Richard Nakka's Experimental Rocketry Web Site

Rocket Theory Appendices

\author{

- Appx.A - Calculation of AFT for KN-Sucrose
 - Appx. B- (Reserved)
 - Appx. C - Flow Properties for Kappa-DX Nozzle
 - Appx. D - Expression for Mass Flow rate through Nozzle
 - Appx. E - Calculation of Max. Chamber Pressure for Kappa-DX Motor
}

Appendix A

Example -- Calculation of the Adiabatic Flame Temperature (AFT) of KN/Sucrose, 65/35 O/F ratio

Consider the combustion of the KN/Sucrose , $65 / 35 \mathrm{O} / \mathrm{F}$ propellant to have the following combustion equation:
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+6.288 \mathrm{KNO}_{3}->3.796 \mathrm{CO}_{2}+5.205 \mathrm{CO}+7.794 \mathrm{H}_{2} \mathrm{O}+3.065 \mathrm{H}_{2}+3.143 \mathrm{~N}_{2}+2.998$

$$
\mathrm{K}_{2} \mathrm{CO}_{3}+0.274 \mathrm{KOH}
$$

The enthalpies of formation for the reactants are obtained from the CRC Handbook of Chemistry and Physics, and for the products, from the JANAF thermochemical tables: (units are $\mathrm{kJ} /$ mole)

$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	-2222.1
KNO_{3}	-494.63
CO_{2}	-393.52
CO	-110.53
$\mathrm{H}_{2} \mathrm{O}$	-241.83
H_{2}	0
$\mathrm{~N}_{2}$	0
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	-1150.18

| $K O H$ | -424.72 |
| ---: | :--- | :--- | :--- |

Using the energy balance equation (assuming no changes in K.E. or P.E.):

$$
\sum_{z} \mathrm{n}_{\mathrm{i}}\left[\mathrm{~h}_{\mathrm{f}}+\Delta \mathrm{h}\right]_{\mathrm{i}}=\sum_{P} \mathrm{n}_{\mathrm{e}}\left[\mathrm{~h}_{\mathrm{f}}+\Delta \mathrm{h}\right]_{\mathrm{e}}
$$

Substituting in the values for $\mathrm{h}_{\mathrm{f}}, \mathrm{n}_{\mathrm{i}}$ and n_{e} gives :
$1(-2222.10+0)+6.288(-494.63+0)=3.796\left(-393.52+\Delta \mathrm{h}_{\mathrm{CO} 2}\right)+5.205(-$ $\left.110.53+\Delta h_{\mathrm{CO}}\right)+7.794\left(-241.83+\Delta \mathrm{h}_{\mathrm{H} 2 \mathrm{O}}\right)+3.065\left(0+\Delta \mathrm{h}_{\mathrm{H} 2}\right)+3.143\left(0+\Delta \mathrm{h}_{\mathrm{N} 2}\right)$
$+2.998\left(-1150.18+\Delta h_{\mathrm{K} 2 \mathrm{CO} 3}\right)+0.274\left(-424.72+\Delta \mathrm{h}_{\mathrm{KOH}}\right)$
Expanding and gathering terms simplifies the equation to the following form:

$$
\begin{aligned}
& 2186.2=3.796 \Delta h_{\mathrm{CO} 2}+5.205 \Delta h_{\mathrm{CO}}+7.794 \Delta h_{\mathrm{H} 2 \mathrm{O}}+3.065 \Delta h_{\mathrm{H} 2}+3.143 \\
& \Delta h_{\mathrm{N} 2}+2.998 \Delta h_{\mathrm{K} 2 \mathrm{CO} 3}+0.274 \Delta h_{\mathrm{KOH}}
\end{aligned}
$$

Solution of the equation is obtained by simply substituting in values for Δh at a certain temperature. This temperature is equal to the AFT when the the right hand side of the equation is equal to the left hand side ($=2186.2$).

Take a guess that the AFT lies somewhere between 1700 K and 1800 K (easy for me to guess, as I know the answer! But no matter what the guess, the answer will eventually converge).

From the JANAF tables, the values of Δh are: (units are $\mathrm{kJ} / \mathrm{mole}$)

T	CO_{2}	CO	$\mathrm{H}_{2} \mathrm{O}$	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	KOH
1700 K	73.480	45.945	57.758	42.835	45.429	280.275	116.505
1800 K	79.431	49.526	62.693	46.169	48.978	301.195	124.815

For the term on the right side of the equation, substituting in the values at $\mathrm{T}=1700 \mathrm{~K}$:

$$
\begin{aligned}
& 3.796(73.480)+5.205(45.945)+7.905(57.758)+3.065(42.835)+3.143 \\
& (45.429)+2.998(280.275)+0.274(116.505)=\underline{\mathbf{2 1 1 4 . 5}} \mathbf{~ k J} / \mathbf{m o l e}
\end{aligned}
$$

Substituting in the values at $\mathrm{T}=1800 \mathrm{~K}$:
$3.796(79.431)+5.205(49.526)+7.794(62.693)+3.065(46.169)+3.143$ $(48.978)+2.998(301.195)+0.274(124.815)=\underline{\mathbf{2 2 8 0 . 6}} \mathbf{~ k J} / \mathbf{m o l e}$

Clearly, the actual temperature lies in between 1700 and 1800 K . The actual
value may be found by using linear interpolation:

$$
\mathrm{T}_{\text {AFT }}=\frac{2186.2-2114.5}{2280.6-2114.5}(1800-1700)+1700=\underline{\mathbf{1 7 4 3} \mathrm{K}}
$$

This is in close agreement with the combustion temperature predicted by GUIPEP (1720 K .), that being about 1% lower. The small deviation is a result of the simplified combustion equation assumed in this example. In reality, some trace products such as NH_{3} and monatomic K form, consuming energy in the process.

Appendix B

Reserved for future use.

Appendix C

The following are plots of the nozzle flow properties for the Kappa-DX rocket motor:

Time for flow to travel through nozzle $=\mathbf{4 3 0}$ microseconds.

Appendix D

The derivation of the expression for mass flow rate through the nozzle is presented here.
From Equation 9 of the Nozzle Theory Web Page, the continuity equation for mass flow rate through the nozzle is given by:

$$
\dot{\mathrm{m}}=\rho^{*} \mathrm{v}^{*} \mathrm{~A}^{*}
$$

where * designates critical (throat) conditions. From Equation 7 of the referenced web page, the critical flow density may be written as:

$$
\rho^{*}=\frac{\rho_{0}}{\left(1+\frac{k-1}{2}\right)^{\frac{1}{k-1}}}=\frac{\rho_{0}}{\left(\frac{k+1}{2}\right)^{\frac{1}{k-1}}}
$$

and from Equations $3 \& 4$, the critical (sonic) velocity may be given by:

$$
v^{*}=\sqrt{\frac{2 k}{k+1} R T_{0}}
$$

From the ideal gas law, the chamber density may be expressed as:

$$
\rho_{0}=\frac{P_{0}}{R T_{0}}
$$

Substitutionof this equation and those for critical density and velocity into the mass flow rate expression gives:

$$
\dot{\mathrm{m}}=\frac{P_{0}}{\mathrm{R}_{0}} \frac{\sqrt{\frac{2 k}{\mathrm{k}+1} \mathrm{R} \mathrm{~T}_{0}}}{\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{1}{k-1}}} A^{*}
$$

which may be rearranged to the form of the expression shown as Equation 4 of the Chamber Pressure Theory Web Page:

$$
\dot{m}_{n}=P_{0} A^{*} \sqrt{\frac{k}{R T_{0}}}\left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}}
$$

Appendix E

Example: Calculate the maximum steady-state chamber pressure for the design of the Kappa-DX rocket motor.

Units of measure.

The most prudent (botch-proof) system of units is $m k s$ (metre : kilogram : second), however, for this example, appropriate English units will used, as well.

Equation 12 of the Chamber Pressure Theory Web Page:

$$
\mathrm{P}_{0}=\mathrm{Kn} \rho_{\mathrm{p}} \mathrm{r} \mathrm{c}^{*}
$$

Burn/throat area	Kn, max. $=378$
Propellant density	$\rho_{\mathrm{p}}=1.806 \mathrm{~g} / \mathrm{cm}^{3}=1806 \mathrm{~kg} / \mathrm{m}^{3}=0.00203 \mathrm{slug} / \mathrm{in}^{3}$
Burn rate	$\mathrm{r}=12.65 \mathrm{~mm} / \mathrm{s}=0.01265 \mathrm{~m} / \mathrm{s}=0.50 \mathrm{in} / \mathrm{s}$
Propellant c-star	$\mathrm{c}^{*}=912 \mathrm{~m} / \mathrm{s}=2992 \mathrm{ft} / \mathrm{s}$

Therefore,
$\mathrm{Po}_{\mathrm{o}}=378$ (1806) . 01265 (926) $=7.9 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}(\underline{7.9 \mathrm{MPa})}$
or
$\mathrm{P}_{\mathrm{o}}=378(0.00203) 0.50(2992)=\underline{1148 \mathrm{psi}}$

Last updated August 19, 2001

Back to Propellant Combustion Page
Back to Theory Index Page
Back to Index Page

