Obtenção experimental do coeficiente de arrasto com o lançamento de foguetes de garrafas PET^{+*}

> Jessica de Oliveira Chang¹ Felipe Luiz Quinalha Costa¹ Iago Cipriano Dutra¹ Gabrielle Aquino Ferreira Nery¹ Luis Henrique Nery¹ Emilly Rafaelly Rabelo Rodrigues¹ Angelo Melari Garcia Selin¹ Felipe Teixeira Zambello¹ Estudantes da Universidade Federal de Alfenas – Iniciação Científica Daniel Juliano Pamplona da Silva¹ Rodrigo Rocha Cuzinatto¹ Instituto de Ciência e Tecnologia – Universidade Federal de Alfenas Poços de Caldas – MG

Resumo

O objetivo deste artigo é medir o coeficiente de arrasto k do ar para baixas velocidades de foguetes de garrafa PET propelidos a água e ar comprimido. Fazemos isso através de dois tipos de movimento, a saber, vertical (queda) e lançamento oblíquo. Encontramos os valores k = $(0,05 \pm 0,02)s^{-1}$ e $k = (0,03 \pm 0,02)s^{-1}$ para os movimentos vertical e oblíquo respectivamente.

Palavras-chave: *Coeficiente de Arrasto; Foguetes de Garrafa PET; Movimentos Vertical e Oblíquo.*

⁺Experimental determination of the drag-force coefficient through soda-bottle rocket launching

^{*} Recebido: dezembro de 2018. Aceito: julho de 2019.

¹ E-mails: top897.jc@gmail.com; felipequinalha97@gmail.com; iagosouzaecia@gmail.com; nery98.aquino@gmail.com; luishqnery@gmail.com; emillyrabelo5@gmail.com; aselin55@gmail.com; felipe.zambello1@gmail.com; daniel.silva@unifal-mg.edu.br; rodrigo.cuzinatto@unifal-mg.edu.br

Abstract

This paper's main objective is to measure the drag-force coefficient for low-velocity movements of pressurized-air-water soda-bottle rockets. This is performed via two types of flights, namely vertical fall and inclined launch. The determined values are $k = (0.05 \pm 0.02)s^{-1}$ for the vertical fall and $k = (0.03 \pm 0.02)s^{-1}$ for the inclined motion.

Keywords: *Drag-force Coefficient; Soda-bottle Rockets; Vertical Fall and Inclined Motion.*

I. Introdução

Neste projeto é abordada a física que rege os movimentos de queda² e lançamento oblíquo de um foguete. Para nos aproximarmos de um modelo realístico que leva em conta a resistência do ar, é inserido o termo de arrasto linear na velocidade nas equações de movimento. O lançamento de foguetes de garrafas PET foi amplamente estudado na literatura no caso dos movimentos desprezando a resistência do ar, vide e.g. as Ref. (SOUZA, 2007; CUZINA-TTO, 2015; CUZINATTO, 2017). O caso do movimento de foguetes artesanais com o arrasto foi abordado no estudo (QUEIROZ, 2017) apenas do ponto de vista teórico. O presente trabalho completa o estudo, aborda o problema do experimental, destaca e adapta as equações fundamentais do estudo teórico anterior e apresenta a medida de k em duas montagens experimentais distintas, como veremos a seguir.

A equação de movimento com arrasto do projétil pode ser escrita de forma compacta por $(MARION, 1995)^3$:

$$m\frac{d\vec{v}}{dt} = -mk\vec{v} + \vec{P} \tag{1}$$

sendo $\vec{v} = v_x \hat{i} + v_y \hat{j}$ a velocidade do projétil (HALLIDAY, 2008), *t* o tempo, *k* o coeficiente de arrasto e $\vec{P} = -mg\hat{j}$ é a força peso, em que *m* é a massa e *g* é a magnitude da aceleração gravitacional. Nota-se que o termo de arrasto $(\vec{F_r} = -km\vec{v})$ é assumido como linear com a velocidade no regime de baixas velocidades. Esse termo é sempre negativo, pois o arrasto é contrário à tendência de movimento.

² Usaremos o termo "queda" para descrever o movimento vertical descendente com arrasto.

³ A referência (FINNEY, 2000) aborda o problema do movimento de foguetes na presença de arrasto levando em conta um termo quadrático na velocidade. A propósito, essa é a modelagem mais comum na literatura, e.g. (HA-LIDAY, 2008) e (RIVEROS, 2016). Entretanto, como enfatizado em (MARION, 1995), essa estratégia tem aplicabilidade mais adequada a um regime de velocidades altas (maiores ou da ordem de 24 m/s) e, portanto, alheio à situação experimental deste artigo, conforme discutido na nossa seção 4.

A equação diferencial (1) pode ser resolvida componente a componente, usando $v_x = dx/dt e v_y = dy/dt$, sendo x e y as componentes horizontal e vertical usuais respectivamente. A solução é:

$$\frac{dx}{dt} = v_{0x}e^{-kt},\tag{2}$$

$$\frac{dy}{dt} = -\frac{g}{k} + \left(\frac{g}{k} + v_{0y}\right)e^{-kt},\tag{3}$$

onde v_0 é a velocidade inicial do projétil, $v_{0x} = v_0 \cos \theta$ e $v_{0y} = v_0 \sin \theta$ são suas componentes nas direções x e y, respectivamente, e θ é o ângulo com a horizontal. Após nova integração com respeito a t, as Eqs. (2) e (3) resultam:

$$x = x_0 + \frac{v_{0x}}{k} (1 - e^{-kt}),$$
(4)

$$y = y_0 - \frac{gt}{k} + \frac{1}{k} \left(v_{0y} + \frac{g}{k} \right) (1 - e^{-kt}).$$
(5)

É possível inserir dados experimentais em (4) e (5) para encontrar o valor do coeficiente de arrasto k. Neste trabalho, os projéteis usados para a coleta dos dados foram foguetes de garrafas PET pressurizadas.

Na próxima seção, apresentaremos as estratégias experimentais usadas para obter o valor de k para movimentos a baixas velocidades de forma explícita.

A referência (WIDMARK, 1998) ocupa-se da estimativa do coeficiente de arrasto no regime de altas velocidades, em que a força de arrasto é proporcional ao quadrado da velocidade do foguete. O preço a pagar por essa escolha é a sofisticação da técnica experimental requerida. Com efeito, o autor dessa referência usa túnel de vento para coletar dados que alimentam um software para produzir a estimativa do coeficiente desejado. Nosso trabalho prescinde dessa sofisticação e é um método inteiramente analítico corroborado por uma estimativa numérica (vide seção 4).

II. Metodologia

Foram realizadas duas formas distintas para a obtenção de dados, sendo a primeira a queda livre, e a segunda o lançamento oblíquo.

Para ambos os experimentos, foram utilizados foguetes construídos a partir de garrafas PET de refrigerantes de 1,5 L levando-se em conta seu centro de massa (SOUZA, 2007), aerodinâmica e reprodutibilidade.

Na construção dos foguetes, as garrafas PET foram utilizadas como estrutura principal acoplando a elas aletas de isopor, fixadas por cola quente e fitas adesivas. No bico do foguete foi colocado um material de maior densidade (conjunto parafuso e porca) com intuito de deslocar o centro de massa em direção à ogiva do foguete, aumentando a estabilidade do seu movimento. Roteiros detalhados de construção dos foguetes e de suas bases de lançamento podem ser encontrados em outros trabalhos na literatura, vide e.g. (SOUZA, 2007; CUZINA-TTO, 2015; CUZINATTO, 2017). Aqui, a ênfase é o estudo pormenorizado do movimento dos projeteis.

As estratégias empregadas na obtenção de dados a partir dos movimentos vertical e oblíquo dos foguetes possuem suas respectivas peculiaridades. As próximas duas seções buscam esclarecer e detalhar os diferentes casos.

II.1 Queda

Primeiramente, escolhemos o ponto mais alto e acessível disponível no local de realização do experimento (Instituto de Ciência e Tecnologia - *Campus* Poços de Caldas). Como cada foguete foi usado para cerca de dez medidas, usaram-se colchonetes no local de impacto para se evitar que os choques danificassem a estrutura dos protótipos (Fig. 1(a)).

Fig. 1 - (a) Instantâneo de uma das quedas do foguete PET. (b) Gancho utilizado para o abandono de cada protótipo e detalhe do foguete de garrafa PET.

Com o auxílio de uma trena de 30 m e menor divisão 2 mm, mediu-se a distância entre o ponto em que o foguete inicia sua trajetória de queda e a superfície superior dos colchonetes (Fig. 1(a)). Além disso, foi subtraído da distância de queda (altura) o comprimento do foguete, resultando na distância que a ponta do foguete percorreu. Utilizamos um gancho em formato de anzol na extremidade de um cabo de vassoura (Fig. 1(b)) para prender a parte inferior do foguete a partir de um laço de barbante. Girando o gancho de 180°, garantimos que os foguetes eram abandonados do repouso em todas as repetições. O cabo de vassoura era sempre apoiado na superfície horizontal plana da janela do topo do edifício, cf. Fig. 1(a).

O caminho percorrido pelos foguetes ao longo da queda foi registrado com o auxílio de uma câmera fotográfica de 50 fps. O posicionamento desta foi tal que toda a trajetória de cada foguete pôde ser devidamente registrada, desde seu desprendimento do gancho até o contato com o colchonete. Os foguetes eram içados por uma corda ao topo do prédio a partir de suas alças de barbante entre os lançamentos.

As medidas dos tempos de voo obtidas a partir da filmagem da queda livre foram analisadas em câmera lenta com um programa de edição de vídeos (*Windows Movie Maker*), sendo a velocidade entre os *frames* diminuída em oito vezes. Isso foi usado na estimativa da incerteza do tempo de queda.

A incerteza na medição do tempo σ_t foi majorada como a soma direta da incerteza do software de tratamento de vídeo (0,04s) e a incerteza da câmera de filmagem (0,02s). O valor é $\sigma_t = 0,06 s$; essa estimativa foi usada tanto no estudo da queda, abordado nesta seção, quanto no do lançamento oblíquo, estudado na seção a seguir.

II.2 Lançamento oblíquo

Diferentemente da queda, os lançamentos oblíquos fizeram uso de uma base lançadora construída para este projeto que contava com um manômetro capaz de indicar a pressão dentro dos foguetes, uma bomba de ar manual e dois compressores automotivos portáteis de 12V, acoplados à bateria de um veículo para pressurizar os foguetes. A Fig. 2 mostra a montagem foguete-base. A bomba e os compressores são acoplados a base através de bicos de pneu fixados em niples de PVC.

São utilizados canos de PVC de $\frac{3}{4}$ " para suporte e estabilidade da base. Canos de $\frac{1}{2}$ " acoplam o foguete à base e servem de canal de injeção de ar no sistema. Por questões de segurança, uma válvula de escape (VE) – haste azul na Fig. 2(c) – está disponível para despressurizar a câmara em casos de emergência. Outros detalhes de construção constam da Ref. (CU-ZINATTO, 2017).

O foguete é preso à base por um sistema de lacre composto por fitas Hellerman, uma mola e um pino de segurança. Ao atingir a pressão desejada, retira-se o pino e o foguete é disparado pela diferença da pressão entre o interior do foguete e a atmosfera.

(a)

(b)

(c)

Fig. 2 – *Montagem foguete-base. (a) vista traseira com perspectiva da pista de lançamento e aterrisagem; (b) vista lateral; (c) detalhe do ângulo de lançamento* θ .

A trajetória do foguete é longa e a tomada de vídeo do movimento completo com uma câmera estática não apresentaria definição suficiente no vídeo para determinarmos com acurácia as posições e os momentos de início e de fim da trajetória. Essa dificuldade motivounos a medir o tempo de voo a partir dos sons dos eventos: (i) liberação do foguete e (ii) impacto com o solo. A medição foi realizada com uma câmera à meia distância das posições dos eventos (i) e (ii). Como precisávamos dos picos sonoros em (i) e (ii), não utilizamos os colchonetes para amortecer o impacto em (ii). Ainda assim, os foguetes não sofriam avarias no impacto com o solo. O vídeo desta câmera, embora registre a imagem de uma parte da trajetória, foi utilizado somente para extração dos picos sonoros no software de tratamento de vídeo e a consequente aferição do tempo de voo.

Escolhemos um ângulo θ de 45° com solo. Essa escolha tem dois motivos. O primeiro é: no lançamento oblíquo sem arrasto esse ângulo garante o alcance máximo. O segundo, que está relacionado ao primeiro, é: aumentando o alcance, diminui-se a incerteza relativa dessa medida. Experimentalmente, esse ângulo podia ser ajustado continuamente através de um parafuso rosqueado no cano de lançamento da base: rosquear o parafuso é equivalente a variar o cateto oposto (cat), ajustando θ . A distância no chão entre o ponto de apoio da base e o ponto de apoio do parafuso é a hipotenusa (hip), vide Fig. 2(c).

A modelagem física deste trabalho - e também das Refs. (HALLIDAY, 2008) e (MARION, 1995) – exige que a altura do ponto I de impacto com o solo seja igual à altura do ponto em que o foguete tem velocidade v_0 (Fig. 3). Essa velocidade é aquela velocidade adquirida pelo foguete depois que toda água foi ejetada. Chamamos de l a altura do ponto Eocupado pelo foguete quando do término da ejeção da água. Para satisfazer a condição de validade da modelagem (ponto E e ponto I no mesmo nível), a base deve estar a uma altura labaixo do ponto I. Realizamos isso experimentalmente escolhendo um terreno em aclive, onde a base de lançamento foi disposta na posição mais baixa. Para garantir que o ponto E e o ponto I tenham o mesmo nível, é preciso determinar a altura l de ejeção da água. Fizemos isso com uma segunda câmera⁴ que filmou somente o disparo, de perfil (Fig. 2(b)), na região próxima à base, onde ocorria a ejeção da água. Durante a ejeção da água o foguete é acelerado a partir do repouso (velocidade nula no ponto B da Fig. 3) até a velocidade v_0 (no ponto E de altura l na Fig. 3). A posição do ponto E foi determinada a partir da posição do ponto de impacto I com um manômetro em U, construído com uma mangueira d'agua transparente. Com o valor da altura l, o valor do ângulo θ de lançamento e a posição do ponto E é possível determinar a posição B em que a base deve ser disposta por trigonometria.

Fig. 3 – Representação de perfil do desnível no terreno de lançamento oblíquo.

⁴ A segunda câmera usada possui especificações análogas àquela localizada no ponto médio da trajetória.

Para a medida do alcance, realizávamos marcações no ponto de impacto dos foguetes com o solo. A cada lançamento fazíamos a medição da distância *d* do ponto de impacto até a marcação de referência⁵ a 57,8 metros da base. O alcance era, então, calculado pela soma (ou subtração) de *d* com a marcação de referência caso o foguete caísse além (aquém) da marcação. As eventuais dispersões laterais são fontes de erro na medida do alcance; esses erros foram incluídos no desvio padrão da média que são tomados como incerteza em *R*'. A incerteza instrumental da trena (1 mm) é duas ordens de grandeza menor do que o desvio padrão da média (\cong 30 *cm*) e, portanto, foi desprezada.

A câmera era disposta a meia distância entre o ponto de lançamento e a distância de referência (57,8 m). Deste modo é possível desconsiderar a influência do tempo de propagação do som na medida do tempo de voo.

Começávamos uma nova gravação segundos antes de o foguete desprender-se de sua base. O tempo de voo em cada lançamento foi aferido analisando a faixa de áudio de sua gravação: é o intervalo entre o pico sonoro de liberação do foguete e o pico sonoro de seu impacto com o solo.

Foi realizada também a medida do tempo de aceleração do foguete (ejeção da água). Devido ao resultado ser da mesma ordem de grandeza da incerteza do tempo total de voo, a variável tempo de aceleração também foi desprezada. Como medida compensatória aumentou-se proporcionalmente a magnitude do valor da incerteza do tempo de voo.

III. Resultados

Nesta seção apresentamos os dados extraídos com os experimentos de queda (seção 3.1) e lançamento oblíquo (seção 3.2), descrevemos os cálculos de k com base na fundamentação teórica da Introdução e detalhamos as estimativas de incerteza envolvidas. O roteiro passa pela determinação do valor do módulo da aceleração gravitacional local g; da expansão das expressões (4) e (5) em série de Taylor em torno de k = 0 e pela construção a expressão analítica de k com a primeira ordem de correção como função dos dados coletados. Por fim, comparamos o valor experimental de k encontrado através dessas expansões com o valor de kadvindo da solução numérica das Eqs. (4) e (5).

Começamos pelo cálculo de g. O módulo da aceleração gravitacional local é determinado por (MORITZ, 2000):

$$g = g_e \frac{1 + \kappa \sin^2 \Phi}{\sqrt{1 - e^2 \sin^2 \Phi}},\tag{6}$$

sendo que $g_e = 9,7803267715 m/s^2$ é o módulo da gravidade normal no equador; $e^2 = 0,00669438002290$ é a primeira excentricidade e $\kappa = 0,001931851353$ é uma quantidade

⁵ A marcação de referência foi assumida como o valor médio do alcance de três lançamentos preliminares.

adimensional dependente dos valores do semieixo maior e menor da Terra. Φ é a latitude geográfica em radianos.

A latitude no local de realização do experimento $\Phi = -(21,819 \pm 0,003)^{\circ}$ foi determinada usando o software Google Earth, que pode ser acessado gratuitamente no sitio <https://www.google.com.br/intl/pt-BR/earth/>. A incerteza na latitude Φ foi estimada como sendo a diferença entre as latitudes dos extremos de toda extensão dos múltiplos lançamentos – de queda e oblíquo, abarcando os locais nas Fig. 1(a) e 2(a).

Assim, com a Eq. (6), calculamos $g = (9,787463 \pm 0,000002)m/s^2$ (MORITZ, 2000).

III.1 Queda

Relacionamos a altura de queda y = h com o tempo de voo t = T e o coeficiente de arrasto k com a Eq. (5). As medições descritas na seção 2.1 fornecem valores de h e T. A primeira ideia seria substituir os valores do par (h, T) em (5) e encontrar diretamente k. Porém, a Eq. (5) é transcendental em k (o coeficiente k aparece nos denominadores do lado direito e também como argumento de uma exponencial).

Uma solução k = k(h, T) analítica, porém aproximada, é encontrada assumindo k pequeno e usando a técnica de expansão em série de Taylor (MARION, 1995).⁶ Expandindo, então, a equação resultante até primeira ordem de correção em k, chegamos à:

$$k = \frac{6}{gT^3} \left(\frac{gT^2}{2} - h \right).$$
(7)

Os valores de *h* e *T* que alimentam a Eq. (7) são aqueles na Tabela 1. Tratam-se dos valores médios do conjunto de dados produzido nas 113 quedas de foguetes PET. As incertezas $\sigma_h e \sigma_T em h e T$, respectivamente, são obtidas considerando-se o erro instrumental e o erro estatístico. A incerteza do valor calculado de *k* é encontrado pelo método de propagação de incertezas (VUOLO, 1996).

Tabela 1 – Dados experimentais da queda.

Grandeza	Valor
$(h \pm \sigma_h) m$	11,15 ± 0,05
$(T \pm \sigma_T) s$	1,529 <u>+</u> 0,008
$(k \pm \sigma_k) s^{-1}$	0,05 <u>+</u> 0,02

⁶ Em um trabalho análogo, KRAFF (2015) trata da solução analítica para o problema teórico da ascensão vertical na presença de arrasto linear com a velocidade, em um campo gravitacional constante, para um sistema de massa variável. Em nosso trabalho, estudamos a queda vertical de um foguete vazio de massa fixa e a situação experimental do movimento oblíquo com arrasto linear na velocidade depois da ejeção da água do foguete.

Uma alternativa à expansão que leva a expressão analítica (7) é resolver a Eq. (5) de forma numérica para k = k(h, T). Fizemos isso pelo método da bisseção e obtivemos o valor $k = (0,0496 \pm 0,0001)s^{-1}$. Esse valor é compatível com o da Tabela 1 tendo-se em vista a incerteza do valor experimental e também a precisão numérica de quatro casas decimais do caso numérico.

III.2 Lançamento oblíquo

No caso do lançamento oblíquo é necessário combinar as Eqs. (4) e (5) para obtenção do coeficiente de arrasto k. Isso é assim pois medimos o tempo de voo t = T' e o alcance horizontal x = R'. Tanto quanto no caso anterior, precisamos fazer a expansão em série de Taylor das exponenciais para lidar com equações transcendentais em k. O resultado desse procedimento fornece indiretamente uma equação k' = k'(R', T'). Veja:

$$k' = \frac{3g}{v_0 \sin \theta} \left(1 - \frac{gT'}{2v_0 \sin \theta} \right),\tag{8}$$

onde $v_0 = v_0(R', T')$ é dado pela expressão:

$$v_0 = \frac{gT'}{3\sin\theta} \left(1 + \sqrt{1 - \frac{3R'\tan\theta}{2gT'^2}} \right).$$
(9)

Aqui, usamos a notação com linha (') para diferenciar os resultados obtidos no lançamento oblíquo dos resultados da queda livre. Os valores de T' e R' empregados nas Eqs. (8) e (9) constam da Tabela 2 e são o resultado do tratamento de dados relativos aos 122 lançamentos realizados. Note que a incerteza $\sigma_{T'}$ do tempo de voo no caso oblíquo (Tabela 2) é uma ordem de grandeza maior que a incerteza σ_T para o tempo de voo da queda (Tabela 1). A origem dessa diferença é a dispersão no conjunto das medidas de tempo: ela é maior para o caso oblíquo do que para a queda.⁷ A dispersão afeta o desvio padrão, que é um dos componentes da incerteza da média juntamente com a incerteza instrumental e o número de medidas (VUOLO, 1996).

Com as Eq. (8) e (9) é possível deduzir a fórmula para determinar a incerteza da velocidade e da constante de arrasto usando, novamente, a técnica de propagação de erros (VUOLO, 1996). Os valores de k', v_0 e suas respectivas incertezas aparecem na Tabela 2.

⁷ As condições de reprodutibilidade do lançamento oblíquo são bem piores do que na queda.

Grandeza	Valor
$(\boldsymbol{\theta} \pm \boldsymbol{\sigma}_{\boldsymbol{\theta}})$	0,785 ± 0,001
$(v_o \pm \sigma_{v_o}) m/s$	22,5 <u>+</u> 0,2
$(\mathbf{R}' \pm \boldsymbol{\sigma}_{\mathbf{R}'}) \mathbf{m}$	48,0 ± 0,3
$(T' \pm \sigma_{T'}) s$	3,19 <u>+</u> 0,02
$(k' \pm \sigma_{k'}) s^{-1}$	0,03 <u>+</u> 0,02

Tabela 2 – Dados experimentais do lançamento oblíquo.

O valor de k' pelo método numérico da bisseção é $(0,0344 \pm 0,0001)s^{-1}$. A compatibilidade desse resultado com o valor experimental de k' na Tabela 2 mostra que a expansão em Taylor é perfeitamente razoável como método analítico de obtenção do coeficiente de arrasto (assim como já havíamos observado no experimento de queda da seção anterior).

IV. Discussão e conclusão

Neste trabalho estudamos a determinação experimental do coeficiente de arrasto de foguetes de garrafas PET em movimento no ar. Os tipos de movimento foram dois: queda (vertical) e lançamento oblíquo.

Na queda, os foguetes foram abandonados (com $v_0 = 0$) do alto de um prédio; medimos a altura de queda *h* e o tempo de voo *T*. No lançamento oblíquo, usamos uma base lançadora de tubos de PVC com um sistema de pressurização que conferia velocidade inicial $v_0 \neq 0$ em uma angulação $\theta = 45^\circ$; medimos o alcance *R'* e o tempo de voo *T'*.

Com esses dados e as Eqs. (7), (8) e (9), foram determinados os valores para o coeficiente de arrasto na queda (k) e no lançamento oblíquo (k') como $k = (0,05 \pm 0,02)s^{-1}$ e $k' = (0,03 \pm 0,02)s^{-1}$. Comparando esses valores, observa-se que esses resultados são compatíveis dentro do intervalo de confiança de 1σ . Com isso, pode-se dizer que o valor verdadeiro de k está necessariamente dentro do intervalo de $0,03s^{-1}$ a $0,07s^{-1}$, enquanto o valor verdadeiro de k' está no intervalo de $0,01s^{-1}$ a $0,05s^{-1}$. Analisando a intersecção desses intervalos, nota-se que o valor verdadeiro pode ser comum aos dois casos. Isso é esperado já que o coeficiente de arrasto deve depender das características do projétil e do fluido dentro do qual ele se move. Veja, por exemplo, a modelagem dada para k na referência (HALLIDAY, 2008), onde o coeficiente de arrasto depende da densidade do fluido e da seção reta do corpo em movimento. Em nossos experimentos, o fluido, o projétil são os mesmos tanto na queda quanto no lançamento oblíquo, por isso espera-se que k e k' assumam os mesmos valores.

Encontramos também os valores de k e k' resolvendo numericamente as equações (4) e (5), que são transcendentais no coeficiente de arrasto. Os valores encontrados, k =

 $(0,0496 \pm 0,0001)s^{-1}$ e $k' = (0,0344 \pm 0,0001)s^{-1}$, satisfazem a condição de k pequeno. Por outro lado, k e k' experimentais são compatíveis com os valores numéricos. Isso justifica a validade da hipótese $k \ll 1$ necessária para a expansão em Taylor que fizemos anteriormente. Ademais, k e k' são notadamente diferentes de zero em ambos os casos (dentro das incertezas e da precisão numérica), o que corrobora a existência do arrasto.

Podemos também destacar o valor da velocidade inicial no lançamento oblíquo: $v_0 = (81,0 \pm 0,7)km/h$, assim como o valor final da velocidade com que o foguete colide com o solo no caso da queda vertical: $v = (51,8 \pm 0,8)km/h$. Esses são os valores máximos de velocidade desenvolvida pelos foguetes e, ainda assim, são menores do que 24m/s = 86,4 km/h; este valor é estabelecido na Ref. (MARION, 1995) como o limite de validade para a aproximação linear da força de arrasto como função da velocidade. Isso garante a adequação do modelo aos experimentos realizados e descritos aqui.

Note que v_0 do lançamento oblíquo é relativamente próximo do limite de 86,4 km/h (a diferença é igual a $7\sigma_{v_0}$). Isso pode contribuir para a incerteza elevada (da mesma ordem de grandeza) do valor do coeficiente de arrasto. Entretanto, justificamos a escolha desse valor de v_0 para a realização do experimento assim: um valor alto de v_0 maximiza o alcance R', diminuindo o erro relativo nessa medida.

Verifica-se que a velocidade inicial do lançamento oblíquo e a velocidade final da queda são da mesma ordem de grandeza, assim como suas incertezas, mostrando consistência no método utilizado, de acordo com o parágrafo anterior. O valor da velocidade final de queda vertical com arrasto, $(51,8 \pm 0,8)km/h$, é distinto do valor da hipotética velocidade de queda livre $(53,852 \pm 0,025) km/h$ mesmo considerando suas incertezas. Isso aumenta a confiança que temos na consistência dos resultados para k.

Seguem alguns comentários a respeito do movimento do foguete durante a ejeção da água no lançamento oblíquo. A nossa filmagem mostrou que o tempo de ejeção foi de $(0,085 \pm 0,007)s$ e nossos cálculos mostraram que a velocidade v_0 ao final da ejeção era $(22,46 \pm 0,23)m/s$. Usamos uma pressurização de 70*psi* no foguete. O trabalho (SOUZA, 2007) faz um estudo detalhado do movimento do foguete durante a ejeção da água para um lançamento vertical, no qual é usado 80*psi* para pressurização na câmara do foguete. Os resultados obtidos naquele trabalho para uma quantidade de água de 600*ml* dentro do foguete de 2 L foram 80*ms* e 20*m/s* respectivamente para ejeção de água e velocidade v_0 . Concluímos, então, que esses valores são compatíveis com os nossos, dadas as pequenas diferenças no arranjo experimental, tais como valores de pressão, tamanho e geometria dos foguetes, e o fato crucial de que aqui $k \neq 0$.

Trabalhos futuros poderiam refinar nossos resultados experimentais do coeficiente de arrasto. Esse refinamento poderia incluir uma vídeo-análise dos lançamentos (com o *software* Traker, por exemplo). Tal análise potencialmente viabilizaria a obtenção dos dados de posição em função do tempo, de velocidade em função do tempo e a construção dos gráficos de traje-tória, os quais poderiam ser comparados com aqueles da referência (QUEIROZ, 2017). As

dificuldades técnico-experimentais envolvidas nessas tarefas escapam ao objetivo deste trabalho. Ainda assim, este artigo torna claro que um arranjo artesanal simples pode mostrar a existência do arrasto no movimento de corpos na atmosfera.

Agradecimentos

Os autores são gratos ao Ministério da Educação do Governo Federal do Brasil (edital PROBEXT 2014 MEC/SESu) e ao Programa de Educação Tutorial (PET) –grupo *PET Ciência* – pelo apoio financeiro. Agradecemos aos estudantes Arthur M. D'Ambrosio, Hugo F. de Andrade, Bárbara R. Duarte, Victor C. Lorencetti, Sérgio A. Maéstri, Renan D. Martins, Alessandra M. de Queiroz e Mauro F. de Toledo Filho por colaborações anteriores que motivaram este trabalho. Somos gratos também ao estudante José Augusto de Oliveira pelas discussões na etapa inicial deste trabalho.

Referências

CUZINATTO, R. R. *et al.* Construindo um foguete de garrafa pet e sua base de lançamento de PVC: o protótipo *Rocketeers* UNIFAL-MG, **Física na Escola**, v. 15, p. 52-59, 2017.

CUZINATTO, R. R. *et al. Rocketeers* UNIFAL-MG: o ensino de física através o lançamento de foguetes artesanais, **Revista Ciência em Extensão**, v. 11, p. 40-62, 2015.

FINNEY, G. A. Analysis of a water-propelled rocket: A problem in honors physics, **American Journal of Physics**, v. 68, p. 223-227, 2000.

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 8. ed. Rio de Janeiro: LTC, 2008, v. 1.

KRAFF, A. V. *et al.* Obtención y solución a la ecuación de movimiento de un cohete, actuando sobre él las fuerzas externas del campo gravitacional constante y el rozamiento del aire proporcional a la velocidade. **Revista Mexicana de Física E**, v. 61, p. 6-10, 2015.

MARION, J. B.; THORNTON, S. T. Classical Dynamics of particles and systems, 4. ed. Orlando: Saunders College Publishing, 1995.

MORITZ, H. Geodetic reference system 1980. Journal of Geodesy, v. 74, p. 128-133, 2000.

QUEIROZ, A. M.; CUZINATTO, R. R. O efeito do arrasto no lançamento de foguetes artesanais: aspectos teóricos. **Revista Brasileira de Iniciação Científica**, v. 4, p. 82-109, 2017.

RIVEROS, H. G. Taller: La computadora en el Laboratorio, Latin-American Journal of Physics Education, v. 10, p. 4325-1–4325-14, 2016.

SOUZA, J. A. Um foguete de garrafas pet. Física na Escola, v. 8, p. 4-11, 2007.

VUOLO, J. H. **Fundamentos da Teoria de Erros**. 2. ed. São Paulo: Edgard Blücher, 1996. WIDMARK, S. A. Rocket Physics. **The Physics Teacher**, v. 36, n. 3, p. 148-153, 1998.

Direito autoral e licença de uso: Este artigo está licenciado sob uma Licença Creative Commons.