ) . ]; = 4
zinve, } + 2x.m, sina,
W _=30.5910
NOTE:

sin?B
cos’B + tan’a,

K(f,ﬁ)=%{(1 +

X
where  f = W

There is a requirement of a minimum facewidth to make a
helical gear span measurement. Let b,,, be the minimum value
for facewidth. See Fig.3.5.

Then buin = Wsinf, + Ab 3.5
where S, is the helix angle at the base cylinder,

B, = tan"' (tanf cosa,)

= sin~! (sinf cosa.) (3-6)

From the above, we can determine Ab > 3 mm to make a stable
measurement of .

3.3 Measurement Over Rollers(or generally called over
pin/ball measurement)

As shown in Figure 3.6, measurement is made over the outside
of two pins that are inserted in diametrically opposite tooth
spaces, for even tooth number gears, and as close as possible
for odd tooth number gears. The procedure for measuring a
rack with a pin or a ball is as shown in Figure 3.8 by putting pin
or ball in the tooth space and using a micrometer between it and
a reference surface.

Even number of teeth
Fig. 3.6 Over pin (ball) measurement

) «/ (cos’B + tan’a, (secf + 2f)* — 1 —inva, —2f tana.,

} (3.4)

Fig.3.5 Facewidth of helical gear

Internal gears are similarly measured, except that the
measurement is between the pins. See Figure 3.9. Helical
gears can only be measured with balls. In the case of a worm,
three pins are used, as shown in Figure 3.10. This is similar to
the procedure of measuring a screw thread.

Odd numberlof teeth
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(1) Spur Gears

In measuring a standard gear, the size of the pin must meet the
condition that its surface should have the tangent point at the
standard pitch circle. While, in measuring a shifted gear, the
surface of the pin should have the tangent point at the d + 2xm

circle.

Table 3.13 Equations for calculating ideal pin diameters

KHK

No. ltem Symbol Formula Example
1 Spacewidth half angle n (% - inva) - 2xt+na m =1
L a =20°
2 Pressure angle at the point pin o cos”! Zm cosa z =20
is tangent to tooth surface (z+2x)m x =0
n =0.0636354
3 | Pressure angle at pin center ¢ tana'+ n o’ =20°
¢ =0.4276057
© =1.7245
4 |Ideal pin diameter d', zm cosa (invg + 1) dy

NOTE: The units of angles 1 and ¢ are radians.

The ideal diameters of pins when calculated from the equations
of Table 3.13 may not be practical. So, in practice, we select a
standard pin diameter close to the ideal value. After the actual
diameter of pin d, is determined, the over pin measurement M

can be calculated from Table 3.14.

Fig.3.7 Over pins measurement of spur gear

Table 3.14 Equations for over pins measurement for spur gears

—f

No. Item Symbol Formula Example
1 Pin diameter dy NOTE 1
d
2 |Involute function ¢ invg | —2— - T4 invg + 2Xtana
zmcosa 2z d =17
o .
3 | Pressure angle at pin center ¢ Find from involute function table invg = 0.0268197
zm cosa ¢ =24.1350°
S+
Eventecth =50 T M =222941
4 | Measurement over pin (ball) M
0dd teeth 282 o 20 +d,
cos ¢

NOTE: The value of the ideal pin diameter from Table 3.13, or its approximate value, is applied as the actual diameter of pin d, here.
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Table 3.15 is a dimensional table under the condition of
module m = 1 and pressure angle a = 20° with which the pin
has the tangent point at d + 2xm circle.

Table 3.15 The size of pin which has the tangent point at
d + 2xm circle of spur gears

m=1,a=20°
umber of Profile shift coefficient, x
teethz | _ 04 - 0.2 0 0.2 0.4 0.6 0.8 1.0
10 1.6348 1.7886 1.9979 2.2687 2.6079 3.0248 3.5315
20 1.6231 1.6599 1.7245 1.8149 1.9306 2.0718 2.2389 2.4329
30 1.6418 1.6649 1.7057 1.7632 1.8369 1.9267 2.0324 2.1542
40 1.6500 1.6669 1.6967 1.7389 1.7930 1.8589 1.9365 2.0257
50 1.6547 1.6680 1.6915 1.7248 1.7675 1.8196 1.8810 1.9516
60 1.6577 1.6687 1.6881 1.7155 1.7509 1.7940 1.8448 1.9032
70 1.6598 1.6692 1.6857 1.7090 1.7392 1.7759 1.8193 1.8691
80 1.6614 1.6695 1.6839 1.7042 1.7305 1.7625 1.8003 1.8438
90 1.6625 1.6698 1.6825 1.7005 1.7237 1.7521 1.7857 1.8242
100 1.6635 1.6700 1.6814 1.6975 1.7184 1.7439 1.7740 1.8087
110 1.6642 1.6701 1.6805 1.6951 1.7140 1.7372 1.7645 1.7960
120 1.6649 1.6703 1.6797 1.6931 1.7104 1.7316 1.7567 1.7855
130 1.6654 1.6704 1.6791 1.6914 1.7074 1.7269 1.7500 1.7766
140 1.6659 1.6705 1.6785 1.6900 1.7048 1.7229 1.7444 1.7690
150 1.6663 1.6706 1.6781 1.6887 1.7025 1.7195 1.7394 1.7625
160 1.6666 1.6706 1.6777 1.6877 1.7006 1.7164 1.7351 1.7567
170 1.6669 1.6707 1.6773 1.6867 1.6989 1.7138 1.7314 1.7517
180 1.6672 1.6708 1.6770 1.6858 1.6973 1.7114 1.7280 1.7472
190 1.6674 1.6708 1.6767 1.6851 1.6960 1.7093 1.7250 1.7432
200 1.6676 1.6708 1.6764 1.6844 1.6947 1.7074 1.7223 1.7396

(2) Spur Racks and Helical Racks

In measuring a rack, the pin is ideally tangent with the tooth
flank at the pitch line. The equations in Table 3.16 can, thus, be
derived. In the case of a helical rack, module m, and pressure
angle «, in Table 3.16, can be substituted by normal module m,
, and normal pressure angle a, , resulting in Table 3.16A.

Practical Information on Gears
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Fig.3.8 Over pins measurement for a rack using a pin or a ball

Table 3.16 Equations for over pins measurement of spur racks

No. Item Symbol Formula Example
m =
1 Ideal pin diameter d', fm-s a =20°
cosa s =1.5708
d, =1.6716
_ d, =17
. m-—s d, 1 ]
- =2 4+ 7 + -
2 | Measurement over pin (ball) M H 2 tanx 2 (l sina ) H =14.0000
M =15.1774




Practical Information on Gears

Table 3.16A Equations for Over Pins Measurement of Helical Racks
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No. ltem Symbol Formula Example
— m“ = 1
1 | Ideal pin diameter d i =5 o =20° B =15°
cosa, s =1.5708
d, =1.6716
M in (ball Mo g S (] pa
2 easurement over pin (ball) 2 tanat, > sin, H =14.0000
M =15.1774

(3) Internal Gears

As shown in Figure 3.9, measuring an internal gear needs a
proper pin which has its tangent point at d + 2xm circle. The
equations are in Table 3.17 for obtaining the ideal pin diameter.
The equations for calculating the between pin measurement, M,

are given in Table 3.18.

Fig. 3.9 Between pin dimension of internal gears

Table 3.17 Equations for calculating pin diameter for internal gears

No. ltem Symbol Formula Example
1 | Spacewidth half angle n (% +invo ) 4 2xtana m =1
z z
o =20°
5 | Pressure angle at the point pin o cos-! zm cosa z =40
is tangent to tooth surface (z+2x)m ¥ =
n =0.054174
3 | Pressure angle at pin center ¢ tana’' — n , 5
o' =20
¢ =0.309796
4 | Ideal pin diameter d’, zm cosa (n — inve) ', = 1.6489
NOTE: The units of angles n , ¢ are radians.
Tabl 3.18 Equations for between pins measurement of internal gears
No. Item Symbol Formula Example
1 | Pin (ball) diameter d, See NOTE
Involute f R . T _ d, + 2x tano
2 nvolute function ¢ nv ¢ 5, Tva JE—— = -
d, =17
3 | Pressure angle at pin center ¢ Find from involute function table invg =0.0089467
Zm cosa ¢ =169521°
Even teeth 70545 d, M =375951
4 | Between pins measurement M
0dd teeth 27 COS% ¢ 90° _ d,
cosp z

NOTE: First, calculate the ideal pin diameter. Then, choose the nearest practical actual pin size.
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Table 3.19 lists ideal pin diameters for standard and profile
shifted gears under the condition of module 7 = 1 and pressure

angle a = 20°, which makes the pin tangent to the reference
circle d + 2xm.

Practical Information on Gears

Table 3.19 The size of pin that is tangent at reference circle d + 2xm of internal gears m=1,a=20°
Number Profile shift coefficient, x
of teeth
z -04 -0.2 0 0.2 0.4 0.6 0.8 1.0
10 - 1.4789 1.5936 1.6758 1.7283 1.7519 1.7460 1.7092
20 1.4687 1.5604 1.6284 1.6759 1.7047 1.7154 1.7084 1.6837
30 1.5309 1.5942 1.6418 1.6751 1.6949 1.7016 1.6956 1.6771
40 1.5640 1.6123 1.6489 1.6745 1.6895 1.6944 1.6893 1.6744
50 1.5845 1.6236 1.6533 1.6740 1.6862 1.6900 1.6856 1.6732
60 1.5985 1.6312 1.6562 1.6737 1.6839 1.6870 1.6832 1.6725
70 1.6086 1.6368 1.6583 1.6734 1.6822 1.6849 1.6815 1.6721
80 1.6162 1.6410 1.6600 1.6732 1.6810 1.6833 1.6802 1.6718
90 1.6222 1.6443 1.6612 1.6731 1.6800 1.6820 1.6792 1.6717
100 1.6270 1.6470 1.6622 1.6729 1.6792 1.6810 1.6784 1.6716
110 1.6310 1.6492 1.6631 1.6728 1.6785 1.6801 1.6778 1.6715
120 1.6343 1.6510 1.6638 1.6727 1.6779 1.6794 1.6772 1.6714
130 1.6371 1.6525 1.6644 1.6727 1.6775 1.6788 1.6768 1.6714
140 1.6396 1.6539 1.6649 1.6726 1.6771 1.6783 1.6764 1.6714
150 1.6417 1.6550 1.6653 1.6725 1.6767 1.6779 1.6761 1.6713
160 1.6435 1.6561 1.6657 1.6725 1.6764 1.6775 1.6758 1.6713
170 1.6451 1.6570 1.6661 1.6724 1.6761 1.6772 1.6755 1.6713
180 1.6466 1.6578 1.6664 1.6724 1.6759 1.6768 1.6753 1.6713
190 1.6479 1.6585 1.6666 1.6724 1.6757 1.6766 1.6751 1.6713
200 1.6491 1.6591 1.6669 1.6723 1.6755 1.6763 1.6749 1.6713

(4) Helical Gears

The ideal pin that makes contact at the d + 2x,m, reference
circle of a helical gear can be obtained from the same above
equations, but with the teeth number z substituted by the

equivalent (virtual) teeth number z,.

Table 3.20 Equations for calculating pin diameter for helical gears in the normal system

Table 3.20 presents equations for deriving over pin diameters.
Table 3.21 presents equations for calculating over pin
measurements for helical gears in the normal system.

No. Item Symbol Formula Example
; Number of teeth of an z |
Zy 3 n =
equivalent spur gear cos'f8 "
a, =20°
2 Spacewidth half angle v T _ inva, — 2y tana, z =20
22y a B =15°00'00"
3 Pressure angle at the point pin o cos-! ( Z, COSOL, ) X, =+04
is tangent to tooth surface v z,t2x, z, =22.19211
ny = 0.0427566
4 | Pressure angle at pin center oy tana’, + 1y a', =24.90647°
¢, = 0.507078
5 | Ideal pin diameter d', zomy cosat, (inve,+ 1,) d’, = 1.9020

NOTE: The units of angles 7, and ¢, are radians.
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Table 3.21 Equations for calculating over pins measurement for helical gears in the normal system
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No. ltem Symbol Formula Example
1 Pin (ball) diameter dy See NOTE
. . d, T . 2x, tana,
2 Involute function ¢ inv ¢ 7”1"2 cosa, 2z +inv o + - Let d,=2, then
o = 20.646896°
3 Pressure angle at pin center ¢ Find from involute function table 'nt s 0058890
inv ¢g= 0.
Even Teeth _ZMn COSA: d, ¢ = 30.8534°
) cosf cos¢ Mo -
4 | Measurement over pin (ball) M = 24.5696
n 900
0Odd Teeth M COSTe_ cos —— *d,
cosB cos¢p z

NOTE: The ideal pin diameter of Table 3.20, or its approximate value, is entered as the actual diameter of d,,

Table 3.22 and Table 3.23 present equations for calculating pin
measurements for helical gers in the transverse (perpendicular
to axis) system.

Table 3.22 Equations for calculating pin diameter for helical gears in the transverse system

No. ltem Symbol Formula Example
Number of teeth of an z -3
1 val Zy cos’p my -
equivalent spur gear a = 20°
. N _ 2x tane, z = 36
2 | Spacewidth half angle v 2z, ~ V. B — B — 33°33'26.3"
On = 16.87300°
S Z, COSQLy X = 402
3 Pressure angle at the point pin o os- | T x t 0.
is tangent to tooth surface z,t2 cosp Zv = 62.20800
v = 0.014091
. o\ = 1826390
4 | Pressure angle at pin center v t "+,
gleatp 4 ana’y ¢ = 034411
inv ¢, = 0.014258
5 | Ideal pin diameter d'y z,my cosf cosa, (inv ¢, + n,) d'y = 42190

NOTE: The units of angles 1, and ¢, are radians.

Table 3.23 Equations for calculating over pins measurement for helical gears in the transverse system

No. Item Symbol Formula Example

1 Pin (ball) diameter dy See NOTE
2 | Involute function ¢ inv ¢ 4 +inve, + 2 tana,

mz cosf cosa, 2z z d = 45

o .
3 | Pressure angle at pin center ¢ Find from involute function table inv¢=0.027564
Zn, coSaAL, ¢ = 24.3453°

Even teeth cos & +d, M =115.892

4 | Measurement over pin (ball) M
90°
Oddteeth Z7C05% +d,
0s @ z

NOTE: The ideal pin diameter of Table 3.22, or its approximate value is applied as the actual diameter of pin d,, here.
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(5) Three Wire Method of Worm Measurement

The teeth profile of type III worms which are most popular are
cut by standard cutters with a pressure angle «, = 20°. This
results in the normal pressure angle of the worm being a bit
smaller than 20°. The equation below shows how to calculate a
type III worm in an AGMA system.

90 r
Zi  rycos*y +r

sin’y 3.7

O, = Oy

where r : Worm reference radius
7o : Cutter radius
z, - Number of threads

y : Lead angle of worm
The exact equation for a three wire method of type III worm
is not only difficult to comprehend, but also hard to calculate
precisely. We will introduce two approximate calculation
methods here:

(a) Regard the tooth profile of the worm as a straight
tooth profile of a rack and apply its equations.

Using this system, the three wire method of a worm can be
calculated by Table 3.24.

Table 3.24 Equations for three wire method of worm measurement, (a)-1

Fig.3.10
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Three wire method of a worm

No. Item Symbol Formula Example
my =2 o =20°
1 Ideal pin diameter d L. z; =1 d, =31
2 cosary y = 3.691386°
ay, =20.03827°
] m, 1 d', = 3.3440
2 | Three wire measuremnt M d, — Dtana, +d, ( 1+ since. ) d, Letd,be 3.3
M =35.3173
These equations presume the worm lead angle to be very small
and can be neglected. Of course, as the lead angle gets larger,
the equations' error gets correspondingly larger. If the lead
angle is considered as a factor, the equations are as in Table
3.25.
Table 3.25 Equations for three wire method of worm measurement, (a)-2
No. Item Symbol Formula Example
Tmy — o
1 |Ideal pin diameter d’, 2cosa, my =2 an =20
Z =1 dl =31
y = 3.691386°
m, 1 m, = 1.99585
. 4= 2tana, td, (1 + sina") d', = 3.3363
2 | Three wire measurement M y o d, Letd,be 3.3
— _(dy cosatn siny)’ COSZO;" siny) M =353344
1
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(b) Consider a worm to be a helical gear.

This means applying the equations for calculating over pins
measurement of helical gears to the case of three wire method
of a worm. Because the tooth profile of Type III worm is not an
involute curve, the method yields an approximation. However,
the accuracy is adequate in practice.

Tables 3.26 and 3.27 contain equations based on the axial
system. Tables 3.28 and 3.29 are based on the normal system.

Table 3.26 Equation for calculating pin diameter for worms in the axial system

KHK

No. ltem Symbol Formula Example
1 Number of teeth of an Z my =
Zy o
equivalent spur gear c0s*(90° - 7) o, =20°
Z =
2 Spacewidth half angle Ny 2” - inv a, d, =31
Zy
4 =3.691386°
Pressure angle at the point pin , _, [ zy cosa, z =13747.1491
3 . h surf aly cos™ | —— Y :
18 tangent to tooth surtace Zy v =_0.014485
. ay  =20°
4 | Pressure angle at pin center ?y tana', + 1, by = 0.349485
invg, =0.014960
5 |Ideal pin diameter d zymy cosy cosa, (inv ¢, + 1,) d, =33382
NOTE: The units of angles 1, and ¢, are radians.
Table 3.27 Equation for three wire method for worms in the axial system
No. Iltem Symbol Formula Example
1 Pin (ball) diameter d, See NOTE 1
4 d, =33
V3 — o
2 |Involute function ¢ invg | ——>—- ——+inva o, =76.96878
My Z1 COSY COSOL, 2z t inve = 4257549
3 | Prssure angle at pin center ¢ Find from involute function table invg = 4.446297
@ = 80.2959°
4 | Three wire measurement M Eu COSC, d, M =353345
tany cosg

NOTE 1. The value of ideal pin diameter from Table 3.26, or its approximate value, is to be used as the actual pin diameter, d,,,

NOTE2. o =tan" (t;nT‘;)
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Tables 3.28 and 3.29 show the calculation of a worm in the
normal module system. Basically, the normal module system
and the axial module system have the same form of equations.
Only the notations of module make them different.

Table 3.28 Equation for calculating pin diameter for worms in the normal system

Practical Information on Gears

No. Item Symbol Formula Example
1 Number of teeth of an . : zlo m, —25
equivalent spur gear ' cos’ (90° —7) o, =20°
T Z = 1
2 | Spacewidth half angle Ny 27 inv a, d, 37
P | he point o y =3.874288°
3 . ressure angle at the point pin a’, cos ! Zy COSQ, - —3041.792
is tangent to tooth surface zy
ny  =-0.014420
4 | Pressure angle at pin center oy tana'y+ n, a\ =20
oy =0.349550
inv ¢, =0.0149687
5 | Ideal pin diameter d z,m, cosa, (inv ¢, + n,) d,  =4.1785
NOTE: The units of angles 1, and ¢, are radians.
Table 3.29 Equations for three wire method for worms in the normal system
No. Item Symbol Formula Example
1 Pin (ball) diameter d, See NOTE 1.
p d, =42
2 | Involute function ¢ invg | ——2 — _ 2L +inv a o, =79.48331°
MnZ1 COSAy  2a inve, = 3.999514
3 | Pressure angle at pin center ¢ Find from involute function table inv ¢ = 4.216536
@ =79.8947°
4 | Three wire measurement M EilMn COSA, d M =42.6897
sin ¥ cos¢ P

NOTE 1. The value of ideal pin diameter from Table 3.28, or its approximate value, is to be used as the actual pin diameter, d,.

NOTE2. o —tan” (5%

sin y
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BACKLASH

Backlash is the amount by which a tooth space exceeds the
thickness of a gear tooth engaged in mesh. The general purpose

of backlash is to prevent

gears from jamming by making

contact on both sides of their teeth simultaneously.
there are several kinds of backlash: circumferential backlash j;,
normal backlash j,, radial backlash j. and angular backlash j, (°),

see Figure 4.1.

4.1 Backlash Relationships

Table 4.1 reveals relationships among circumferential backlash
Jji» normal backlash j, and radiall backlash j; .

Table 4.1 The relationships among the backlashes

KHK

Fig.4.1 Kinds of backlash and their direction

No. [Type of Gear Meshes|

The relation between circumferential
backlash j, and normal backlash j,

The relation between circumferential
backlash j, and radial backlash j.

1 | Spur gear Ja=Jjicosa Je= ﬁ
2 | Helical gear Jn= Ju cOSQy COSJB Ji= Zé#
t
3 | Straight bevel gear Jn=Jjicosa T Dtana sind
4 | Spiral bevel gear Jmn=Ju €08y €OS P Je= m
t
. Worm Jn=Jjui cOSa, siny . Juw
Jr =
Worm wheel jml :jnz cosa, CoSsy 2 tana,

Circumferential backlash j, has a relation with angular backlash

Jo» as follows:

Jo=Ji % % (degrees) 4.1)

(1) Backlash of a Spur Gear Mesh

From Figure 4.1 we can derive backlash of spur gear mesh as:

Jn=J: COS &
i
J*7 2tan a

4.2)

22



KHK

(2) Backlash of Helical Gear Mesh

The helical gear has two kinds of backlash when referring to the

Practical Information on Gears

(3) Backlash of Straight Bevel Gear Mesh

Figure 4.3 expresses backlash for a straight bevel gear mesh.

tooth space. There is a cross section in the normal direction of
the tooth surface(n), and a cross section in the radial direction
perpendicular to the axis,(¢)
Jm== backlash in the direction normal to the tooth surface
Jw= backlash in the circular direction in the cross section
normal to the tooth
J= = backlash in the direction normal to the tooth surface
in the cross section perpendicular to the axis
J« = backlash in the circular direction perpendicular to the axis

) /*ﬂr : . L

i Fig. 4.3 Backlash of straight bevel gear mesh

In the cross section perpendicular to the tooth of a straight bevel
gear, circumferential backlash at pitch line j,, normal backlash j,
and radial backlash j," have the following relationships:

P Ju= jicosa
S J (4.6)
7" Dtana

Fig.4.2 Backlash of helical gear mesh \\!

/ The radial backlash in the plane of axes can be broken down into
2r the components in the direction of bevel pinion center axis, j.
and in the direction of bevel gear center axis, j,.
These backlashes have relations as follows:

In the plane normal to the tooth: Ju= Ji
.. 2tana sind,
Jn=Ju COSQL, (4.3) . (4.7)
. Ji :
Jo=—Fmr
2tana o
On the pitch surface: anet cosoy
Ju=Jucosp (4.4)

In the plane perpendicular to the axis:

Jn=Ju COSCL,
. Ju 4.5)
7= Dtana,
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(4) Backlash of a Spiral Bevel Gear Mesh

Figure 4.4 delineates backlash for a spiral bevel gear mesh.

Fig.4.4 Backlash of spiral bevel gear mesh

In the tooth space cross section normal to the tooth:

Jan=JwCOSCL, (4.8)
On the pitch surface
Ju= JuCOS P (4.9)
In the plane perpendicular to the generatrix of the pitch cone:
Ju= juCOSCL,
L 4.10)
J* ™ 2tana,

The transverse backlash in the plane of axes j.' can be broken
down into the components in the direction of bevel pinion
center axis, j., and in the direction of bevel gear center axis,

]rZ-
Ju
2tana, sind,

o Ji
J2 = Dtana, cosd,

jrl:
4.11)
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(5) Backlash of Worm Gear Pair Mesh

Figure 4.5 expresses backlash for a worm gear pair mesh.

\ i
- 2Jr

j‘“’ﬁr}/\ j
ntl
.
" Jitl
Jitl |
jnzr\
< Xt
ij
2 j;

Fig.4.5 Backlash of worm gear pair

On the pitch surface of a worm:
jm :jul SinV
Jun=JucOsy

tan y = L2

ttl

4.12)

In the cross section of a worm perpendicular to its axis:

jml :jnl cosa,
o 4.13)
77 2 tana,

In the plane perpendicular to the axis of the worm wheel:

Joe= JueCOSQy
(4.14)

P jnz

) tanc,
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4.2 Tooth Thickness and Backlash

There are two ways to produce backlash. One is to enlarge the
center distance. The other is to reduce the tooth thickness. The
latter is much more popular than the former. We are going to
discuss more about the way of reducing the tooth thickness.

In SECTION 3, we have discussed the standard tooth thickness
s, and s,. In the meshing of a pair of gears, if the tooth thickness
of pinion and gear were reduced by As, and As,, they would
produce a backlash of As, and As, in the direction of the pitch
circle. Let the magnitude of As, and As, be 0.1. We know that
a =20°, then:

Ji=As1t+ As,
=0.1+0.1=0.2
We can convert it into the backlash on normal direction j,:
Ja=J: COS O
=02 x cos20=0.1879

Let the backlash on the center distance direction be j,, then:

0.2

T xtan20° 02747

They express the relationship among several kinds of
backlashes. In application, one should consult the JIS standard.
There are two JIS standards for backlash — one is JIS B 1703-
76 for spur gears and helical gears, and the other is JIS B 1705-
73 for bevel gears. All these standards regulate the standard
backlashes in the direction of the pitch circle j; or j. These
standards can be applied directly, but the backlash beyond the
standards may also be used for special purposes. When writing
tooth thicknesses on a drawing, it is necessary to specify,
in addition, the tolerances on the thicknesses as well as the
backlash. For example:

Tooth thickness 3.141 o0

Backlash 0.100 ~ 0.200

Since the tooth thickness directly relates to backlash, the
tolerances on the thickness will become a very important factor.
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4.3 Gear Train and Backlash

The discussions so far involved a single pair of gears. Now, we
are going to discuss two stage gear trains and their backlash. In
a two stage gear train, as Figure 4.6 shows, j, and j. represent
the backlashes of first stage gear train and second stage gear
train respectively.

| ]

L R

| 1
| T
[ 2| A \
‘ \ \
Gear 4 Gear 3 Gear 2 Gear 1
(z4,ds) (z3,d5) (22,d>) (z1,d))

Fig.4.6 Overall accumulated backlash of two stage gear train

If number one gear were fixed, then the accumulated backlash
on number four gear j,r, would be as follows:

ds

d

This accumulated backlash can be converted into rotation in
degrees:

+ Ju (4.15)

jtT4 = jn

.. 360
Jo=Jas = 4 (degrees)

(4.16)
The reverse case is to fix number four gear and to examine the
accumulated backlash on number one gear jir,.

lel: jl4 i

7 (4.17)

+ Ju

This accumulated backlash can be converted into rotation in
degrees:

360
ﬂ'd]

Jo= Jmm (degrees) (4.18)
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4.4 Methods of Controlling Backlash

In order to meet special needs, precision gears are used more
frequently than ever before. Reducing backlash becomes
an important issue. There are two methods of reducing or
eliminating backlash — one a static, and the other a dynamic
method. The static method concerns means of assembling gears
and then making proper adjustments to achieve the desired
low backlash. The dynamic method introduces an external
force which continually eliminates all backlash regardless of
rotational position.

(1) Static Method

This involves adjustment of either the gear's effective tooth
thickness or the mesh center distance. These two independent
adjustments can be used to produce four possible combinations
as shown in Table 4.2.

Table 4.2 The combination of adjustment

Center Distance
Fixed Adjustable
Gear| Fixed A C
Size adjustable B D
(A) Case A

By design, center distance and tooth thickness are such that they
yield the proper amount of desired minimum backlash. Center
distance and tooth thickness size are fixed at correct values and
require precision manufacturing.

(B) Case B

With gears mounted on fixed centers, adjustment is made to the
effective tooth thickness by axial movement or other means.
Three main methods are:

OTwo identical gears are mounted so that one can be rotated
relative to the other and fixed. In this way,the effective
tooth thickness can be adjusted to yield the desired low
backlash.

@A gear with a helix angle such as a helical gear is made in
two half thicknesses. One is shifted axially such that each
makes contact with the mating gear on the opposite sides
of the tooth.

®The backlash of cone shaped gears, such as bevel and
tapered tooth spur gears, can be adjusted with axial
positioning. A duplex lead worm can be adjusted
similarly.

Figure 4.7 delineate these three methods.
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R

O®Rotary adjustment ~ @Parallel adjustment

®Axial adjustment

Fig.4.7 Ways of decreasing backlash in case B

(C) Case C

Center distance adjustment of backlash can be accomplished in

two ways:

@ Linear Movement
Figure 4.8@shows adjustment along the line-of-centers in a
straight or parallel axes manner. After setting to the desired
value of backlash, the centers are locked in place.

® Rotary Movement
Figure 4.8 @shows an alternate way of achieving center
distance adjustment by rotation of one of the gear centers by
means of a swing arm on an eccentric bushing. Again, once
the desired backlash setting is found, the positioning arm is
locked.

For large adjustment

®Linear movement @Rotary movement

Fig.4.8 Ways of decreasing backlash in case C

(D) Case D

Adjustment of both center distance and tooth thickness is
theoretically valid, but is not the usual practice. This would call
for needless fabrication expense.

For small adjustment



(2) Dynamic Methods

Dynamic methods relate to the static techniques. However,
they involve a forced adjustment of either the effective tooth
thickness or the center distance.

(A) Backlash Removal by Forced Tooth Contact

This is derived from static Case B. Referring to Figure 4.70, a
forcing spring rotates the two gear halves apart. This results in
an effective tooth thickness that continually fills the entire tooth
space in all mesh positions.

(B) Backlash Removal by Forced Center Distance Closing
This is derived from static Case C. A spring force is applied to
close the center distance; in one case as a linear force along the
line-of-centers, and in the other case as a torque applied to the
swing arm.

In all of these dynamic methods, the applied external force
should be known and properly specified. The theoretical

relationship of the forces involved is as follows:

F>F+F, (4.19)

F, = Transmission Load on Tooth Surface
F, = Friction Force on Tooth Surface

where:

If F < F, + F,, then it would be impossible to remove backlash.
But if F is excessively greater than a proper level, the tooth
surfaces would be needlessly loaded and could lead to
premature wear and shortened life. Thus, in designing such
gears, consideration must be given to not only the needed
transmission load, but also the forces acting upon the tooth
surfaces caused by the spring load.
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(3) Duplex Lead Worm Gear Pair

A duplex lead worm gear mesh is a special design in which
backlash can be adjusted by shifting the worm axially. It is
useful for worm drives in high precision turntables and hobbing
machines. Figure 4.9 presents the basic concept of a duplex
lead worm gear pair.

Fig.4.9 Basic concept of duplex lead worm gear pair

The lead or pitch, 2, and pi , on the two sides of the worm
thread are not identical. The example in Figure 4.9 shows the
case when P, > Py. To produce such a worm wheel requires a
special dual lead hob. The intent of Figure 4.9 is to indicate
that the worm tooth thickness is progressively bigger towards
the left end. Thus, it is convenient to adjust backlash by simply
moving the duplex worm in the axial direction.
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GEAR ACCURACY

Gears are one of the basic elements used to transmit power and position. As designers, we desire them to meet various demands:
OMaximum power capability
@Minimum size.
®Minimum noise (silent operation).

@ Accurate rotation/position
To meet various levels of these demands requires appropriate
degrees of gear accuracy. This involves several gear features.

Total Cumulative Pitch Deviation (F;,)

5.1 Accuracy of Spur and Helical Gears Difference between theoretical summation over any number of
teeth interval, and summation of actual pitch measurement over
JIS B 1702-01: 155 and JIS B 1702-02: e prescribe gear the same interval.

accuracy on spur and helical gears. These two revises the
previous specification JIS B 1702: 4. which described 9
grades grouped from 0 through 8. In order to avoid confusion
between old and new specifications, each grades in the revised
JIS B 1702 has a prefix ‘N, like N4 grade and N10 grade etc.

In the case of 3 teeth
JIS B 1702-1:1998 Cylindrical gears - gear accuracy - Part 1:
Definitions and allowable values of deviations relevant to
corresponding flanks of gear teeth. (This specification describes
13 grades of gear accuracy grouped from O through 12, - 0, the
highest grade and 12, the lowest grade ).

-~ = — — theoretical

actual
Fig.5.2 Total cumulative pitch deviation (f,)

|

|

| Indicator reding

| —+——— Single pitch deviation}
| =—+—- Total cumulative pitc!

de iatiTnerror
L N e B
\
A
A}

- Max.Acct ..m‘.\ ted —A s
NBANTAYA
‘{\ - '\\' - " \/ —
. v j J\ Jr'/
N
N

J\
-

JIS B 1702-2:1998 Cylindrical gears - gear accuracy - Part 2:
Definitions and allowable values of deviations relevant to
radial composite deviations and runout information. (This
specification consists of 9 grades of gear accuracy grouped
from 4 through 12, - 4, the highest grade and 12, the lowest
grade ).

\

N

Deviation (unit:um)

T

i

Single Pitch Deviation ( f, )
The deviation between actual measured pitch value between
any adjacent tooth surface and theoretical circular pitch. 2 3

4 5 6 7 8 9 10 11 12 13 14 15 1

Tooth position number
Fig.5.3 Examples of pitch deviation for a 15 tooth gear

Total Profile Deviation (F,)

Total profile deviation represents the distance (F,) shown in
Figure 5.4. Actual profile chart is lying in between upper
design chart and lower design chart.

Addendum Dedendum
A F

» L, :Evaluation range

= — — = theoretical Lag :Active length

actual Lar :Usable length

Fig.5.1 Single pitch deviation f,

—-——— Designe profile

———" Actual profile
Fig.5.4 Total profile deviation f;,
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Total Helix Deviation (F})

Total helix deviation represents the distance (F};) shown in
Figure 5.5. The actual helix chart is lying in between upper

helix chart and lower helix chart.

Total helix deviation

results in poor tooth contact, particularly concentrating
contact to the tip area. Modifications, such as tooth crowning
and end relief can alleviate this deviation to some degree.
Shown in Figure 5.6 is an example of a chart measuring
total profile deviation and total helix deviation using a Zeiss

UMC 550 tester.

——— .—— Design helix

S — Actual helix

: Facewidth

Fig.5.5 Total helix deviation (F)

.g.lf_r.z-r 2

=

Ly
FB = iz 13
fHB- -8 -8
far= 7 a

-
£

T
1

-]
L]
U v
3,

|

11

~a
a

— | +A1GHT
1 7 13
!
a ] 7
-3 -8 -3
L] (-] a
1 7 13
[l 9 ]
3 3 2
B T 7

Lg : Evaluation range
b

Fig.5.6 An example of a chart measuring total profile deviation
and total helix deviation
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Total Radial Composite Deviation(F,")
Total radial composite deviation represents variation in

center distance when product gear is rotated one revolution
in tight mesh with a master gear.

("):Tooth-to-tooth radial composite deviation

"
£
fi' Max.value

360°/z

Fig.5.7 Chart of total radial composite deviation

Runout Error of Gear Teeth (F,)

Most often runout error is mesured by indicating the position
of a pin or ball inserted in each tooth space around the gear
and taking the largest difference.

Runout causes a number of problems, one of which is
noise. The source of this error is most often insufficient
accuracy and ruggedness of the cutting arbor and tooling
system. And, therefore, it is very importnt to pay attention
to these cutting arbor and tooling system to reduce runout
error. Shown in Fig.5.8 is the chart of runout. The values of
runout includes eccentricity.

o

Aedo :..--d
L
1" N

L

2
5
\ g <
Y \\ I
Q
N 7|8
“-‘ Z—”
12 4 6 § 10 12 14 16 1

Number of tooth space
Fig.5.8 Runout error of a 16-tooth gear
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5.2 Accuracy of Bevel Gears

JIS B 1704:197s regulates the specification of a bevel gear's
accuracy. It also groups bevel gears into 9 grades, from 0 to 8.

There are 4 types of allowable errors:
@Single pitch error.
@Pitch variation error
®Accumulated pitch error.

@Runout error of teeth (pitch circle).
These are similar to the spur gear errors.

® Single pitch error

The deviation between actual measured pitch value between
any adjacent teeth and the theoretical circular pitch at the
mean cone distance.

® Pitch variation error
Absolute pitch variation between any two adjacent teeth at

the mean cone distance.

® Accumulated pitch error

Difference between theoretical pitch sum of any teeth
interval, and the summation of actual measured pitches for
the same teeth interval at the mean cone distance.

@ Runout error of teeth

This is the maximum amount of tooth runout in the radial
direction, measured by indicating a pin or ball placed between
two teeth at the central cone distance.

Table 5.1 presents equations for allowable values of these
various errors.

Table 5.1 Equations for allowable single pitch error, accumulated
pitch error and pitch cone runout error, (1um)

Grade | Single pitch error Accumglr?g?d pitch|Runout ggrr?é of pitch
JISO 0.4W +2.65 1.6W +10.6 236V d

1] 0.63W+5.0 2.5W+20.0 3.6/ d

2 1L.OW+9.5 4.0 +38.0 53/ d

3 1.6W +18.0 6.4W+72.0 8.0/ d

4 25W+33.5 10.0W + 134.0 12.0/ d

5 4.0W +63.0 - 18.0/ d

6 6.3W + 118.0 - 27.0/ d

7 - - 60.0/ d

8 — — 130.0/ d_
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where W : Tolerance unit
W=>yd +0.65m (um)
d : Reference Diameter (mm)

The equations of allowable pitch variations are in Table 5.2.

Table 5.2 The Formula of allowable pitch variation error (1um)

Single pitch error, k Pitch variation error
Less then 70 1.3k
70 or more,but less than 100 1.4k
100 or more,but less than 150 1.5k
More than 150 1.6k

Besides the above errors, there are seven specifications for
bevel gear blank dimensions and angles, plus an eighth that
concerns the cut gear set:

® The tolerance of the blank tip diameter and the crown to
back surface distance.
The tolerance of the outer cone angle of the gear blank.
The tolerance of the cone surface runout of the gear
blank.
The tolerance of the side surface runout of the gear
blank.
The feeler gauze size to check the flatness of blank back
surface.
The tolerance of the shaft runout of the gear blank.
The tolerance of the shaft bore dimension deviation of
the gear blank.
The tooth contact.

0O® © ©® 00

®

Item 8 relates to cutting of the two mating gears' teeth. The
tooth contact must be full and even across the profiles. This
is an important criterion that supersedes all other blank
requirements.
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5.3 Running (Dynamic) Gear Testing

An alternate simple means of testing the general accuracy of a
gear is to rotate it with a mate, preferably of known high quality,
and measure characteristics during rotation. This kind of tester
can be either single contact (fixed center distance method) or
dual (variable center distance method). This refers to action on
one side or simultaneously on both sides of the tooth. This is
also commonly referred to as single and double flank testing.
Because of simplicity, dual contact testing is more popular than
single contact.

(1) Dual Contact (Double Flank) Testing

In this technique, the gear is forced meshed with a master gear
such that there is intimate tooth contact on both sides and,
therefore, no backlash. The contact is forced by a loading
spring. As the gears rotate, there is variation of center distance
due to various errors, most notably runout. This variation
is measured and is a criterion of gear quality. A full rotation
presents the total gear error, while rotation through one pitch
is a tooth-to-tooth error. Figure 5.9 presents a typical plot for
such a test.

— Total running error

! One pitch running error
I One turn

Fig.5.9 Example of dual contact running testing report

Allowable errors per JGMA 116-01 are presented in Table
5.3.
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Table 5.3 Allowable values of running errors, (um)

Grade | Tooth-to-tooth composite error Total composite error

Exirafine ) 1.12m + 3.55 ( 14w + 4.0)+ 0.5(1.12m + 3.55)
1 1.6m+ 5.0 ( 20+ 5.6)+ 05(1.6 m+ 5.0)
2 2.24m + 7.1 ( 28w + 8.0)+ 0.5(224m+ 7.1)
3 3.15m + 10.0 ( 40w + 11.2)+ 0.5(3.15m + 10.0)
4 45m+ 14.0 ( 5.6W + 16.0)+ 0.5( 4.5m+ 14.0)
5 6.3m+ 20.0 ( 8.0 + 224)+ 0.5( 6.3m+ 20.0)
6 9.0m + 28.0 (112w + 31.5)+ 0.5( 9.0m+ 28.0)
7 12.5m + 40.0 (224w + 63.0)+ 0.5( 12.5m + 40.0)
8 18.0m + 56.0 (45.0W +125.0)+ 0.5( 18.0m + 56.0)

where W : Tolerance unit
W =d +0.65m (um)
d : Reference diameter (mm)

m : Module (mm)

(2) Single Contact Testing

In this test, the gear is mated with a master gear on a fixed
center distance and set in such a way that only one tooth
side makes contact. The gears are rotated through this single
flank contact action, and the angular transmission error of
the driven gear is measured. This is a tedious testing method
and is seldom used except for inspection of the very highest
precision gears.
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Bl FEATURES OF TOOTH CONTACT

Tooth contact is critical to noise, vibration, efficiency, strength,
wear and life. To obtain good contact, the designer must give
proper consideration to the following features:

e Modifying the tooth shape
Improve tooth contact by crowning or end relief.

o Using higher precision gear
Specify higher accuracy by design. Also, specify that the
manufacturing process is to include grinding or lapping.

e Controlling the accuracy of the gear assembly
Specify adequate shaft parallelism and perpendicularity of
the gear housing (box or structure)

Tooth contact of spur and helical gears can be reasonably
controlled and verified through piece part inspection. However,
for the most part, bevel gears and worm gear pair cannot be
equally well inspected. Consequently, final inspection of bevel
and worm mesh tooth contact in assembly provides a quality
criterion for control. Then, as required, gears can be axially
adjusted to achieve desired contact.

JIS B 1741: 1977 classifies tooth contact into three levels, as
presented in Table 6.1.

Table 6.1 Levels of tooth contact

Levels of tooth contact
Level Types of gear
Tooth width direction | Tooth height direction
Cylindrical gears More than 70%
A Bevel gears More than 40%
More than 50%
Worm wheels
Cylindrical gears More than 50%
B Bevel gears More than 30%
More than 35%
Worm wheels
Cylindrical gears More than 35%
C Bevel gears More than 25% | More than 20%
Worm wheels More than 20%

The percentage in Table 6.1 considers only the effective width
and height of teeth.
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6.1 Tooth Contact of a Bevel Gear

It is important to check the tooth contact of a bevel gear both
during manufacturing and again in final assembly. The method is
to apply a colored dye and observe the contact area after running.
Usually some load is applied, either the actual or applied braking,
to realize a realistic contact condition. Ideal contact favors the
toe end under no or light load, as shown in Figure 6.1; and, as
load is increased to full load, contact shifts to the central part of
the tooth width.

Heel (Outer) end

Toe (Inner) end

Fig.6.1 Central toe contact

Even when a gear is ideally manufactured, it may reveal poor
tooth contact due to lack of precision in housing or improper
mounting position, or both. Usual major faults are:

OShafts are not intersecting, but are skew (offset error)

@Shaft angle error of gearbox.

®Mounting distance error.

Errors® and @ can be corrected only by reprocessing the
housing/mounting. Error ® can be corrected by adjusting the
gears in an axial direction. All three errors may be the cause of
improper backlash.
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(1) The Offset Error of Shaft Alignment

If a gearbox has an offset error, then it will produce crossed
contact, as shown in Figure 6.2. This error often appears as
if error is in the gear tooth orientation.

Fig.6.2 Poor tooth contact due to offset error of shafts

(2) The Shaft Angle Error of Gear Box

As Figure 6.3 shows, the tooth contact will move toward the
toe end if the shaft angle error is positive; the tooth contact will
move toward the heel end if the shaft angle error is negative.

(+) Shaft angle error

(-) Shaft
angle
error

Fig.6.3 Poor tooth contact due to shaft angle error

(3) Mounting Distance Error

When the mounting distance of the pinion is a positive error, the
contact of the pinion will move towards the tooth root, while
the contact of the mating gear will move toward the top of the
tooth. This is the same situation as if the pressure angle of the
pinion is smaller than that of the gear. On the other hand, if the
mounting distance of the pinion has a negative error, the contact
of the pinion will move toward the top and that of the gear will
move toward the root. This is similar to the pressure angle of
the pinion being larger than that of the gear. These errors may
be diminished by axial adjustment with a backing shim.
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The various contact patterns due to mounting distance errors
are shown in Figure 6.4.

(-) Error

(+) Error

<D

L |

75

Pinion Gear

-

Pinion Gear

Fig.6.4 Poor tooth contact due to error in mounting distance

Mounting distance error will cause a change of backlash;
positive error will increase backlash; and negative, decrease.
Since the mounting distance error of the pinion affects the tooth
contact greatly, it is customary to adjust the gear rather than the
pinion in its axial direction.

6.2 Tooth Contact of a Worm Gear Pair

There is no specific Japanese standard concerning worm gearing,
except for some specifications regarding tooth contact in JIS B
1741: 1977.

Therefore, it is the general practice to test the tooth contact and
backlash with a tester. Figure 6.5 shows the ideal contact for a
worm mesh.

Rotating direction

Receding side

Fig.6.5 Ideal tooth contact of worm gear pair

From Figure 6.5, we realize that the ideal portion of contact
inclines to the receding side.
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Because the clearance in the approaching side is larger than
in the receding side, the oil film is established much easier in
the approaching side. However, an excellent worm wheel in
conjunction with a defective gearbox will decrease the level
of tooth contact and the performance. There are three major
factors, besides the gear itself, which may influence the tooth
contact:

® Shaft Angle Error.
® Center Distance Error.
® Locating Distance Error of Worm Wheel.

Errors® and @ can only be corrected by remaking the housing.
Error® may be decreased by adjusting the worm wheel along
the axial direction. These three errors introduce varying degrees
of backlash.

(1) Shaft Angle Error

If the gear box has a shaft angle error, then it will produce
crossed contact as shown in Figure 6.6.
A helix angle error will also produce a similar crossed contact.

Error
!
”i.':_‘ ] 1 Q_‘F'm
FED S +EH S

Error
/7
//

% _l

Fig. 6.6 Poor tooth contact due to shaft angle error
(2) Center Distance Error

Even when exaggerated center distance errors exist, as shown in
Figure 6.7, the results are crossed contact. Such errors not only
cause bad contact but also greatly influence backlash.

A positive center distance error causes increased backlash. A
negative error will decrease backlash and may result in a tight
mesh, or even make it impossible to assemble.
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(+) Error

I
R
:

LH helix

RH helix LH helix

RH helix

Fig.6.7 Poor tooth contact due to center distance error

(3) Locating Distance Error

Figure 6.8 shows the resulting poor contact from locating
distance error of the worm wheel. From the figure, we can see
the contact shifts toward the worm wheel tooth's edge. The
direction of shift in the contact area matches the direction of
worm wheel locating error. This error affects backlash, which
tends to decrease as the error increases. The error can be
diminished by micro-adjustment of the worm wheel in the axial
direction.

Fig.6.8 Poor tooth contact due to mounting distance error
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LUBRICATION OF GEARS

The purpose of lubricating gears is as follows:
1. Promote sliding between teeth to reduce the coefficient of
friction p .
2. Limit the temperature rise caused by rolling and sliding
friction.

To avoid difficulties such as tooth wear and premature failure,
the correct lubricant must be chosen.

7.1 Methods of Lubrication

There are three gear lubrication methods in general use:
(1)  Grease lubrication.
(2) Splash lubrication (oil bath method).

(3) Forced oil circulation lubrication.

There is no single best lubricant and method. Choice depends
upon tangential speed (m/s ) and rotaing speed (min™') .

At low speed, grease lubrication is a good choice. For medium
and high speeds, splash lubrication and forced oil circulation
lubrication are more appropriate, but there are exceptions.
Sometimes, for maintenance reasons, a grease lubricant is used
even with high speed.

Table 7.1 presents lubricants, methods and their applicable

ranges of speed.
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Table 7.1- ® Ranges of tangential speed (m/s) for spur and bevel gears

No.| Lubrication Range of tangential speed v (m/s)

0 5 10 15 20 25
T T

T T T T
S

1 |Grease lubrication

2 |Splash lubrication <>

3 Forced oil circultion
lubrication

Table 7.1 — @Ranges of sliding speed (m/s) for worm wheels

No. Lubrication Range of sliding speed v, (m/s)

0 5 10 15 20 25
T T

T T T T
1 |Grease lubrication

2 |Splash lubrication

3 Forced oil circultion
lubrication

The following is a brief discussion of the three lubrication
methods.

(1) Grease Lubrication

Grease lubrication is suitable for any gear system that is open or
enclosed, so long as it runs at low speed. There are three major
points regarding grease:

® Choosing a lubricant with suitable cone

penetration.
A lubricant with good fluidity is especially effective in an
enclosed system.

®© Not suitable for use under high load and

continuous operation.
The cooling effect of grease is not as good as lubricating
oil. So it may become a problem with temperature rise
under high load and continuous operating conditions.

® Proper quantity of grease

There must be sufficient grease to do the job. However,
too much grease can be harmful, particularly in an
enclosed system. Excess grease will cause agitation,
viscous drag and result in power loss.
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(2) Splash Lubrication (Oil Bath Method)

Splash lubrication is used with an enclosed system. The
rotating gears splash lubricant onto the gear system and
bearings. It needs at least 3 m/s tangential speed to be
effective. However, splash lubrication has several problems,
two of them being oil level and temperature limitation.

@ OQillevel

There will be excess agitation loss if the oil level is
too high. On the other hand, there will not be effective
lubrication or ability to cool the gears if the level is too
low. Table 7.2 shows guide lines for proper oil level.
Also, the oil level during operation must be monitored,
as contrasted with the static level, in that the oil level
will drop when the gears are in motion. This problem
may be countered by raising the static level of lubrilling
an oil pan.

Table 7.2 Adequate oil level

KHK

@ Temperature limitation.
The temperature of a gear system may rise because
of friction loss due to gears, bearings and lubricant
agitation. Rising temperature may cause one or more of
the following problems:

e Lower viscosity of lubricant

o Accelerated degradation of lubricant.

® Deformation of housing, gears and shafts.
o Decreased backlash.

New high-performance lubricants can withstand up to
80°C to 90°C.

This temperature can be regarded as the limit. If the
lubricant's temperature is expected to exceed this limit,
cooling fins should be added to the gear box, or a cooling
fan incorporated into the system.

Type of Spur gears and helical gears Bevel gears Worm gear pair
Gear Horizontal shaft Vertical shaft (Horizontal shaft) Worm - above Worm -below
Oil level | |
3h :. J! 1h 15
LevelO + T 1Ih J ;i he ;i 10

h = Tooth depth, b = Facewidth, d, = Reference diameter of worm wheel, d, = Reference diameter of worm

(8) Forced Qil Circulation Lubrication

Forced oil circulation lubrication applies lubricant to the
contact portion of the teeth by means of an oil pump. There
are drop, spray and oil mist methods of application.

O Drop Method
An oil pump is used to suck-up the lubricant and then
directly drop it on the contact portion of the gears via a
delivery pipe.

O Spray Method
An oil pump is used to spray the lubricant directly on
the contact area of the gears.
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o Oil Mist Method
Lubricant is mixed with compressed air to form an oil
mist that is sprayed against the contact region of the
gears. It is especially suitable for high-speed gearing.

Oil tank, pump, filter, piping and other devices are needed in
the forced oil lubrication system. Therefore, it is used only for
special high-speed or large gear box applications.

By filtering and cooling the circulating lubricant, the right
viscosity and cleanliness can be maintained. This is considered
to be the best way to lubricate gears.



KHK

Practical Information on Gears

7.2 Gear Lubricants

An oil film must be formed at the contact surface of the teeth to

minimize friction and to prevent dry metal-to-metal contact.

Table 7.3 The properties that lubricant should possess

No. | Properties Description

1 acr?grefg o Lubricant should maintain proper vicosity to form a stable oil film at the specified
ViSC(l:))SitI})/ temperature and speed of operation.

° Antiscoring Lubricant should have the property to prevent the scoring failure of tooth surface
property while under high-pressure of load.

3 %ﬂ(ﬁggsion A good lubricant should not oxidize easily and must perform in moist and high-
stability temperature environment for long duration.
Water Moisture tends to condense due to temperature change when the gears are stopped.

4 | antiaffinit The lubricant should have the property of isolating moisture and water from

y property

property lubricant

5 Antifoam If the lubricant foams under agitation, it will not provide a good oil film. Antifoam
property property is a vital requirement.

6 Anticorrosion | Lubrication should be neutral and stable to prevent corrosion from rust that may
property mix into the oil.

(1) Viscosity of Lubricant

The correct viscosity is the most important consideration in
choosing a proper lubricant. The viscosity grade of industrial
lubricant is regulated in JIS K 2001. Table 7.4 expresses ISO

grades.

viscosity grade of industrial lubricants.

Table 7.4 1S0O viscosity grade of industrial lubricant ( JIS K 2001)

The lubricant should have the properties listed in Table 7.3.

Besides ISO viscosity classifications, Table 7.5 contains
AGMA viscosity grades and their equivalent ISO viscosity

Table 7.5 AGMA viscosity grades
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1SO Kinig‘ﬂig‘?\‘/’;ggsn Kinematic viscosity range AGMA No.of gear oil ISO viscosity
Vissosit 10-*m?/s(cSt) 107*m?/s(cSt) R&Otype EP type grades
y grade (40°C) (40°C)
1 VG 46
ISOVG 2 2.2 More than 1.98 and less than 2.42 2 2 EP VG 68
ISOVG 3 32 More than 2.88 andlessthan 3.52 3 3 EP VG 100
ISOVG 5 4.6 More than 4.14 and less than 5.06 4 4 EP VG 150
ISOVG 7 6.8 More than 6.12 andless than 7.48 5 5 EP VG 220
ISOVG 10 10 More than 9.0  and less than 11.0 6 6 EP VG 320
ISOVG 15 15 More than 13.5 andlessthan 16.5 7 7 comp 7 EP VG 460
ISOVG 22 22 More than 19.8 and less than 24.2 8 8 comp 8 EP VG 680
ISOVG 32 32 More than 28.8 andlessthan 35.2 8 Acomp VG 1000
ISOVG 46 46 More than 41.4 and less than 50.6 9 9 EP VG 1500
ISOVG 68 68 More than 61.2 andlessthan 74.8
ISOVG 100 100 More than 90.0 and lessthan 110
ISOVG 150 150 More than 135 andlessthan 165
ISOVG 220 220 More than 198 and less than 242
ISOVG 320 320 More than 288 and less than 352
ISOVG 460 460 More than 414 and less than 506
ISOVG 680 680 More than 612 andless than 748
ISO VG 1000 1000 More than 900 and less than 1100
ISO VG 1500 1500 More than 1350 and less than 1650
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(2) Selection of Lubricant
It is practical to select a lubricant by following the catalog or technical manual of the manufacturer. Table 7.6 is the application guide
from AGMA 250.03 "Lubrication of Industrial Enclosed Gear Drives".

Table 7.6 Recommended lubricants by AGMA

AGMA No.
Gear type /Ambient temperature °Q§
Size of gear equipment (mm) [ — (. 15 10 ~ 52
. Less than 200 2-3 3—4
Single stage
reduction 200 ~500 2-3 4-5
,,,,,,,,, N Morethan 500 | 3=4 | 4=5
Parallel Center Less than 200 2-3 3—4
Double stage .
shaft ducti distance 200 ~500 3—4 4-5
system reduction (Output side) | More thn 500 3—4 4-5
. Less than 200 2-3 3—4
Triple stage
ducti 200 ~500 3—-4 4-5
reduction More than 500 |  4—5 5-6
Planctary ecar system O.D. of gear | Less than 400 2-3 3-4
Ty gear sy casing More than 400 3-4 4-5
Straight and spiral bevel . Less than 300 2-3 4-=5
. Cone distance
gearing More than 300 3—4 5-6
Gearmotor 2-3 4-5
High Speed Gear Equipment 1 2

Table 7.7 is the application guide chart for worm gear pair from AGMA 250.03.

Table 7.7 Recommended lubricants for worm gear pair by AGMA

Type Center Rotating | Ambient temperature, °c|Rotating speed| Ambient temperature, °G
of distance speed of worm of Worm
worm mm min’ —10~16 | 10~5 min” -10~16| 10~5
<150 | <700 700 < 8 Comp
150 ~300 | <450 450 <
Cylindrical | 300 ~ 460| <300 | 7Comp | 8Comp | 300< 7 Comp
P 460 ~ 600 | <250 250 <
600 < <200 200 <
<150 | <700 700 <
_ 150 ~300 | <450 450 <
E”"t‘;';’g'“g 300 ~460 | <300 | 8Comp | 8AComp | 300< 8 Comp
460 ~600 | <250 250 <
600 < <200 200 <

Table 7.8 expresses the reference value of viscosity of lubricant used in the equations for the strength of worm gears in JGMA 405-01.

Table 7.8 Reference values of viscosity unit: ¢St/37.8°C
Operating temperature Sliding speed m/s
Maximum running Starting temperature | Less than 2.5 | 2.5through5 | More than 5
-10°C ~ 0°C 110 ~ 130 110 ~ 130 110 ~ 130
0°C ~ 10°C

More than 0°C 110 ~ 150 110 ~ 150 110 ~ 150

10°C ~ 30°C More than 0°C 200 ~ 245 150 ~ 200 150 ~ 200

30°C ~ 55°C More than 0°C 350 ~ 510 245 ~ 350 200 ~ 245

55°C ~ 80°C More than 0°C 510 ~ 780 350 ~ 510 245 ~ 350

80°C ~ 100°C More than 0°C 900 ~ 1100 510 ~ 780 350 ~ 510

After making decision about which grade of viscosity to select, taking into consideration the usage (for spur gear, worm gear pair etc.) and
usage conditions (dimensions of mechanical equipment, ambient temperature etc.), choose the appropriate lubricant. Technical manual of
the libricant manufacturer may be of great help.
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Bl GEAR FORCES

In designing a gear, it is important to analyze the magnitude
and direction of the forces acting upon the gear teeth, shafts,
bearings, etc. In analyzing these forces, an idealized assumption
is made that the tooth forces are acting upon the central part of
the tooth flank.

Table 8.1 Forces acting upon a gear

Practical Information on Gears

Table 8.1 presents the equations for tangential (circumferential)
force F\ (kgf), axial (thrust) force F\(kgf), and radial force
F. in relation to the transmission force F, acting upon the
central part of the tooh flank.

T'and T, shown therein represent input torque (kgf'm).

Types of gears F,.Tangential force

F, - Axial force F, - Radial force

Spur gear F tana
. _ 20007 .

. t= d ano,
Helical gear F. tanp F, cosp
Straight bevel gear F, tana sins F tana coss

F = 20£0T When convex surface is working:

COS fn

_f (tana, coss + sing,, sind)

i (tana, sins — sing,, coss)
COSBn

Spiral bevel gear d,, is the central reference diameter

When concave surface is working:

dn=d— b sins
7F‘ﬁ (tane, sin § + sing,, cos ) F‘ﬁ (tana, coss — sinf, sing)
COSpm COSPnm
Worm _ 20007, cosa, COSy — u siny
Worm (Driver) Fo= d, F cosa, siny + u cosy sina,
gear . F, —
pair Vv\yﬁ;’; . _Cosa, cosy — p siny F cosa, siny + u cosy
(Driven) | | COSan siny +pu cosy ‘
Screw gear Driver 20007, F cosa, sinf —u cqsﬂ
( Y= 900) gear ( d, Y cosa, cospB + u sinf - sine,
B=45° Driven | . _cosa, sinf — u cosp r ' cosa, cosp + u sinf
gear v cosa, cosSB + u sinf t

8.1 Forces in a Spur Gear Mesh

The Spur Gear's transmission force F,, which is normal to the
tooth surface , as in Figure 8.1, can be resolved into a tangential
component, F,, and a radial component, F,. Refer to Equation
(8.1).
F.=F,cosa’
. 8.1)
F.=F,sina’

There will be no axial force, F.
The direction of the forces acting on the gears are shown in

Fig.8.1 Forces acting on a spur gear mesh

Figure 8.2. The tangential component of the drive gear, F), is
equal to the driven gear's tangential component, Fy,, but the
directions are opposite. Similarly, the same is true of the radial
components.

Drive gear

e

Ftl fp—

Fo ——~ Fu

' Driven gear /
) — N

—p

Fig.8.2 Directions of forces acting on a spur gear mesh
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8.2 Forces in a Helical Gear Mesh

The helical gear's transmission force, F,, which is normal to the
tooth surface, can be resolved into a tangential component, F,
and a radial component, F', as shown in Figure 8.3.

F,=F, cosa,
(8.2)

F.=F, sina,

The tangential component, F;, can be further resolved into

circular subcomponent, F;, and axial thrust subcomponent, F.

F.=F cosp } (8.3)
F.=F, sinf
Substituting and manipulating the above equations result in:
F.=F tanf
8.4
F=F tana, (8.4)
cosf

KHK

The directions of forces acting on a helical gear mesh are
shown in Figure 8.4.

The axial thrust sub-component from drive gear, F,,, equals the
driven gear's, F,,, but their directions are opposite.

Again, this case is the same as tangential components and radial
components.

Fy
Fig.8.3 Forces acting on a helical gear mesh

m Right-hand pinion as drive gear ——— ">
Left-hand gear as driven gear  n—

@ Left-hand pinion as drive gear ~ C——) >

Right-hand gear as driven gear  n—e-

Fig.8.4 Directions of forces acting on a helical gear mesh

8.3 Forces in a Straight Bevel Gear Mesh

The forces acting on a straight bevel gear are shown in Figure
8.5. The force which is normal to the central part of the tooth
face, F, , can be split into tangential component, F;, and
radial component, F',, in the normal plane of the tooth.

F‘:Fn CoSa, } (85)
F,=F,sina,

Again, the radial component, F, can be divided into an axial
force, F, and a radial force, F,, perpendicular to the axis.

F,=F, siné
sin } (8.6)
F.=F, cosd
And the following can be derived:
F, = F tana, siné } (8.7)
F,=F,tana, cosd
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Let a pair of straight bevel gears with a shaft angle ~ = 90°, a
pressure angle a,= 20° and tangential force, F;, to the central
part of tooth face be 100. Axial force, F,, and radial force, F,
will be as presented in Table 8.2.

Axial force F

“Radial force 7, '

Table 8.2

(1) Pinion

Gear ratio z,/z
Forces on the o/

gear tooth

1.0 1.5 2.0 2.5 3.0 4.0 5.0
Axial force | 25.7 | 202 | 163 | 13.5 | 11.5 8.8 7.1
Radial force | 25.7 | 30.3 | 32.6 | 33.8 | 345 | 353 | 357
(2) Gear

Gear ratio z,/z
Forces on the /7

gear tooth

1.0 1.5 2.0 2.5 3.0 4.0 5.0
Axial force 25.7 | 303 | 32.6 | 33.8 | 345 | 353 | 357
Radial force | 25.7 | 20.2 | 16.3 | 13.5 | 11.5 8.8 7.1

Figure 8.6 contains the directions of forces acting on a straight
bevel gear mesh. In the meshing of a pair of straight bevel gears
with shaft angle ¥ = 90°, the axial force acting on drive gear F;,
equals the radial force acting on driven gear F,,. Similarly, the
radial force acting on drive gear F}, equals the axial force acting
on driven gear F,. The tangential force F;, equals that of F,.

Pinion as drive gear
Gear as driven gear

Practical Information on Gears

8.4 Forces in A Spiral Bevel Gear Mesh

Spiral bevel gear teeth have convex and concave sides.
Depending on which surface the force is acting on, the direction
and magnitude changes. They differ depending upon which is
the driver and which is the driven.

Concave surface

Gear tooth Gear tooth

Convex surface
Right-hand spiral
Fig.8.7 Convex surface and concave surface
of a spiral bevel gear

Left-hand spiral

Figure 8.7 presents the profile orientations of right-hand and
left-hand spiral teeth. If the profile of the driving gear is
convex, then the profile of the driven gear must be concave.
Table 8.3 presents the convex/concave relationships.

Table 8.3 Concave and convex sides of a spiral bevel gear
Right-hand gear as drive gear

Rotational direction Meshing tooth face

of drive gear

Right-hand drive gearlLeft-hand driven gear

Clockwise Convex Concave

Counterclockwise Concave Convex

Left-hand gear as drive gear

Rotational direction Meshing tooth face

of drive gear Left-hand drive gear Right-hand driven
gear
Clockwise Concave Convex
Fig.8.6 Directions of forces acting on a straight bevel gear mesh
9 9 9 9 Counterclockwise Convex Concave

All the forces have relations as per Equations (8.8).
F.=F,
F.=F,
Fa=F,

(8.8)
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(1) Forces on Convex Side Profile

Fig.8.8 When meshing on the convex side of tooth face

The transmission force, F,, can be resolved into components F,
and F>. (See Figure 8.8).

F,=F,cosa,
. } (8.9)
F,=F,sna,
Then F| can be resolved into components F, and F:
F,=F, cosB.
. } (8.10)
F,=F, sinf,

On the axial surface, F, and F, can be resolved into axial and
radial subcomponents.

F.=F,sind — F, cosd }

. 11
F.=F,cosd + F, sind (@.11)
By substitution and manipulation, we obtain:
__F : .
F.= cos B (tana, siné — sinf,, cosd)
__F . .
F.= cos B (tana, cosd + sinf, sind)
(8.12)

(2) Forces on a Concave Side Profile

Fig.8.9 When meshing on the concave side of tooth face

On the surface which is normal to the tooth profile at the central
portion of the tooth, the transmission force F, can be split into
F,and F,. See Figure 8.9:
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F,=F, cosa,
F,=F, sina, (8.13)
And F, can be separated into components F,and F; on the pitch
surface:
F.=F,cosfn. }
F.=F, sinf,
So far, the equations are identical to the convex case. However,
differences exist in the signs for equation terms. On the
axial surface, F, and F, can be resolved into axial and radial
subcomponents. Note the sign differences.

F.=F,sind + F, cosé }

(8.14)

) (8.15)

F.=F,cosé — F, sind
The above can be manipulated to yield:

__F, . .
F.= cos B (tana, sind + sinf, cosd)

__F . .
F.= cos B (tana, cosd — sinf,, sind)

(8.16)

Let a pair of spiral bevel gears have a shaft angle > = 909

a pressure angle o, = 20°, and a spiral angle 3, = 35°. If the
tangential force, F to the central portion of the tooth face is 100,
the axial force, F, and radial force, F,, have the relationship
shown in Table 8.4.

Axial force, F,

Table 8.4 Values of — ——"~*_
Radial force, F;
(1) Pinion
Meshing Gear ratio  z,/z,
tooth face
1.0 15 | 20 | 25 3.0 | 4.0 5.0
Csf;gg%\?e 809 | 82.9 | 825 | 81.5 | 80.5 | 787 | 774
tooth -18.1 | -1.9 84 | 152 | 200 | 26.1 | 298
g%'évg —-18.1 | -33.6 | —42.8 | —48.5 | =524 | =57.2 | =59.9
tooth 809 | 758 | 71.1| 673 | 643 | 60.1| 573
(2) Gear
Meshing Gear ratio  z,/z;
tooth face
1.0 1.5 2.0 2.5 3.0 4.0 5.0
CSC;Qg%e 809 | 758 | 71.1 673 643 | 60.1 | 573
tooth -18.1 | =33.6 | —42.8 | —48.5 | =52.4 | =57.2 | =59.9
(.s:i?jrévg:‘( -18.1 -1.9 8.4 15.2 20.0 26.1 29.8
tooth 809 | 829 | 8.5 | 815 | 805 | 787 | 774

The value of axial force, F, of a spira bevel gear, from Table 8.4,
could become negative. At that point, there are forces tending to
push the two gears together. If there is any axial play in the
bearing, it may lead to the undesirable condition of the mesh
having no backlash. Therefore, it is important to pay particular
attention to axial plays.
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From Table 8.4(2), we understand that axial turning point of Figure 8.10 describes the forces for a pair of spiral bevel gears

axial force, F;, changes from positive to negative in the range of with shaft angle X = 90°, pressure angle o, = 20°, spiral angle

gear ratio from 1.5 to 2.0 when a gear carries force on the convex Bn=735° and the gear ratio z,/z,, ranging from 1 to 1.57357.

suide. The precise turning point of axial force, F;, is at the gear Figure 8.11 expresses the forces of another pair of spiral bevel

ratio z,/z, =1.57357. gears taken with the gear ratio z,/z, equal to or larger than
1.57357.

2=90°, a,=20°, Bu=135°, u<1.57357

m Left-hand pinion as drive gear > @ Right-hand pinion as drive gear ¢ >
Right-hand gear as driven gear sl Left-hand gear as driven gear —

Driver

Fig.8.10 The direction of forces carried by spiral bevel gears (1)

$=90°, ot,=20°, Bu=35°,u> 1.57357

m Left-hand pinion as drive gear — ——. m Right-hand pinion as drive gear —=
Right-hand gear as driven gear - Left-hand gear as driven gear —
‘—\ Driver ”\x F. ‘ .\!Driver ,_}

Fo Fy Fo
,\:. ) \ i’ (f --/I pu
Fig.8.11 The direction of forces carried by spiral bevelgears (2)
8.5 Forces in a Worm Gear Pair Mesh At the pitch surface of the worm, there is, in addition to the

tangential component, ), a friction sliding force on the tooth
surface, F,u. These two forces can be resolved into the circular
and axial directions as:

(1) Worm as the Driver

For the case of a worm as
the driver, Figure 8.12, the
transmission force, F, which

. F,=F,siny + F,u cos
is normal to the tooth surface at F] _ F] ! FH . ! } (8.18)
the pitch circle can be resolved ST COSy T AL Sy
into components /', and F,,. and by substitution, the result is:
F.=F. cosa, } F, = F,(cosa, siny + u cosy)
F.=F sina. F,, = F,(cosa, cosy — u siny) (8.19)

F. = F,sina,

Fig..12 Forces acting on the tooth

surface of a worm 4
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Figure 8.13 presents the direction of forces in a worm gear
pair mesh with a shaft angle ¥ = 90° . These forces relate as

follows:
Fo=Fy,
F.=F, (8.20)
Frl = Fr2

KHK

In a worm gear pair mesh with a shaft angle ~ = 90°, the axial
force acting on drive gear F,, equals the tangential force acting
on driven gear F,. Similarly, the tangential force acting on
drive gear F), equals the axial force acting on driven gear F..
The radial force F;, equals that of F,.

The equations concerning worm and worm wheel forces
contain the coefficient . The coefficient of friction has a great
effect on the transmission of a worm gear pair. Equation (8-21)
presents the efficiency when the worm is the driver.

_ I _ Fp
Ny = Ti ~ F, tany

cosa, cosy — U siny
cosa, siny + 1 cosy

(8.21)

tany

Worm as drive gear v
Worm wheel as driven gear

m Right-hand worm gear pair

Worm as drive gear .
Worm wheel as driven gear m

@ Left-hand worm gear pair

)

- ~Driver

Figure 8.13 Direction of forces in a worm gear pair mesh

(2) Worm Wheel as the Driver

For the case of a worm wheel as the driver, the forces are as in

Figure 8.14 and per Equations (8.22).
F,=F,(cosa, cosy+ u siny)
Fo,=F,(cosa, siny — p cosy) (8.22)

F,=F,sina,

When the worm and worm wheel are at 90° shaft angle,
Equations (8.20) apply. Then, when the worm wheel is the
driver, the transmission efficiency 7, is expressed as per
Equation (8.23).

_Ti_  Fu
o F, tany
cosa, siny — {cosy 1 (8.23)

cosa, cosy +usiny  tany

44
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8.6 Forces in a Screw Gear Mesh

The forces in a screw gear mesh are similar to those in a worm
gear pair mesh. For screw gears that have a shaft angle > = 90°
, merely replace the worm's lead angle 7, in Equation (8.22),
with the screw gear's helix angle 3,.

In the general case when the shaft angle is not 90° , as in Figure
8.15, the driver screw gear has the same forces as for a worm

mesh. These are expressed in Equations (8.24).

Fy = F.(cos a, cos B, + usin f3,)
F. = F,(cos a, sin 8, — ucos ) (8.24)
F.=F,sin a,

Forces acting on the driven gear can be calculated per Equations
(825).

Fo=F, sinY + F, cosX
Fo=F,sinX — F, cosX (8.25)
FrZ = Fr]

If the 2 term in Equation (8.25) is 90°, it becomes identical to
Equation (8.20).

Figure 8.16 presents the direction of forces in a screw gear
mesh when the shaft angle ¥ =90°, and g, = 3,=45°.

Practical Information on Gears

Fy

Fig.8.15 The forces in a screw gear mesh

_ Pinion as drive gear ———>
m Right-hand gear Gear as driven gear sl

@ Left-hand gear

Pinion as drive gear — >

Gear as driven gear -

Driver

Fo

Fu .

Fig.8.16 Direction of forces in a screw gear mesh
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E] coNTACT RATIO

To assure continuous smooth tooth action, as one pair of teeth
ceases action a succeeding pair of teeth must already have come
into engagement. It is desirable to have as much overlap as is
possible. A measure of this overlap action is the contact ratio.

When considering all types of gears, contact ratio is composed
of :

Transverse contact ratio, &,
Overlap ratio, &;
Total contact ratio, &,

9.1 Transverse Contact Ratio, ¢,

Transverse contact ratio (plane of rotation perpendicular to
axes), &, is found by dividing the length of path of contact
by the base pitch, P,. There are three factors that influence
the transverse contact ratio, &,. These are pressure angle, o',
number of teeth z,, z,, and working tooth depth, /".

In order to increase ¢, there are three means:

® Decrease the pressure angle.

Decreasing the pressure angle makes a longer line-of-
action as it extends through the region between the two
outside radii. Also, it is feasible to decrease the pressure
angle by means of profile shifting.

KHK

@ Increase the number of teeth.

As the number of teeth increases and pitch diameter
grows, again there is a longer line-of-action in the
region between the outside radii. For a fixed center
distance, the transverse contact ratio will become bigger
if the gear of smaller module with proportionately
larger number of teeth, is used. (For instance, use SS1-
30 in place of SS2-15).

® Increase working depth.

Working depth %’ of standard full depth tooth is twice as
large as each module size. Therefore, increasing working
depth requires a special tooth design, a "high-tooth".

1) Transverse Contact Ratio of Parallel Axes Gear

Table 9.1 presents equations of transverse contact ratio on
parallel axes gear.

Fig.9.1 Transverse contact ratio ¢,

Table 9.1 Equations of transverse contact ratio on parallel axes gear, &,

No. Type of gear mesh Formula of transverse contact ratio, &,
® dal 5 db] ’ 2 de 2 . ’
1 Spur gear 5 )=\ + -5 — a sina
@ Tm cos a
5 Spur gear @ (dzal )27 (d2b] )2 Lk _ % sina
Rack @
Tm cos A
Spur gear @ di ¥ [ do V Y (dn V2 ,
: (5)-(3) - J(5) (5 me
Internal gear @ Tm cos a
©) da V' _(dw YV 2 (dn ) .
4 Helical gear > )\ ) * “\ ) T @smay
® T, COS O
© An example of helical gear
m,=3 a,= 20° B=130° z1=12 z,=60 x;= +0.09809 x=0
a=125 o,=22.79588°  «'=23.1126°  m=3.46410
dy=48.153 dn=1213.842 dy=38.322 dn=191.611

&,=1.2939
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(2) Transverse Contact Ratio of Bevel Gears, ¢,

The transverse contact ratio of a bevel gear pair, ¢, can be
derived from consideration of the equivalent spur gears, when
viewed from the back cone. (See Figure 4.9 on page 404.)

Table 9.2 presents equations calculating the transverse contact
ratio.

Table 9.2 Equations for transverse contact ratio for a bevel gear pai, ¢,

No. Item Symbol Equations for Contact Ratio
1 | Back cone dist R| 5t
ack cone distance v 2C0So
5 Base radius of an equivalent R Straight bevel gear Spiral bevel gear
spur gear * | R.cosa R,COSa,
3 Tip radius of an equivalent R R+ h,
spur gear
Straight bevel gear
VRui— Ru® + VR — Ru® — (Ru+R.2) sina
Tm cosa
4 | Transverse contact ratio Ea

Spiral bevel gear

\ Ry — Rwi® + \ Ru2’— R — (RutR,,) sina,
Tm COS O

© An example of spiral bevel gear

m=3,a,=20°, f=35°,2=20,2=40, a,=23.95680°
di=60,d,=120, R,,=33.54102 , R\, = 134.16408
Ruo1=30.65152 , Rypo=122.6061, h, =3.4275 , h,=1.6725
Rya1=36.9685 , Rux=135.83658

&a=1.2825

(3) Transverse Contact Ratio For Nonparallel and
Nonintersecting Axes Gear Pairs, ¢,

Table 9.3 presents equations for contact ratio, &,, of nonparallel
and nonintersecting gear meshes.

The equations are approximations by considering the worm
gear pair mesh in the plane perpendicular to worm wheel axis
and likening it to spur gear and rack mesh.

Table 9.3 Equations for transverse contact ratio of nonparallel and nonintersecting meshes, &,

No. Type of gear mesh Equation of transverse contact ratio, &,
Worm 0 _hai—xemy (4N (dn Y} d g
1 sino, 2 2 2 St
Worm wheel @ T, COSTLy

© An example of worm gear pair mesh
my=3, a,=20°,z,=2,2z,=30
di=44,d,=90, y="17.76517°
ox=20.17024° , h, =3

di=96, dy,=84.48050

&a=1.8066
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9.2 Overlap Ratio, ¢;

Helical gears and spiral bevel gears have an overlap of
tooth action in the axial direction. Overlap ratio is obtained
by dividing gear width, b, by p,, the axial pitch. (See the
illustration in Figure 9.2.) Equations for calculating overlap
ratio are presented in Table 9.4.

Table 9.4 Equation for overlap ratio, ¢

KHK

2 Spiral bevel gear R_05h P

No. Type of Gear Equation Example
. b sinf3 b=50,p=30° m,=3
1 Helical gear “am, £3=2.6525
R b tan B From Table 4.21 (Page 409): R = 67.08204 , b =20, f,,=35°, m=3

£5=1.7462

NOTE: The module m in spiral bevel gear equation is the transverse module.

r______ b .

Fig.9.2 Overlap ratio, &,
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GEAR NOISE

There are several causes of noise. The noise and vibration in
rotating gears, especially at high loads and high speeds, need to
be addressed. Following are ways to reduce the noise. These
points should be considered in the design stage of gear systems.

(1) Use High-Precision Gears
®Reduce the pitch error, tooth profile error, runout error and
lead error.

®Grind teeth to improve the accuracy as well as the surface
finish.

(2) Use Better Surface Finish on Gears

®Grinding, lapping and honing the tooth surface, or running
in gears in oil for a period of time can also improve the
smoothness of tooth surface and reduce the noise.

(3) Ensure a Correct Tooth Contact
®Crowning and end relief can prevent edge contact.
®Proper tooth profile modification is also effective.
®Fliminate impact on tooth surface.

(4) Have A Proper Amount of Backlash
® A smaller backlash will help reduce pulsating transmission.
® A bigger backlash, in general, causes less problems.

(5) Increase the Contact Ratio

®Bigger contact ratio lowers the noise. Decreasing pressure
angle and/or increasing tooth depth can produce a larger
contact ratio.

®FEnlarging overlap ratio will reduce the noise. Because of this
relationship, a helical gear is quieter than the spur gear and a
spiral bevel gear is quieter than the straight bevel gear.
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(6) Use Small Gears

® Adopt smaller module gears and smaller tip diameter gears.

(7) Use High-Rigidity Gears

®Increasing face width can give a higher rigidity that will help
in reducing noise.

®Rceinforce housing and shafts to increase rigidity.

(8) Use High-Vibration-Damping Material

®Plastic gears will be quiet in light load, low speed operation.
Care should be taken, however, to the reduced ability to
operate at elevated temperatures.

®(ast iron gears have lower noise than steel gears.

(9) Apply Suitable Lubrication

® L ubricate gears sufficiently.

®High-viscosity lubricant will have the tendency to reduce the
noise.

(10) Lower Load and Speed
®] owering rotational speed and load as far as possible will
reduce gear noise.
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A METHOD FOR DETERMINING THE SPECIFICATIONS OF A SPUR GEAR

Illustrated below are procedural steps to determine specifications of a spur gear.

@  Count up how many teeth a sample spur gearhas z= [ | Table : Base pitch 7,
® Measure its tip diameter. d=01_] Pressure angle Pressure angle
®  Estimate a rough approxmation of its module assuming Module 20° 14.5° Module 200 14.5°
that it has unshifted standard full depth tooth, using the : :
equation: 1 2.952 3.042 8 23.619 24.332
m= % m=[__| 1.25 3.690 | 3.802 9 | 26569 | 27.373
z
@ Measure the span measurement of k, span number of 1.5 4.428 4.562 10 29.521 30.415
te'eth. Also, measure the same of k—1. Then calculate the 5 5.004 6.083 1 12,473 33,456
difference.
Span number ofteeth k =[] Span measurement W, =[] 2.5 7.380 7.604 12 35.425 36.498
" k=1=[_"] W=l ] 3 8.856 9.125 14 41329 | 42581
The difference =[] 35 | 10332 | 10645 || 16 | 47234 | 48.664
® This difference represents P,= 7m cos a.
Select module m and pressure angle a from the table on 4 11.808 . 18 . 34.747
the right. 5 14.760 | 15.208 20 59.042 | 60.830
m=L_] 6 17.712 | 18.249 22 | 64946 | 66913
a=[_ |
® Calculate the profile shift coefficient x based on the above ! 20.664 | 21291 25 73802 | 76.037

mand pressure angle o and span measurement 1.

x= ]

AMETHOD FOR DETERMINING THE SPECIFICATIONS OF A HELICAL GEAR

Helix angle is what differs helical gear from spur gear. And it is
necessary that helix angle is measured accurately.

Gear measuring machine can serve for this purpose. When the
machine is unavailable you can use a protractor to obtain a
rough figure.

Lead 2, of a helical gear can be presented with the equation:

Tzm,
sinf
Given the lead 7, number of teeth z normal module m., the
helix angle f can be found with the equation:

— it T2,
B sm(p)

p,=

z

The number of teeth z and normal module m, can be obtained
using the method explained in 11 above. In order to obtain p,,
determine d, by measuring tip diameter. Then prepare a piece
of paper. Put ink on the outside edge of a helical gear, roll it on
the paper pressing it tightly. With the protractor measure angle
of the mark printed on the paper, S..

Lead p, can be obtained with the following equation.

nd,

P.= tanf,

50

NOTE: This table deals with pressure angle 20° and 14.5° only. There may
be the case where the degree of pressure angle is different.

A

Measuring helix angle on tooth tips
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