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Abstract. The objective of this work is to evaluate the use of several p-norm types in the verification of numerical 
solutions in Computational Fluid Dynamics (CFD). Theoretical aspects of numerical errors and vector norms are 
discussed, and results of numerical experiments are presented. The one-dimensional advection-diffusion equation is 
used as example, which is solved by the finite volume method using schemes of first, second and third-order accuracy. 
The study encompasses seven types of metrics, involving l1, l2 and l∞-norms; fifteen variables of interest; and fifteen 
uniform grids. The analytical deductions about the equivalences among norms are corroborated by the numerical 
results. With regard to the variables of interest studied, it was found that the orders varied according to the type of 
norm employed. We found permanence, degeneration or elevation of the order of the numerical scheme used here. 
Among the metrics investigated, the ones that maintained the order of the numerical scheme when applied to the 
numerical error were: mean l1-norm, l2-norm of mean square nodal errors and the l∞-norm.  
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1. INTRODUCTION 

 
In the current literature it is common to use vector norms in numerical verification procedures in which, basically, 

the numerical error involved and its order of accuracy are estimated. These norms are used because they characterize 
metrics that allow for the analysis of the order of accuracy of the error of a given numerical solution. Simonsen and 
Stern (2003), Falcão et al. (2006), Meyers et al. (2007), Matheou et al. (2008), and Ju et al. (2009) are examples of 
works that adopt this approach.  

Determining the order of accuracy is important, above all, from the following standpoints: use of error estimators for 
cases of unknown analytical solutions, e.g., GCI (Grid Convergence Index) (Roache, 1998) and Richardson (Marchi 
and Silva, 2002); for confirmation of the theoretical order of accuracy of the numerical model employed; or to 
determine the practical order of accuracy when the theoretical order is unknown. In the investigation of this order for a 
fixed number of variables and discretization interval, the choice of the norm to be employed may lead to different 
results, which in turn may lead to incorrect interpretations. Studies that deal with these effects are currently not 
available in the literature.  

The objective of this work is to evaluate the use of several types of norms in the verification of numerical solutions 
in CFD. We intend to demonstrate that, in the present context, vector norms are not equivalent, and to identify the 
metrics that maintain the theoretical order of accuracy of the numerical model adopted. To this end, some theoretical 
aspects of numerical errors and vector norms are discussed, and the results of numerical experiments are presented. 

As the model problem, we consider the one-dimensional advection-diffusion equation solved by the finite volume 
method with schemes of first, second and third orders of accuracy. The one-dimensional approach is motivated by the 
possibility of grid refinement up to an order of millions of nodes, which allows for verification of asymptotic behaviors. 
It is also assumed that the one-dimensional results are applicable to two and three dimensions. In this study we consider 
seven types of metrics obtained by using l1, l2 and l∞-norms, fifteen variables of interest, and fifteen uniform grids. 
 
2. NUMERICAL VERIFICATION IN CFD 

 
The numerical solution of a problem whose mathematical model is an equation or a set of differential equations can 

be generalized by (Garbey and Picard, 2008) 
 
 ( ) ( ),    ,      n nF x S x x R g x R                                                                                                       (1) 

 
where   represents the dependent variable or set of variables, x  is the independent variable or set of variables,   is 
the calculating domain, and   is its boundary. Considering ( , )

V
V  and ( , )

W
W  as two normed vector spaces of 

finite dimensions, :hF V W  corresponds to the operator that represents the application of a numerical method – 
application of V in W . To exemplify: a process of discretization by finite volumes in grids ( )M h  parameterized by 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 
 

0h  . In practice, one has an approximation for the solution h  in grids ( )M h  generated by a computational code 
(numerical algorithm) C  applied at points hS : 
 

: h hC S                                                                                                                                                                (2)
                                                                                                           

The smaller h is, the more refined the discretization of the calculating domain and thus, it is expected that the 
approximate numerical solution is more accurate. However, this is not always the case, so a structured process of 
numerical verification is needed. These processes basically consist in obtaining an estimate for the numerical error (E) 
involved, and its monitoring through the use of a given metric. Among other aspects, the aim is to verify whether 

  
0

V
E   for 0h                                                                                                                                          (3) 

 
2.1 Numerical Error and its Order of Accuracy  
 

The numerical error ( )E  can be defined as the difference between the exact analytical solution ( )  of a variable of 
interest and its numerical solution ( ) , i.e., 

 
( )E                                                                                                                                                                    (4) 

 
where E  can be caused by four sources of error (Marchi and Silva, 2002): truncation, iteration, round-off and 
programming. When the other sources are absent or very minor in relation to truncation errors, E  can also be called a 
discretization error. 

By analogy to the general equation of truncation error, the discretization error of a numerical solution is given by 
(Ferziger and Peric, 2002; Roache, 1998; Marchi and Silva, 2002) 

 
32

1 2 3 ...L PP PE c h c h c h                                                                                                                                            (5) 
                                                                                                                                                                      

where the coefficients ,jc 1,2,3...j   are real numbers that are functions of the dependent variable (of the problem) and 
its derivatives, but are assumed to be independent of the size (h) of the control volumes considered in the discretization 
process.  
 By definition, the true orders ( VP ) of the error are the exponents of h in Eq. (5). These orders are real numbers that 
follow the relation: 2 3 ...LP P P   . The smallest exponent, LP , is called the asymptotic order. When 0h  , the first 
parcel (Eq. (5)) is the principal component of the discretization error, i.e., it dominates the total value of E  (Marchi and 
Silva, 2002). 

LP  is often treated in the literature as error order or accuracy order and is denoted by P . Results and discussions 
about numerical verification procedures are normally centered on this order. Roy (2005), Falcão et al. (2006) and 
Matheou et al. (2008) are examples of works that follow this methodology. 

There are currently a considerable number of methods to estimate discretization errors. These methods can be 
classified into a priori and a posteriori methods, but in general both consider the dominant term of the general 
expression of the discretization error (Eq. (5)). In other words, they consider 

 
PE ch                                                                                                                                                                         (6) 

 
an error of order P  for 0h  . Since it is impossible to adopt this limit in practice, 0h   is considered the process of 
refinement of ( )M h . Usually, the effective ( )EP  and apparent ( )UP  orders are admitted, which correspond, 
respectively, to the local slope for the error curve and its estimate versus h  in logarithmic scale graphs (Marchi and 
Silva, 2002). Therefore, they are employed as approximations for P .  
 Considering the numerical solutions F  and C , for   in two grids, fine ( ( ))FM h  and coarse ( ( ))CM h , 
respectively, the algebraic expression for EP  is determined by 
 

 
 log ( ) / ( )

log( )
C F

E

E E
P

q
 

                                                                                                                                               (7)
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where ( )FE   and ( )CE   correspond to the errors for F  and C , and /C Fq h h  is the grid refinement ratio. 
According to the definition of E , EP  can be obtained only when the analytical solution for   is determined.  
 Considering ( )FM h  (fine), ( )CM h  (coarse) and ( )SCM h  (supercoarse) grids, with a constant refinement ratio of 

/ /C F SC Cq h h h h  , and their respective numerical solutions ,F  C  and SC , the apparent order ( )UP  can be 
obtained by means of (Marchi and Silva, 2002) 
 

 
 log ( ) /( )

log( )
C SC F C

UP
q

    
                                                                                                                                     (8) 

 
2.2 Global Error by Vector Norm  
 
 Each point i of ( )M h  has a discretization error associated to it – a local error, which is usually treated as a nodal 
error. However, it is normal to attempt to quantify the error at all the ( )M h  points to obtain the global error. The 
estimate of the global discretization error is, among others, an item in which the process of numerical verification can 
be summarized (Roy, 2005). 
 For n points, elements or calculation volumes, the global discretization error ( )gE  is determined by an expression 
that involves all the nodal errors, i.e.,  
 

 
1

n
P

g i
i

E c h


                                                                                                                                                                   (9) 

 
where   represents the mathematical operator that established this relationship between the nodal values, 1,..., .i n  

In numerical verification procedures of CFD,  is obtained, in most cases, through vector norm. In general, it is 
common procedure to use l1, l2 and l∞-norms. However, no justifications are available that point to equivalences among 
these norms, or decision-making criteria with regard to the adoption of a metric characterized by a given norm. As an 
example, in the numerical verification of a laminar flow problem described by Navier-Stokes equations, Carpenter et al. 
(2005) consider the use of l2 and l∞-norms to determine Eg. At the end, they admit that the results lead to qualitatively 
similar conclusions and mention the equivalence between the norms. However, they do not describe the orders of 
accuracy involved. Upon analyzing these results, one finds that the cited orders are distinct.  
 By definition, from an analytical standpoint, two norms r and s in a vector space nV R , denoted by 

r
 and 

s
, 

are called equivalent if real constants 1k  and 2k   R  exist, such that (Golub and Van Loan, 1996) 
 
 1 2r s r

k v v k v                                                                                                                                                    (10) 
 
where v V is any vector of dimension n. The norms 

1
 (l1-norm), 

2
(l2-norm, or Euclidean norm) and 


          

(l∞-norm) are examples of analytical equivalence:  
 
 

1
v v n v

 
                                                                                                                                                        (11) 

 
 

2
v v n v

 
                                                                                                                                                    (12) 

 

 
1 2 1

1 v v n v
n

                                                                                                                                                   (13) 

 
 However, in CFD numerical verification procedures, the application of these norms may lead to different 
interpretations about the accuracy of the numerical results obtained, due to changes in the order of accuracy. It can 
therefore be stated that, in this context, the equivalence between the orders of  l1, l2 and l∞-norms is not verified.  
 
3. EFFECT OF VECTOR NORMS ON THE ACCURACY ORDER 
 
 In this section, we investigate the effect resulting from the use of the l1, l2 and l∞-norms on the order of the numerical 
method utilized. The section begins with a presentation of the problem model adopted, followed by a description of the 
numerical and analytical results obtained with the use of seven metrics – l1-norm and its mean, l2-norm, mean l2-norm 
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obtained in two distinct ways, l∞-norm and its mean on the numerical error involved ( )E  and on the dependent variable 
( )  of the problem. 
 
3.1 Model Problem 
 

Considering the mathematical model of conservation of thermal energy with steady one-dimensional flow, 
incompressible fluid, without generation of heat and viscous dissipation, and with constant properties and velocities in a 
continuous medium, one has the advection-diffusion equation: 

 
2

2e
d dP
dx dx
 
                                                                                                                                                               (14) 

 
where eP  = Peclet number,   is the dependent variable of the problem (temperature) and x  is the independent variable 
(spatial coordinate). The length of the calculating domain (D) considered was the interval [0,1] . 
 The boundary conditions applied (Dirichlet conditions) were: (0) 0   e (1) 1  . Thus, the analytical solution for 
Eq. (14) is 
 

 1( )
1

e

e

P x

P

ex
e







                                                                                                                                                            (15) 

 
 The numerical solutions to this problem were obtained using the finite volume method (Versteeg and Malalasekera, 
2007), with first, second and third-order numerical approximations. The TDMA method was used to solve the system of 
equations resulting from the process of discretization (Ferziger and Peric, 2002). The computational code was 
developed using the Fortran Intel 9.1 application with quadruple precision. The calculations were performed in 15 
distinct grids, with a refinement ratio of 3q  . Among these grids, the coarsest had 5n  , and the finest grid had 

23,914,845n   calculating volumes, where h D n .  
 The variables of interest, i.e., the variables for which the solutions were obtained and the orders analyzed, were:  
(a) 1

2[ ( )]E  , the nodal error for the numerical solution of   at the central point of the grid;  
(b) 

1
E , the global error, determined using l1-norm, of the values of the nodal errors ,  1,...,iE i n ;  

(c) 
___

1
E , the mean l1-norm of E  – the ratio of 

1
E  to the number of calculating volumes n ;  

(d) 
1

 , the l1-norm of   – use of l1-norm on the nodal values ,  1,...,i i n  ;  

(e) 
___

1
 , the mean l1-norm of   – the ratio of 

1
  to the number of calculating volumes n ;  

(f)  
2

E , the global error, determined by the use of l2-norm, of the values of the nodal errors ,  1,...,iE i n ;  

(g) 
___

2
E , the mean l2-norm of E – the ratio of 

2
E  to the number of calculating volumes n ;  

(h) 
2

/E n , the l2-norm of the mean square nodal errors ( ,  1,...,iE i n ), i.e.,  
 

 

2

1
2

/

n

i
i

E
E n

n



                                                                                                                                                     (16)

  
(i)  

2
 , the application of l2-norm on the nodal values ,  1,...,i i n  ; 

(j)  
___

2
 , the mean l2-norm of   – the ratio of 

2
  to the number of calculating volumes n ; 

(j)  
2

/ n , the l2-norm of the mean square nodal values ( ,  1,...,i i n  ), i.e., 
 

 

2

1
2

/

n

i
in

n


 


                                                                                                                                                       (17) 
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(k) E


, the global error determined by application of the l∞-norm on the nodal errors ,  1,...,iE i n ;  

(l)  
___

E


, the mean l∞-norm of E  – the ratio of E


 to the number of calculating volumes n ; 

(m) 


, the application of the l∞-norm on the nodal values ,  1,...,i i n  ;  

(n) 
___




, the mean l∞-norm of   – the ratio of 


 to the number of calculating volumes n . 
 
3.2 Results  
 
 The results presented below consist of the determination of the practical and theoretical order of accuracy for the 
nodal and global errors, considering the use of the above described metrics. The practical orders of accuracy were 
obtained with EP  and UP  (Eqs. (7) and (8)). The theoretical orders of accuracy were determined considering the 
definitions of accuracy order, local error, global error and analytical equivalence between vector norms (Eqs. (4), (5), 
(6), (9) (10), (11), (12) and (13)). Based on the calculation of EP  and UP , an investigation was also made of the 
practical orders of convergence generated by the application of the seven metrics on  . These results were confirmed 
considering the algebraic development – application of the metrics – on Eq. (15). 
 
3.2.1 Accuracy order (P) of the nodal error  
 
 In the first, second and third-order numerical schemes it was found that, for the variable 1

2[ ( )]E  , EP , UP   P . 
These results confirm the theoretical order of accuracy (P) of the nodal error.  
 

3.2.2 Accuracy order of 
1

E  and 
___

1
E  

 
Analytically, considering Eqs. (6) and (9), it is possible to identify the effect caused by 

1
E  on the order of 

accuracy of the nodal error. In other words, the application of l1-norm to obtain the global error results in 
 

__
1

1
PE D c h                                                                                                                                                   (18) 

 

where 
__ 1 n

i
i i

c c
n 

  ,  1,...,i n  represents the number of volumes and .D n h  the size of the calculating domain. 

Upon investigating 
1

E  for the first-order numerical scheme, we found that 
1

0.414...E   when 0h  . This 

behavior can be verified in Eq. (18), where 1P   leads to: 
__

1
E D c . In this case, it was found that: 0 1.E UP P    

0EP   is due to the fact that the global error does not approach zero with the refinement of ( )M h  
1

( 0,  0).E h   
Hence, the numerator of Eq. (7) becomes null. On the other hand, 1UP   is justified by the convergent behavior of 

1
E . That is, for the first order scheme, the numerator of Eq. (8) approaches the denominator, with  0h  .  

For the second and third order schemes, the values obtained for EP  and UP  confirmed the degeneration of one unit 
on the value of P , resulting from the application of 

1
E  ( , 1,  0).E UP P P h     

Analytically, the use of the mean l1-norm on the values of the nodal errors leads to 
                                                                    

___ __

1
PE c h                                                                                                                                                               (19) 

 

This behavior was also found in the three numerical schemes (Fig.1). In other words, for 
___

1
E  one has: ,E UP P P , 

with  0h  . 
 

3.2.3 Accuracy order of E


 and  
___

E


 
 
Considering the use of the l∞-norm on Eq. (9), one has 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 
 
 
 * PE c h


                                                                                                                                                                 (20) 

 
where *

1max{| |, ...,| |}nc c c . For this metric, in the three numerical schemes adopted, we found that the value of P  
was maintained. In other words, ,E UP P P  for 0h  . 

 With regard to the metric 
___

E


 in the three numerical schemes, the order of accuracy of the local discretization error 

was found to increase by one unit. That is, for 
___

E


 , 1E UP P P   with  0h  . This behavior was also found in the 

algebraic expression obtained for 
___

E


, using Eq. (20):  
 

 
*__

1PcE h
D



                                                                                                                                                             (21) 
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Figure 1. EP  and UP  for 
___

1
E  

 

3.2.4 Accuracy order of 
2

E , 
___

2
E  and 

2
/E n  

 

 We considered here the global error determined by 
2

E , 
___

2
E  and the metric 

2
/E n  determined by Eq. (16). 

Analytically, considering Eqs. (12) and (20), one finds that 
 
 * * 1/ 2

2
 P Pc h E D c h                                                                                                                                            (22) 

 
In other words, the order of accuracy resulting from 

2
E  belongs to the interval [ 1 2, ]P P . 

 The calculation of the practical orders of 
2

E  on the numerical schemes with 1,  2P   and 3 , respectively, 

corroborates this result. In other words, numerically, 
2

E  presented , 1 2E UP P P   with 0h  , for the three 
numerical schemes adopted (Fig. 2). 

 Analogously to the obtainment of Eq. (22), for 
___

2
E  one has the following relationship: 

 

 
* *___

1 1/ 2
2

 P Pc ch E h
D D

                                                                                                                                          (23) 
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where is can be seen that the order of accuracy resulting from 
___

2
E  belongs to the interval [ 1 2, 1]P P  . In the 

calculation of the practical orders of 
___

2
E , for the three numerical schemes, it was found that , 1 2E UP P P   with  

0h  . 
 Analytically, the metric 

2
/E n  can be analyzed considering Eqs. (6), (9) and (16),  

 

 2
2

/ Pc
E n h

n
                                                                                                                                                         (24) 

 
where 1( ,..., )nc c c . Considering Eqs. (12), (13), (18), (19) and (20), one finds the following relationship: 
 

 
__

*
2

/P Pc h E n c h                                                                                                                                                   (25) 
 
 The numerical results obtained for 

2
/E n  indicated the permanence of the order of accuracy of the nodal error in 

all the numerical schemes adopted ( , ,  0)E UP P P h  . It can therefore be stated that 
2

/E n  maintains the order of 
accuracy of the numerical scheme adopted. In the works of Falcão et al. (2006) and Roy (2005), this metric is used for 
purposes of numerical verification. 
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Figure 2. EP  and UP  for 2

E  
  

3.2.5 Convergence order of 
1

  and 
___

1
  

 
 Upon investigating the behavior presented by 

1
 , in the three numerical schemes adopted, UP  was found to be 

constant ( 1)UP   . In this case, EP  could not be determined because 
1

,  0 n h      (unlimited analytical 
solution). 

The analytical expression for 
1

 , considering Eq. (15), is determined by 
 

1
2

1

1 1. .
1 1

e
e

e e

PP h

P P h

ee n
e e


            

                                                                                                                        (26) 

 
Using linear approximation based on power series (Kreyszig, 1999) for the exponential term ( )eP he  with 0h  , one 

has 
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1
1

1 1 1
2 1eP

e

h
P e

  
   

 
                                                                                                                                        (27) 

 
By analogy to the accuracy order of the numerical error, it can be stated that 

1
  has an order of convergence -1.  

The analytical expression obtained for 
___

1
 , on Eq. (15), results in 

 
___

1

( 1)
( 1)

e

e

P
e

P
e

e P
P e


 




                                                                                                                                                     (28) 

 

 In the three numerical schemes, it was found that 
___

1
0.193...   for 0h  , which confirms the result of Eq. (28). 

As for the practical order of accuracy, it was found that ,E UP P P  with  0h   in the first and second-order schemes. 
In the third-order numerical scheme, we observed: , 1E UP P P   with 0h  . In other words, for 3P  , there was 

degeneration of one unit in the accuracy order of the numerical scheme in response to the application of 
___

1
 .  

  

3.2.6 Convergence order of 
2

 , 
___

2
  and 

2
/ n  

 
In the three numerical schemes, the metric 

2
  presented constant UP  ( 1/ 2)UP   . Similarly to the previous case 

1
( ) , EP  could not be calculated. The analytical expression for 

2
 , considering Eq. (15), is determined by 

 

3 2 1 0
2

1 1 1 1 1
3 2 3 2 41Pe

Pe h h h h h h
e

       


                                                                                                      (29) 

 
and, by analogy with the definition of asymptotic order (Eq. 5), one has 
 

 
1

2
2 1Pe

Pe h
e







                                                                                                                                                       (30) 

 
This expression corroborates the numerical results obtained for 

2
  and confirms the negative order of convergence 

( 2
1 ), i.e., divergence 

2
( 0 )h    .      

 Distinct behaviors were identified for 
___

2
  and for the metric 

2
/ n  determined by Eq. (17). In the calculation of 

___

2
 , it was observed that 

___

2
0   and , 1/ 2E UP P   with  0h  , in the three  numerical schemes. Analytically, this 

result is confirmed by dividing Eq. (30) by /n D h .  
 In the three numerical schemes, we found that 

2
/ 0.314...n  for 0h  . This result is confirmed by the 

analytical expression obtained for 
2

/ n , considering Eqs. (15) and (17), i.e., 
 

 
2

2

4 2 31/
21

e e

e

P P
e

P
e

e e Pn
Pe


  




                                                                                                                       (31) 

 

 The practical order of convergence ( EP  and UP ) of 
2

/ n  presented a behavior similar to 
___

1
 . That is, it preserved 

the accuracy order of the first and second-order schemes, and degenerated by one unit the value of the accuracy order of 
the third-order scheme. 
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3.2.7 Convergence order of 


 and 
___




 
 

In the three numerical schemes employed here, the calculations of 


and 
___




 led to: 1

  and 

___

0

  for 

0h  . These values are confirmed by the condition imposed on the right boundary of the problem model (Section 3.1). 
In this case, the refinement of ( )M h led to , 1E UP P  . Analytically, this result can be evaluated considering the use of 
the l∞-norm in Eq. (15) and linear approximation based on power series (Kreyszig, 1999). 
  
4. CONCLUSIONS 
 
 An analysis was made of the effect caused by the use of vector p-norms to obtain the global discretization error, 
where the discretization error was defined as the difference between the exact analytical solution and the numerical 
solution for a given variable of interest. With the definitions of the effective order, apparent order and asymptotic order 
of the error, and with the convergence of these orders in the numerical experiments, the parameter order of accuracy (P) 
was adopted. The investigation then focused on the behavior of this order in the local and global errors.  

According to the definition of the error, the variation of   is equal to the variation of its error (E), with the 
refinement process of ( )M h , i.e., E   . However, since the vector norms addressed in this work (represented by 

k ) do not characterize linear operators, one has: 
k k

E   . As a result, the respective orders of accuracy (for 

k
E ) and of convergence (for 

k
 ) did not present a direct relationship. 

 By means of algebraic development and numerical experimentation, we found that P can be degenerated, elevated or 
maintained using vector p-norms. Based on the results obtained in the calculation of the global error, we found that the 

metrics: 
___

1
E , 

2
/E n  and E


 maintain the order P.    
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