

Tripoli Mirmesota
Gary Stroick

December 2012

Agenda

- Overview
- Dual Deployment Designs
- Avionics Bays
- Electronics & Ejection
- Attachment Points
- Parachutes & Packing
- Summary

Overview

- Why use Dual Deployment?
- You're Verno 1. To stay out of mosquito infested swamps.
- ✓ 2. To reduce the drift distance Unless ... ensuring that the vehicle remains in the recovery area as specified by the Tripoli Safety Code.
- You're Bill 3. So those with bad hips don't have to walk so far.

Overview

- Two Stage Recovery Philosophy
 - Initial Rapid Controlled Descent
 - Descent Rate ≈ 100 ft/sec
 - Techniques: Flat Spin, Body Separation, Streamer, Parachute
 - Slow Final Descent
 - Descent Rate ≈ 20 ft/sec
 - Techniques: Parachute

Failure Modes #1 Cause of Failure is Recove

Attachment Points

- Quick Links not Connected or Left Open
- Poor Knot Selection
- Inadequate Hardware

Parachute, Bridle, etc.

- Improperly Folded
- Improperly Sized
- Inadequately Protected
- Fatigue Considerations

Deployment

- Too Small/Not Tested
- Incorrect Altimeter Setup
- Loss of Power
- **Electrical Wire Disconnects**

Related Failures

- Drag Separation
- Zippers
- In Flight Self Impact
- Shear Pin Failure

Dual Deployment Designs

- Design Approaches
 - 1. Split Airframe Deployment
 - 2. Inline Deployment
 - 3. Rear Deployment
 - 4. Hatch Deployment

Split Airframe

Typical & Most Popular Design

Split Airframe

Inline

Typical Design

Rear

Hatch

Avionics (AV) Bays

- Design Philosophies
 - Redundant Systems (if possible)
 - Complete System Independence
 - Power
 - Switches
 - Separate Power Sources
 - Altimeter
 - Pyro Channels
 - Ease of Use!

Internal Components

- Avionics Mount
 - Usually a Sled
 - Z-Axis Alignment
- Internal Sled Support
 - Rods & Tube/Eyes
 - Slotted Bulkheads

Power Systems

- Batteries
 - 9V Duracell or Werker (Soldered)
 - LiPo recommended for some systems
- Battery Mounts
 - Connections always at Aft
 - Immovable on all 3 axis
 - Zip Tie/Velcro/Mechanical Fasteners

Switches

- Mount Internally
 - More Aerodynamic
 - Avoids Shearing
- Wiring
 - Solder
 - Terminal Blocks

- Must be Vibration/Bounce Resistant
- Mount with "On" in the Down Position

Copyright © 2012 by Off We Go Rocketry, LLC

Static Ports

- Required for Barometric Sensors
- Recommend 3 or more ports
- Port Sizing
 - D_P=Diameter of Port
 - V_{AB} =Volume of AV Bay $D_p=2*$
 - N_P=Number of Ports

$$\sqrt{\frac{\left(\frac{V_{AB}}{800}\right)^2}{N_P}}$$

Electronics

- Dual Deployment Altimeters
 - Always have a Barometric Sensor
 - May have Accelerometers, GPS, or Timers
 - Ex. Co-Pilot, Marsa54, XTRA, ...
- Timers, etc may be used but are not recommended.

Electronics

Electronics

Altimeter Configuration

- Altimeter Dependent but ...
- 1st Deployment (Drogue) at Apogee
- 2nd Deployment (Main) at ??? ft AGL
 - Parachute Opening Time
 - Parachute Size
 - Bridle Length
 - Wind Conditions

- Under 25,000 feet
 - Solutions include Canisters or Surgical Tubing
 - Typically on AV Bay Bulkhead
- Over 25,000 feet or CO₂
 - Requires Airtight Chamber

- Sizing Based on Parameters
 - Deployment Volume
 - Shear Pin Size & Number
 - No Shear Pins Coefficient of Friction
 - Mass of Ejected Components
 - Desired Ejection Velocity
 - Contingency Factor

• Ejection Pressure (P_E)
$$P_{E} = \frac{\left(\frac{W_{NC}}{g} * \frac{v_{NC}}{\Delta t} + MAX(N_{SP} * \tau_{SP}, minF_{NC})\right)(1 + C)}{A}$$

Nose Cone Force (F_{NC})

$$F_{NC} = P_E * A_{NC}$$

W_{NC}= Weight of Nose Cone v_{NC} = Velocity of Nose Cone N_{SP} = Number of Shear Pins τ_{SP} = Pin Shear Strength F_{NC} = Nose Cone Force **C = Contingency Factor** A_{NC} = Area of Nose Cone Base

 Requisite Black Powder using Ideal Gas Law (m_{RP})

$$m_{BP} = \frac{P_E * V_{RB}}{R_{BP} * T_{BP}}$$

V_{PR}= Volume of Recovery Bay R_{BD} = BP Specific Gas Constant **T_{BP} = BP Combustion Temperature**

- Online Calculators Inadequate
 - Don't Handle Shear Pins
 - Don't Handle Nose Cone Mass
 - Don't Handle Desired Exit Velocity

Constants			Rocket Parameters			Ejection System			
Variables	Values	Units		Variables	Values	Units	Variables	Values	Units
OneLiter	61.023744	in ³		EjectionBayLength	13	in	NoseConeEjectionVelocity	10	ft/sec
PoundstoGrams	453.59237	gm		EjectionBayRadius	1.3	in	NoseConeMinimumForce	25	lbs
B _p CombustionTemperature	3,307	°Rankine		ShearPinType	Key Hole	in	Contingency	20%	5
B _p SpecificGasConstant	265.92	in lbf/lbm mole R(Bar)		ShearPinsInstalled	3				
NewtontoPound	0.224961492	lbs		NoseConeWeight	2.5	lbs			
g	9.80665	m/s ²					EjectionPressure	47.97918139	psi
MeterstoFeet	3.280839895	ft		Area	5.309292	in ²	NoseConeForce	254.735464	1 lbs
Meterstolnches	39.37007874	in		Volume	1.131048	liters	Bp Required	1.708100057	grams
NylonUltimateTensileStrength	75,000,000	N m ⁻²		ShearPinBreakPoint	63.67849	lb			
Nylon2-56	0.003166922	in ²							
Nylon4-40	0.005089576	in ²							
NylonKeyHole	0.00585	in ²							

Don't Use

Plastic Loops - Recipe for Disaster

- Apogee deployments typically experience 20 to 25g's
- Validate Strength of Materials
 - Hardware Working Load Limit (WLL)
 - WLL/Weight = X g's (Maximum)
 - Evaluate Bulk Plates and Joints

- Install Correctly
 - Use Washers to Distribute Load
 - Fabricate needed Parts
 - Secure Nuts
 - Loctite
 - Nylon Inserts
 - Cotter Pins

Bridle (Shock Cord)

- Knots
 - Bowline
 - Follow Thru Figure 8
 - Others significantly weaken cord
- Sewn Loops (Stronger than Knots)
 - Thread Material same as Bridle
 - Use Rectangle with Cross Pattern

Bridle (Shock Cord)

- Provide Thermal Protection
- Don't Ignore Material Fatigue & Thermal Shock
 - Replace Periodically (every 10 flights or less)

Parachutes & Packing

- Drogue Chute
 - High Velocity Deployment Implies Higher Strength Requirements
- Main Chute
 - Shock Forces Controllable based on Drogue Chute Selection
- Provide Thermal Protection
 - Heat Shield, Deployment Bag, Cellulose, Piston, Baffles or use Kevlar Materials

Parachutes & Packing

- Parachute Sizing $S = \frac{2W}{v_e^2 * C_d * \rho}$
- where:
 - W = Total Weight
 - v_e = Desired Descent Velocity
 - C_D = Parachute Drag Coefficient
 - ρ = Air Density
 - S = Surface Area of Parachute
 - Diameter determined by Shape

Parachutes & Packing

Folding Instructions

- 1. Fold with shroud lines as shown
- 2. Make one last fold over shroud lines
- 3. Fold top end over end until you reach the bottom edge
- 4. Connect to bridle
- 5. Insert thermal protection
- **6.** Insert into airframe

Summary

- Success Factors
 - Physical Design & Construction
 - Proper Sizing & Testing
 - Charges, Parachutes, Bridles, Hardware
 - Avionics Configuration
 - Use of Appropriate Materials
 - Thermal Protection, Fatigue Assessment
 - Checklist, Checklist, Checklist

What can happen?

References

Modern High Power Rocketry 2;
 Canepa, Mark; Trafford
 Publishing, 2005

Selected Websites

- 3
- http://www.offwegorocketry.com/
- http://www.tripolimn.org/links