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Introduction
“The Goddard Problem” by Robert Goddard circa 

1919, has been identified for over a century (do an inter-
net search for papers). It is defined as follows:

Establish the optimal engine thrust profile for a rocket 
ascending vertically from the Earth’s surface such that: 
1) A given altitude is achieved with a given speed and a 
given payload, 2) The fuel expenditure is minimized, 3) 
Aerodynamic drag and the varying gravitation is consid-
ered, 4) The engine thrust is bounded. 

The Goddard Problem includes altitude gained follow-
ing engine burnout.

“…the solution is shown to contain a finite number of 
such boosts in the sonic region of the rocket velocity, 
and to contain no coasting arcs except in the terminal 
stage” (Ref. 11)

The problem considered here is slightly different:
Establish the optimal engine thrust profile for a rocket 

ascending vertically from the Earth’s surface such that: 1) 
A maximum altitude is achieved at engine burnout for a 
given mass of the rocket, 2) The fuel expenditure is given, 
3) Aerodynamic drag and gravitational losses are consid-
ered, with gravity assumed to be constant, 4) The engine 
thrust is bounded. 

This analysis ends with engine burnout.

The trajectory of the rocket depends on at least: 1) The 
mass of the rocket, 2) the thrust provided by the engine, 
3) drag from the atmosphere, 4) overcoming gravity, 5) the 
launch angle, 6) wind effects.

For a given rocket, the variable to be optimized by this 
paper is the thrust profile provided by the engine.

Taking the simplifications discussed in the earlier Peak 
Of Flight Newsletters 455, 456, and 457, this paper devel-
ops an analysis method suitable for a computer program. 
The program finds the engine thrust curve that will provide 
the highest altitude for a given total impulse. To accom-
plish that, it first finds how velocity should vary to achieve 
the greatest altitude, then computes the engine thrust 
curve required to achieve that velocity.

		

Background
This chapter builds on the Apogee Peak Of Flight News-

letters 455, 456, and 457. Check them out for the detailed 
discussion of the equations used in this newsletter. 

The equation notation convention provides the chapter 
number where the equation first appears and the equa-
tion number. Thus Equation 3.2 would be the second new 
equation listed in chapter three. Please note that equation 
and notation corrections regarding the previous Peak Of 
Flight articles are provided in this newsletter. A list of variable 
names and units are included in Appendix B.

For this analysis, we assume a zero degree launch angle 
with a perfectly vertical flight not deflected by winds aloft. 
This is a BIG deal and not easy to achieve with a static fin 
stabilized rocket.

Equation 4.2: Force from Drag: FD = 0.5 * Cd * Rh *V
2 *A: N

Equation 5.2: The Force due to gravity: Fg = Mrk * g = Mrk 
* 9.807: N

Multiplying the results of Eqn5.2 by time step t we get 
The Impulse due to Gravity Ig:
Equation 5.2a: Ig = Mrk * g * t: N-s

Time Step
In order to calculate the impulse lost to gravity, we need 

to know the time spent under the gravitational influence. The 
approach here is to use a very small interval of time t, the 
increment of time, for the time step. That way we can use 
Eqn5.2a to calculate the impulse lost due to gravity for each 
time step.

(hf – hi) = Δh is assigned by us, the smaller the value, the 
smaller the resulting t, and the more accurate the solution. 
The rocket velocity determines how long it takes to travel Δh 
m, and thus velocity and Δh provide the time step. Assuming 
that the rocket will accelerate uniformly from the velocity at 
the beginning of the time step to the optimum velocity at the 
end of the time step the average velocity during the time step 
(Vav) will just be one-half of the sum of the velocities at the 
beginning and the end of the time step.

Vav = (Vi + Vf) / 2
The time required is given by the change in altitude divided 
by velocity:
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assume it is constant for that time step, then update the 
mass calculation for the next time step.

Drag Plus Gravity
To calculate the total impulse loss due to gravity and due 

to drag, we can add Eqn5.1a to Eqn5.2a:
Equation 5.3: Total N-s loss = ID + Ig = [Dconst *Δh2 / t] + 
[Mrk * g * t]

Keep in mind that:
•	Rh varies with altitude but is assumed to be constant over 
time step t.

•	Mrk varies as the propellant is burned but is assumed to 
be constant over time step t.

•	Cd varies with velocity but is assumed to be constant over 
time step t.

•	A is a constant (Reference area).
•	g is a constant (Acceleration due to gravity)
•	t = Δh/V = time step duration
•	V varies as the rocket ascends
•	Δh is selected to be small in order to keep t small

Optimum Velocity
The total impulse loss due to gravity and drag together 

is provided by Eqn5.3. To get the most amount of useful 
impulse out of an engine we need to minimize that total 
impulse loss.

As velocity increases, the impulse loss due to gravity de-
creases. Faster is better.
As velocity increases, the impulse loss due to drag increas-
es. Slower is better.
So, which is it?

Δ t = Δh(m) / (Vav)(m/s); This is the duration of this time 
increment. Keep in mind that the duration of each time in-
crement will not be the same, and will have to be computed 
independently. Also, the calculations provide a mathemat-
ical approximation and increases in accuracy with smaller 
time intervals.

Equation 6.1: t = Δh/V: s : Time Step Duration

Solving for V: 
Equation 6.1a: V= Δh/t: m/s

Drag
We can plug V from Eqn6.1a into Eqn4.2 and compute 

the resulting drag force in Newtons. Multiplying by the time 
step t we will get N-s of drag impulse losses.

Equation 5.1a: ID = 0.5 * Cd * Rh *[Δh/t]2 *A : N of Force 
due to Drag. Or: ID = 0.5 * Cd * Rh *[(Δh2 *A / t: N-s of Im-
pulse due to Drag

It is convenient to substitute Dconst = 0.5 * Cd * Rh *A so we 
get: Equation 5.1b ID = Dconst *Δh2/ t: N-s

Dconst is only a constant over the time step t because 
it changes with each time step since Cd varies with Mach # 
(velocity, air density, and temperature) and Rh varies with 
altitude in accordance with a “standard atmosphere”.

Gravity
Another issue crops up. Since propellant is being con-

sumed and exhausted, the mass of the rocket is decreasing 
so is not constant over the time step, and the mass of the 
rocket is required to solve Eqn5.2a. However, if the time 
step is very small, then the mass of the rocket throughout 
the time step is approximately equal to the mass of the 
rocket at the beginning of the time step. Again, in order for 
t to be very small, Δh must be very small. We will calculate 
the mass of the rocket at the beginning of the time step and 
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Figure 6-1 is an example graph with the y-axis as 
impulse loss and x-axis as velocity and one curve showing 
gravity loss, a second curve showing drag loss and a third 
curve which shows the sum of drag and gravity loss. It is 
clear from the plot that a minimum impulse loss exists for 
a specific velocity at a specific altitude. We will call this 
specific velocity the Optimum Velocity.

Optimum Velocity - Setting up a Computer 
Model

The program needs to be written to find the velocity 
that provides the minimum value for the total impulse loss 
from gravity plus drag, which will be the Optimum Velocity.

The gravity loss calculation requires knowing the veloc-
ity, time duration of the time step, and mass of the rocket 
including the propellant. That mass changes over the time 
step duration as propellant is burned to provide the opti-
mum velocity at the end of the time step. The amount of 
propellant burned is dependent on the propellant used to 
achieve the optimum velocity. This is a circular calculation. 

To avoid the problem, we use the velocity and rocket 
Continued on page 5

mass at the beginning of the time step 
throughout the time step. This works as long as the time 
step is very small. 

To calculate the drag loss, we need values for air den-
sity, drag coefficient, and velocity. If we assume that the 
air density and speed of sound is constant throughout the 
time step then we can calculate the drag loss for a range of 
velocities. We just need to be sure that the selected range 
includes the optimum velocity. We will use a large range of 
velocities.

The program will run the calculation for a number of 
velocities, and then find the velocity that provides the mini-
mum total impulse loss from drag plus gravity.
From Eqn5.3 we get:
ID = Dconst *Δh2 / t: N-s
Ig = Mrk * g * t: N-s

We also have Eqn6.1: t = Δh/ V: seconds
Substituting for t
ID = Dconst *Δh2/ [Δh/ V / V] =
Equation 6.2a: ID = Dconst*Δh*V: N-s
Equation 6.2b: Ig = Mrk*g*Δh/ V: N-s
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Figure 6.1:  An example of Optimum Velocity
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Now we have both equations written as a function of 
Δh and velocity V. For the computer model we will select 
Δh and find the V that provides the minimum impulse loss. 
Using that “Optimum” velocity, and the selected Δh, we can 
calculate the resulting time step duration t.

The process then starts over with a new altitude initial: 
hi. The new hi provides the new Rh and the new speed of 
sound (Mach 1 speed). The new Mach 1 value combined 
with Vi provides the new Cd. Together these provide an 
updated Dconst.

Optimum Velocity - Cd as a function of Mach #
The Drag Coefficient changes with altitude and velocity. 

As it turns out, these variations are modeled fairly well with 
Cd as a function of Mach #. To obtain the Cd for the specific 
rocket as a function of Mach #, I ran the rocket model sce-
nario using RockSim 9, and then exported a CSV (comma 
separated variable) file with Cd as the first column and 
Mach # as the second column using the RockSim export 
data tool. This provides the unique Cd as a function of Mach 
# for each rocket modeled.

Optimum Velocity - Polynomial Fit - Speed of 
Sound and Altitude

Based on a “Standard Atmosphere”, I ran a polynomial 
fit curve for the speed of sound (Snd) as a function of alti-
tude, which provided the following formula:

Equation 6.3: Snd = 2E-12*h3 + 7E-08*h2 - 0.004*h + 
340.6: m/s

Optimum Velocity - Polynomial Fit - Air Density 
and Altitude

Based on a “Standard Atmosphere”, I ran a polynomial 
fit curve for air density (Rh) as a function of altitude, which 
provided the following formula:

Equation 6.4: Rh = -4E-14*h3 + 4E-09*h2 + 1.218: kg/m3

The program actually has Δh as an input, and then runs 
for velocities that increment 1 m/s per iteration over a range 
of velocities from 0 to 1500 m/s. For most rockets, the 
Optimum Velocity will fall within this range. If we keep Δh to 
around 10 m, then the time step duration is kept quite small. 
However, there are very many computations to run!

The output of part one of the program is the Optimum 
Velocity for a number of altitudes as the rocket ascends. If 
Δh is 10m then we have a value for each 10m increment 
of altitude. Since the things that vary with altitude do not 
change much over a 10m increment, then using the values 
at the beginning altitude for the entire time step is a good 
approximation to the exact answer. Another variable that 
is approximated is the propellant burned which effects the 
mass of the rocket. Figure 6-2.

Continued on page 6
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Figure 6.2:  Optimum Velocity for the Patriot rocket
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Required Thrust
Each time step begins with the altitude, mass of the 

rocket, and velocity from the end of the previous time step. 
Using that data we find the optimum velocity and calculate 
the thrust Force necessary to produce the ΔV. In this way, 
we can build up a thrust curve as we calculate the desired 
velocity profile and include the reduction of mass from 
propellant burned. In order to have a model that provides 
acceptable accuracy, the time step t needs to be less than 
0.05 seconds. A smaller Δh yields a smaller t. 

Delta V (ΔV) - To Optimum Velocity
To get from one velocity to another, we need to acceler-

ate the rocket. The velocity relationship to acceleration and 
time is given by:
Equation 5.4: Vf = Vi + a * t: m/s
Where:
•	(Vf-Vi) = ΔV = Change in velocity: m/s
•	Vi = velocity (m/s), velocity at the beginning of the time 
step

•	Vf = velocity (m/s), velocity at the end of the time step, 
which is the calculated optimum velocity

•	a = acceleration (m/s2), acceleration required to go from 
Vi to Vf in time = t

•	t = duration of the time step: s

Solving for acceleration we get:
Equation 5.4a: a = (Vf-Vi)/t or a = ΔV/t: m/s2

Altitude is given by:
Equation 5.5: hf = hi + (Vi * t) + 0.5*(a * t2): m

Where:
•	hf = altitude at the end of the time step: m
•	hi = initial altitude: altitude at the beginning of the time 
step: m

Now we can compute the required acceleration for the 
time step that will provide the optimum velocity for the 

rocket at the altitude of the time step. 
With this in hand, we can calculate the required engine 
thrust N and impulse N-s for that time step:
Equation 5.6: F= Mrk * a + FD + Fg: N 
Impulse = F*t: N-s

Combining Eqn5.4a and Eqn5.6 we get:
Equation 5.7: F = Mrk * ΔV/t + FD + Fg: N

Where:
•	F= Force in Newtons (kg-m/s2) (of the engine)
•	Impulse = N-s over the time step
•	Mrk = overall mass in kg of the rocket at this time incre-
ment

•	FD= Drag Loss: N
•	Fg = Gravity Loss: N

Rocket Mass
We now calculate the mass of the rocket (Mrk) for each 

time increment. The rocket mass decreases each time step 
by the weight of propellant burned during that time step.
Equation 6.5: Mrkf = Mrki - Mpt : Mass final = Mass initial 
less propellant Mass consumed

Where:
•	Mpt = mass of propellant lost during this time increment 
in kg.

For simplification, and so we do not have a circular equa-
tion, we will use:

Mrkf from the previous time step = Mrki for the current 
time step during the entire time increment (Approximation)

We need to determine the mass of propellant burned 
(Mpt) during each time step that will provide the neces-
sary thrust F to achieve the ΔV such that Vf is the optimum 
velocity.

To clarify, we need to know how much propellant will 
be burned in t seconds to produce the required thrust of F 
Newtons; how many kgs of propel-
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lant it takes to make F*t N-s of thrust. Since we know the 
desired Vf, we need to compute the kg of propellant re-
quired, which is Mpt. 

Propellant Mass Flow Rate
The high powered rocketry hobby engine suppliers pro-

vide good engine data. The thrust curve displays the thrust 
(N) over the burn time of the motor. The motor designation 
provides the average thrust over the burn time. Therefore; 
a J350 has an average thrust of 350 N over its burn time, 
with a total impulse in the J range.

The motor datasheet also provides the total propellant 
weight (mass) Mp. Conveniently, RockSim’s Engine Edit 
program provides the necessary engine data in an easy to 
get location.

The example rocket Figure 6-3 is Brian Boers’ Mad Cow 
Rocketry Patriot flying on an Aerotech L1120W.

The Aerotech L1120W has the following parameters:
•	Mp = Propellant mass = 2.76 kg
•	IT = Impulse total = 4922 N-s
•	Isp = 182 s

•	Burn Time = 5.01 s
•	Peak Thrust = 1554.96 N
•	Average thrust = 963 N

For the Patriot:
•	Reference Diameter = 13.97 cm
•	Total mass including propellant: 7.833 kg

We are looking for how much propellant mass we need to 
burn to provide the required Impulse:
Equation 6.6: Mp/IT = kg propellant per N-s 
For the sample rocket: Mp/IT = 0.000645 kg/N-s

This is another approximation as the actual thrust does 
not vary linearly with kg of propellant consumed.

We have Eqn5.7: F = Mrk * ΔV/t + FD + Fg: and we 
have computed ΔV, t, FD, and Fg. We are using Mrk from 
the previous time step throughout this time step and as 
Mrki.

Now for this time step we have:
Mpt = [F*t N-s ]* [Mp/IT kg/N-s] = kg propellant consumed 
in this time step.

Mrk for the end of this time step is then:
Mrkf = Mrki - Mpt

Figure 6.3:  Brian Boers’ Patriot on the launch pad

What is the Optimum Engine Thrust Profile?

Issue 471 | June 12th, 2018

Continued from page 6

http://www.ApogeeRockets.com/Building_Supplies/Motor_Retainers_Hooks
http://www.apogeerockets.com/RockSim/RockSim_Information


You get:
(4) AT 29/13
(4) AT 41/18
(2) AT 56/18
(2) AT 66/18
(1) AC-56
(1) AC-66

You get:
(6) AT 13/18
(6) AT 18/18
(6) AT 24/18
(6) AT 33/18

www.ApogeeRockets.com/Building_Supplies/Body_Tubes

Page 8

Getting the Rocket Moving
As mentioned several times in this discussion, the 

shorter the time step, the more accurate the result. That 
works great once the rocket is moving at optimum velocity. 
However, using the formulas above for the time between 
ignition and the rocket reaching optimum velocity results in 
a LARGE impulse at the beginning. And in this case, the 
shorter the time step, the larger the impulse needed to get 
the rocket from not moving to moving at optimum velocity in 
such a short time.

This issue is resolved by including a Peak Thrust 
(PeakF) N, for the engine, which is provided by the Rock-
Sim engine data. For a designer engine, you will need to 
determine this value. The program is then limited to using a 
thrust level that is at or below that maximum level.

Another artifact of this simplified analysis method is that 
the program tends to overshoot the Optimum Velocity by a 
small amount and subsequently wants the rocket to slow 
down in the next time step. The program is prevented from 
this instability by forcing it to accept the higher velocity. 
Thus the result could be a few m/s too high for a couple of 
time steps.

Putting it together
 Figure 6-4 provides the calculated optimum thrust 

curve for the sample rocket. We could find a commercial 

Continued on page 9

motor with a thrust curve close to the optimum and use 
it for the flight or design a custom motor with the specific 
thrust curve that is optimum for our rocket. The optimum 
thrust curve doesn’t look too exotic, a typical spike to get 
things moving, then a steady thrust to burnout. 
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Figure 6.4:  Calculated optimum thrust curve for sample rocket 
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RockSim It
As a check, I entered this designer thrust curve into the 

flight simulation program RockSim v9 and “flew” the sample 
rocket with the designer engine to compare with the sim-
ulation using the actual engine. The results of the simula-
tion (Figure 6-5) indicate that the redesigned thrust curve 
will provide an altitude increase from the original 2,109 m 
(6,919 ft) to 3,744 m (12,283 ft)! The prediction is for more 
than a 75% increase in the apogee altitude using the same 
size (total impulse) motor! The above results are for the Cd 
override value provided by Mad Cow Rocketry for the Pa-
triot. If you use the RockSim computed Cd then the altitude 
goes from 3,498 m (11,476 ft) to 5,926 m (19,442 ft).

With RockSim, you can enter your own engine thrust 
curve using the EngEdit program provided, and tweak the 
thrust curve as needed to achieve the highest altitude for 
your rocket. When you do this, keep in mind that the above 
calculations are approximate for many reasons, and will 
only get you close to the optimum thrust curve. Several 
adjustments to the thrust curve may be required to get the 
most out of your total impulse. In addition, you may have 
to adjust the curve away from the optimum in order to have 
a thrust profile that is possible to construct given engine 
design limitations.

Enhanced Stabilization Systems (aka Vertical 
Trajectory Systems – VTS)

When you read the failure analysis of many of the 
high altitude attempts, often the problem is tied to either 
aerodynamic failure due to extreme velocities necessary 
to achieve a high altitude with a static fin guided flight or 
recovery failure due to excessive horizontal velocities at 
apogee. Both of these problems can be mitigated if the 
rocket can be kept going straight up. 

Since beginning my quest for a VTS system in 1995, the 
R/C hobby industry has increased the accuracy of the over-
the-counter stabilization systems. With improvements now 
driven by the R/C multi-rotor systems, stabilization accura-
cy is increasing rapidly.

With the recent advances, it may be possible to use a 
long burn motor to achieve high altitude without excessive 
rocket velocities in the lower atmosphere. It may also be 
possible to keep the rocket oriented properly to allow the 
proper deployment of the recovery system. If this piques 
your interest in the advantages of a vertical flight profile and 
VTS systems, check out reference 8 listed in Appendix A.

Author provided code & files that you can run to find the 
optimum thrust for your rocket projects. We put these free 
files on our web page for download here:  
https://www.apogeerockets.com/Optimum-Thrust

Figure 6.5:  Screen shot of RockSim simulation for comparison
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ID = Impulse due to Drag = FD * t
Ig = Impulse due to Gravity: N-s. 
h = altitude: m
Δh = hf - hi : Change in altitude: m
hi = altitude initial (meters), altitude at the beginning of the 
time step
hf = altitude final (meters), altitude at the end of the time 
step
Isp = F/( ṁ * g) = Specific Impulse [kg-m/s2]/[(kg/s)*(m/s2)]: 
seconds
IT = Impulse total: N-s
kg = kilogram
m = meter
ṁ = propellant mass flow rate: kg/s
Mp = total mass of propellant: kg
Mpi = mass of propellant initial; mass at the beginning of 
the time step: kg
Mpt = mass of propellant burned during time step t in kg.
Mrk = Total Mass of the rocket including propellant: kg 
Mrki = Total Mass of the rocket initial; mass at the beginning 
of the time step: kg
Mrkf = Total Mass of the rocket final; mass at the end of the 
time step: kg
N = Newton = kg-m/s2 [Force]
N-s = Newton-second = kg-m/s [Impulse]
PeakF = Maximum engine Thrust: N
Rh = Air Density: kg/m2

s = second
t = time step duration: s 
Ve = exhaust velocity of the propellant mass: m/s
V = Rocket Velocity: m/s
Vi = velocity initial (m/s); velocity at the beginning of the 
time step
Vf = velocity final (m/s); velocity at the end of the time step
(Vf-Vi) = ΔV = Change in velocity in m/s
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Appendix B
Variable names, units and Notation
A = Reference area of the airframe: m2

a = acceleration: m/s2

Cd = Drag Coefficient (Unitless). Varies with Mach number 
(approximately)
Dconst = 0.5*Cd*A = Drag Constant: m2 
dm = infinitesimal (almost zero) change in total propellant 
mass
dV = infinitesimal change in velocity of the vehicle 
F = Force: Newtons: N: kg-m/s2

g = gravity acceleration = 9.807 m/s2

FD= Force due to Drag: N
Fg = Force due to Gravity: N
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