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Abstract. In this work the effect on the CPU time of several parameters of a geometric multigrid method is studied. The 
considered parameters are: coarsening ratio of grids, number of inner iterations, number of grid levels, tolerances and 
initial estimates. The considered mathematical models involve one-dimensional problems of heat transfer, Poisson and 
advection-diffusion equations, with Dirichlet boundary conditions. The finite difference method is used to discretizate 
the differential equations. In the multigrid case, the systems of algebraic equations are solved with the Gauss-Seidel 
method. Comparisons of singlegrid methods (Gauss-Seidel and TDMA) are made. The used multigrid algorithm is the 
correction scheme with V-cycle. The restriction is given by injection and the prolongation by linear interpolation. 
Some literature results are confirmed and some new ones are presented. 
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1. Introduction 
  

The discretization of mathematical models, which appear in computational fluid dynamics, leads to large-scale 
systems of algebraic equations of the type 
 

bAx �                                                                                                                                                                          (1) 
 
where A is a square matrix, b is the independent vector and x is the unknown vector. These models appear generally in 
physical phenomenon that involves fluids in motion with or without heat transfer (Fortuna, 2000; Maliska, 2004). The 
structure of the matrix A depends of the technique used to discretizate the mathematical model. 

The finite difference method is very used in computational fluid dynamics (Golub and Ortega, 1992; Tannehill et 
al., 1997), where, in one-dimensional problems, the domain  is partitioned in  subintervals, 
introducing a grid with the points , where  and  is the length of each interval. This 

yields a grid of size h that is denoted for . For each one of the  inner points of grid, the differential equation 
that represents the physical phenomenon is substituted by approximations of finite differences of first and second order 
(Tannehill et al., 1997; Ferziger and Peric, 1999). 
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Several numerical techniques have been studied to solve the system (1) with minor computational cost. The solution 
by direct methods is not recommendable because the matrix of coefficients is very large and the inversion of matrix is 
an expansive process (Golub and van Loan, 1984). The iterative methods are more appropriate for problems of large-
scale (Burden and Faires, 1997). From an initial estimate, it is generated a sequence of solutions that tends to the exact 
solution of the problem. Methods such as the conjugated gradient (Burden and Faires, 1997) and the pre-conditioned 
conjugated gradient methods (Dennis and Schnabel, 1983) are more specific for simple geometries and for problems 
whose matrix of coefficients is badly-conditioned. For more complex geometries, the technique of decomposition of 
domain (Perng and Street, 1991; Lai and Przekwas, 1996) is also used. 

The multigrid method, developed originally by Fedorenko (1964), is presented as an alternative numerical technique 
to solve systems of equations of the type (1) iteratively. The basic idea is to use a set of grids and to execute iterations in 
each level of grid and to do approximations of these solutions in a coarser grid alternately. Then, operators that transfer 
vectors from a finer grid to an immediately coarser grid (restriction) are defined. The same procedure is applied 
between a coarse grid and an immediately finer grid (prolongation). The linear systems in each grid are solved by an 
iterative method, which has properties to reduce the oscillatory errors quickly (smoothing properties). Based on this 
concept, some works were published presenting good numerical results for problems of fluid dynamics. According to 
Fedorenko (1964), the convergence rate with the use of multigrid techniques is better than singlegrid methods. The 
objective of the multigrid technique is to speed up the convergence of an iterative scheme (Tannehill et al., 1997). The 



best performances of the multigrid method are obtained for elliptical problems (Wesseling, 1992), namely, problems 
dominated by diffusion and the minors for problems dominated by advection (Ferziger and Peric, 1999).  

The multigrid methods can be applied to both structured and unstructured grids. In structured grids it is more 
appropriated the use of geometric multigrid (Wesselind and Oosterlee, 2001) and algebraic multigrid (Stüben, 2001) in 
unstructured grids.  In Briggs et al. (2000) the use of geometric and algebraic multigrid for a two-dimensional Poisson 
problem with Dirichlet boundary conditions is compared. In Wesseling and Oosterlee (2001) many challenges still are 
seen in the geometric area, as the solution of Navier-Stokes equation, singular perturbation problems, boundary layer 
problems where strong stretched grids, or same the parallel computing.  

Brandt (1977) worked with geometric multigrid for several problems of heat transfer and fluid flow, one and two-
dimensional, linear and nonlinear problems. He made comparisons for coarsening ratios ,  and r , 
where the coarsening ratio is defined as 
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where  represents a fine grid,  is an immediately coarser grid and h is the size of each element of the grid for 
one-dimensional and uniform grids. For the tested problems, the conclusion of Brandt (1977) is that the ratio  is 
the recommendable one, and according to him, this is around the optimal ratio and easier to program. Stüben (1999) 
developed a study for ratios  and  in unstructured grids for several problems of heat transfer, two and 
three-dimensional, linear and nonlinear for flow and electromagnetism problems. In its work the ratio  was 
showed efficient for anisotropic problems (anisotropy by coefficients and it due to highly stretched grids). Briggs et al. 
(2000) worked with  affirming to be a universal practical and that  does not bring advantages. Moro 
(2004) worked with ratios  and r  in structured grids for problems of diffusion with source term. In his 
work the ratio  was showed sufficiently efficient, with the CPU time less than r . 
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In this work one studies the multigrid method in one-dimension to show the principles of the method and to derive 

some procedures used in general cases. Also, a bigger amount of tests can be made due to rapidity of obtainment of the 
solutions. This facilitates the study of many parameters. The following parameters are studied: several coarsening ratios 
( 21�r , ,31�r  ,41�r  51�r  and 81�r ); the number of inner iterations (iterations of the solver to smooth the 
error components in each grid); and number of grid levels. The goal is to verify the effect of these parameters on the 
CPU time for a geometric multigrid method. The multigrid algorithm adopted is the Correction Scheme with V-cycle 
described in Tannehill et al. (1997). The results are compared with ones obtained from bibliography. The restriction and 
prolongation operators for any coarsening ratios in the interval (0,1) are presented. The considered mathematical models 
in this work involve one-dimensional problems of heat transfer, namely, Poisson and advection-diffusion equations with 
Dirichlet boundary conditions. 

This work is organized in the following form: in Section 2 it is given an overview of multigrid methods, presenting 
the restriction and prolongation operators, and the iterative Gauss-Seidel method. In Section 3, the mathematical and 
numerical models are given. In Sections 4 and 5 are described the numerical experiments with their results and the 
conclusion of the work. 
 
2. Multigrid method 
 

The solution of fluid mechanics and heat transfer problems through numerical methods requires high computational 
cost and many times impracticable because of many equations to be solved in each iterative step. An alternative method 
used to improve the convergence rate of these problems is the multigrid method (Briggs et al., 2000), which speeds up 
the solution of the linear systems involved in the problem. The multigrid methods are iterative methods of solution of 
linear systems, being therefore, strong dependent of the initial estimate attributed to the unknowns of the problem. 

An efficient technique to attenuate the strong oscillations of the residue in each mesh, defined for 
 

AxbR ��                                                                                                                                                                   (3) 
 
it is to smooth the oscillations by a relaxation method. In this work it was opted by the Gauss-Seidel method, once it has 
good smoothing properties (Briggs et al., 2000). 

The first iterations of this process, generally, it have fast convergence, characterizing the presence of oscillatory 
modes of error. However, after some iterations, the process becomes slow, characterizing the predominance of 
smoothing modes (Brandt, 1977). It is exactly the point where is recommended to transfer the relaxation problem to the 
coarsest grid. Therefore, the smoothing errors in the fine grid become oscillatory errors in the coarse grid (Wesseling, 
1992). For linear problems, the multigrid method is one technique that executes steps of relaxation and approximates 
solutions of the residual equation in the coarser grid (Correction Scheme) alternately, speeding up the convergence of 
relaxation scheme (Briggs et al., 2000). The convergence rate of the multigrid is independent of the grid size, that is, it 
is independent of the number of grid points (Hirsch, 1988; Ferziger and Peric, 1999). It is not very effective only to use 
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two levels of grid (Roache, 1998). To get a good performance with the multigrid, several grid levels must be used 
(Tannehill et al., 1999). 

In this work the coarsening ratio for uniform grids is given by Eq. (2), where:  will be called strong 
coarsening; , standard coarsening; and , weak coarsening. One studies the strong and standard 
coarsening applied to the algorithm found in Tannehill et al. (1999). One alternative form of the Eq. (2) is 
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In this case, the coarsening ratio r  is called pure ratio if . 1�p

The operators of transference of the fine grid to the coarse grid are called restriction operators and they are denoted 
generically by I . Where φ  assumes the residue R given by Eq. (3). In this work an operator of injection with 
its generalized form for any  was developed. It is given by 
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and being the number of intervals of immediately finer grid. The function ceiling is defined by hN
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The Eq. (5) is not calculated for i and , since in this work one adopts the Dirichlet boundary conditions. 
Therefore, R  at the boundary points. 
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The operators of transference of the coarse grid to the fine grid are called operators of prolongation, or interpolation, 
and they are denoted generically by I . Where  assumes the approximation of error in the residual equation, 
namely, correction. As in the case of the restriction operator, in this work an operator of linear interpolation with its 
generalized form for any  was developed. It is given by 
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3. Mathematical and numerical models 
 

The one-dimensional linear problems of diffusion (Poisson equation) and the advection-diffusion equation, with 
Dirichlet boundary conditions, for steady state and cartesian coordinates can be represented mathematically by (Ferziger 
and Peric, 1999) 
 

1)1(,0)0(;10, ����� uuxfu xx  (diffusion)                                                                                                  (8) 
 

1)1(,0)0(;10,. ����� uuxuuPe xxx  (advection-diffusion)                                                                           (9) 
 
where u is the unknown, f is a source term that will be given by  and  . In the Eqs. (8) and (9) 

u represents temperature,  and u  are first and second derivatives, respectively. 

22631 xxf ��� 20�Pe

xu xx

The discretization of domain will be developed using uniform grids in  subintervals (elements) with grid points 
given by , where i , and  is the length of each subinterval. The differential equations 
are given by Eqs. (8) and (9) are discretizated in accordance with the finite difference method. For the Eqs. (8) and (9) 
the central differencing scheme (CDS) is used for the second order derivatives (diffusion terms), and the upwind 
differencing scheme  (UDS) is used for the first order derivative (advective term). The result equations are 
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where v  is an approximation (numerical solution) for the analytical exact solution  and . i )( ixu )( ii xff �

The systems are given by Eqs. (10) and (11) can be represented by a system of algebraic equations of the type 
 

fAv �                                                                                                                                                                         (12) 
 
where � �tN f

v,...,v 11 �
�v  is the unknown vector, � �tN f

f,...,f 11 �
�f  is the independent vector and A is a tridiagonal 

� � � �11 �fN x�fN , symmetric and positive definite matrix (Briggs et al., 2000; Burden and Faires, 1997). 
The Eq. (12) is solved with the TDMA direct method (Tridiagonal Matrix Algorithm) to get information on the 

performance of the method to problem given by the Eq. (12). The TDMA algorithm is presented in Ferziger and Peric 
(1999). It is also solved, only in the finest grid and with the Gauss-Seidel method (singlegrid). When applied the 
multigrid method, the Eq. (12) becomes , where b represents the source term (residue) to each level of grid. In 
this case, the systems are solved with the Gauss-Seidel method. 

bAv �

 
4. Numerical results 
 

The algorithms have been implemented in FORTRAN/95 with the Visual Compaq Fortran 6.6. The tests were 
carried out in a microcomputer with processor Intel Pentium 4 with 2.66 GHz and 1 GB RAM, using double precision 
arithmetic. The following coarsening ratios were used: standard coarsening, namely, 21�r ; and some strong 
coarsening using pure rate, as: 31�r , 41�r , 51�r  and 81�r . Other methods have been used for comparison, 
for example, the iterative Gauss-Seidel and the direct TDMA method. 

Hundreds of tests have been carried out with other variants, as: dimension of the problems (of small problems until 
problems of the order of millions of variables), number of inner iterations, number of grid levels, tolerances and initial 
estimates. But only some of these tests are presented in this work, since they are the most representative tests, 
qualitatively enough to show the performance of the multigrid method. 

The stopping criterion for outer iterations (needed cycle to smooth the error components) with the iterative methods 
is given by ratio between the norm  of the residue (Ferziger and Peric, 1999) and the norm of the residue based on 
the initial estimate, where the residue of each node is calculated through the Eq. (3). In this work it was adopted 

and  as reference for the stopping criterion and the initial estimate, respectively. 
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The Fig. 1 shows analytical and numerical solutions for the problems defined by Eqs. (8) and (9). The numerical 
solutions are compared with the analytical solutions for three distinct methods: the multigrid method using the 
coarsening ratio 21�r , the Gauss-Seidel and the TDMA method. 

 

 
Figure 1. Analytical and numerical solutions for elements:  32�fN

(left) Poisson and (right) advection-diffusion problems 
 

The focus of study of this work is the minimization of the CPU time. The CPU time is understood for the time 
expense to carry out the generation of grids, determination of the initial estimate, calculation of the coefficients and 
solution of the linear system (12). This time is measured using the function TIMEF of the library PORTLIB of the 
FORTRAN/95. Through of the carried out tests it was verified that the uncertainty of this function is approximately of 
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4.1. Inner iterations (ITI) 
 

The Fig. 2 shows the influence of the number of inner iterations on the CPU time and the optimal number for several 
coarsening ratios and dimensions of problems given by Tab. 1. The Tab. 1 shows, in its first row, the coarsening ratios 
used in the numerical tests for the Poisson and the advection-diffusion problems and, in its second row, some 
dimensions of grids. It can be noticed which the number of inner iterations affects the CPU time. For all tested ratios, it 
was verified that , except the ratio 12 �� qITIoptimal 81�r , where . This result confirms the one of 

Tannehill et al. (1997) for 

22 �� qITIoptimal

21�r . 
 

      
 

Figure 2. CPU time versus inner iterations for: 
(left) Poisson and (right) advection-diffusion problems 

 
Table 1. Coarsening ratios and some grids. 

 
Ratio 21  31  41  51  81  

fN  1,048,576 1,062,882 2,097,152 781,250 524,288 

 
One notices that, for the most tested ratios and for both problems, the Fig. 2 illustrates the strong slope until 

reaching minimums in the graphs and, after these points, the growth rate is lower. Other numerical tests have shown 
that, relatively to the minimum point, a sensible reduction of the number of inner iterations increases drastically the 
CPU time, reaching even the order of hours for some coarsening ratios. On the other hand, a sensible increase in inner 
iterations increases small increment of the CPU time. Therefore, it is recommended to use  for the pure ratios 
of the form 

qITI 2�

qr 1� ; for example, for 21�r , it is recommended to use 4�ITI . For , the CPU time changes 
a short variation to the optimal number of inner iterations: about 3.5% for the Poisson problem and about 3.4% for the 
advection-diffusion problem. 

q2�ITI

 
4.2. Grid levels (L) 
 

The Fig. 3 shows the influence of the number of grid levels on the CPU time and the optimal number for several 
coarsening ratios and dimensions of problems given by Tab. 1. One notices that the number of grid levels can affect 
significantly the CPU time, and  for all tested ratios to both problems, where  is the possible 
maximum number of levels. It has similar results to ones of Tannehill et al. (1997) and Mesquita and De-Lemos (2004), 
both for cases where 

imummaxoptimal LL � imummaxL

21�r . 
One notices that the Fig. 3 illustrates the strong slope until reaching minimums in the graphs and, after these points, 

the growth rate is lower until reaching . Other numerical tests have shown that, relatively to the minimum point, 
a sensible reduction of the number of grid levels increases drastically the CPU time, reaching even the order of hours 
for some coarsening ratios. On the other hand, a sensible increase in grid levels increases small increment of the CPU 
time. Therefore, it is recommended to use L =  for the pure ratios of the form 

imummaxL

imummaxL qr 1� ; for instance, for 21�r

imum

 

and , it is recommended to use , that is exactly . This type of procedure has a lot 
of computational advantages, because it does not need extra looping to take the decision of the exact number of grid 
levels. It is dependent of the dimension of the problem and the coarsening ratio. When adopting L = , the 

576,048,1220
��fN 20�L imummaxL

maxL



variation of the CPU time is sufficiently small: about 0.90% for the Poisson problem and about 0.58% for the 
advection-diffusion problem. 
 

      
 

Figure 3. CPU time versus grid levels for: 
(left) Poisson and (right) advection-diffusion problems 

 
4.3. CPU time versus coarsening ratios 
 

The Fig. 4 shows the various coarsening ratios for the multigrid method. The comparison among Multigrid, Gauss-
Seidel and TDMA singlegrid methods versus the number of elements  of grid are shown in the Fig 4 as well. It can 
be noticed that the TDMA method is the most efficient among tested methods for both problems.  However, the goal 
here is to verify the effect of the multigrid parameters on the CPU time for a geometric multigrid method in one-
dimensional problems to obtain information to the future research.  

fN

With the discrete least square approximation for the data in Fig. 4 and using the geometric curve , one 
obtains for TDMA method, for multigrid methods and for Gauss-Seidel method. 

a
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For the same � ,  and , amongst the coarsening ratios to the multigrid methods, for the ratios v fN 11 1 qr �  and 

22 1 qr � , and the respective CPU times  and t , as for the Poisson as for the advection-diffusion problem, it can be 
noticed that . Therefore, in the multigrid case, it is recommended to use the ratio 

1t 2

211 tq �� 2q t� 21�r . 
It was verified that the number of outer iterations (ITE) in order to reach the convergence increases with  until 

the point in that this number stabilizes and becomes independent of . This process of stabilization is given by a 
asymptotic form, such that,  and 

fN

fN
� � � �2121 ITEITEqq ��� � � � �

2121 fNqq �� fN� , where  is the number of 

outer iterations in order to reach the convergence, referring to the reason 
iITE)(

iqir 1� . The notation for � �
ifN  is 

analogous. 
 

 
 

Figure 4. CPU time versus elements for several methods: fN
(left) Poisson and (right) advection-diffusion problems 
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4.4. Tolerance and initial estimate 
 

Other cases with the variations of tolerance �  as of the initial estimate  have also been studied. For the tolerance, 
one studied the cases where �  and , beyond �  used in the previous results. The results of the 
studies of the number of optimal inner iterations and of grid levels for the Poisson problem has resulted small variation 
in the CPU time: about 2.4% if adopting  and 0.8% if . Similar results have been obtained for the 
advection-diffusion problem: small variation in CPU time, about 3.4% if adopting  and 0.61% if . 
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For the variation of initial estimate, one studied the cases where 21v �

q

 and , beyond used in the 
previous results. The results obtained for the number of optimal inner iterations for the Poisson problem has resulted a 
substantial variation in the CPU time: about 28.7% if adopting . The results for the optimal level number have 
resulted small variation: approximately 0.90% if . Similar results have been obtained for the advection-
diffusion problem: the variation in the CPU time is about 22.0% if adopting ; and small variation, 
approximately 0.57% if . This shows that the minimization problem of the CPU time versus inner iterations 
and the grid level number is weakly dependent of the tolerance and strong dependent of the initial estimate, at least for 
the tested Poisson and the advection-diffusion problems. 
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5. Conclusion 
  

In this work it was studied the influence of coarsening ratio of grids on the CPU time in the geometric multigrid 
method (correction scheme with V-cycle). The considered mathematical models involve one-dimensional problems of 
heat transfer with Dirichlet boundary conditions. The equations were discretizated with the finite difference method. 
The comparisons were made with the Gauss-Seidel and the TDMA singlegrid methods.  

Based on the results of this work, one verified that: 
1) The numbers of inner iterations and the grid levels affect the CPU time significantly. It is recommended to use 

 and  for pure ratios qITI 2� imummaxLL � qr 1�  and any . fN
2) The optimal numbers of the inner iterations and the grid levels are weakly dependent of the tolerance demanded for 

the problem, but they are strongly dependent of the initial estimate. 
3) For the same ,  and , amongst the coarsening ratios to multigrid methods, it was verified that � v fN

� � � � � � � � � 8151413121 �������� rtrtrtrt cpucpucpucpucpu ��rt . Therefore, it is recommended to 
use the ratio 2�r 1 . 
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