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Abstract. This paper presents a methodology and comparisons of parameters between Time Stepping and Waveform Re-
laxation methods, used to solve the two-dimensional linear time-dependent heat diffusion problem, governed by Fourier
equation. The numerical model is obtained by employing finite-difference method, using central second order approxima-
tion, Crank-Nicolson and one variant, designated herein as Modified Crank-Nicolson method for discretization in space
and time, respectively. In the solution of the system of equations that resulted from discretization, we used the geometric
multigrid method with Correction Scheme, V-cycle, Gauss-Seidel solver, restriction by injection, half weithing and full
weithing, prolongation by bilinear interpolation and standard coarsening ratio in the spatial coordinates directions. Tests
were accomplished to optimize the relationship between time and spatial discretizations, as well as multigrid parameters.
We concluded that, for finer grids (greater reduction in discretization error), Time Stepping method is more efficient than
Waveform Relaxation method, and the Modified Crank-Nicolson solver is more efficient than Crank-Nicolson, in relation
to the analyzed parameters.
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1. INTRODUCTION

The resolution of physical problems of fluid mechanics and heat transfer through numerical methods often requires
a very high computational cost. One way of accelerating the delivery of the approximate solution is by using the multi-
grid method (Briggs et al., 2000; Trottenberg et al., 2001). The multigrid method is one of the most efficient and general
iterative methods known for solving systems of linear and nonlinear equations. According to Briggs et al. (2000) and Wes-
seling (1992), this method consists in choosing a solution scheme that absorbs the errors associated with high frequencies,
while the errors associated with low frequencies are absorbed by using coarse grids that make them high frequencies.
Thus, we used auxiliary coarse grid (with fewer nodes) along with restriction and prolongation operators.

According to Stüben (2001), the efficiency of the multigrid method has not been totally reached in realistic applications
regarding computational fluid dynamics. Thus, this paper presents a methodology and comparisons of parameters between
Time Stepping (TS) and Waveform Relaxation (WR) methods combined to the multigrid method, used to solve the two-
dimensional linear time-dependent heat diffusion problem, governed by Fourier equation.

According to Vandewalle (1993); Choptuik (2008) and Van Lent (2006), the TS method considers the parabolic dif-
ferential equation as a sequence of elliptic equations, solving at each time step, using explicit or semi-implicit methods,
which leads us to the approximation of the solution in the desired time step. The WR method, also known as Dynamic
Iteration or Picard Iteration (Miekkala and Nevanlinna, 1997), is a technique for solving ordinary differential systems of
initial value. The WR method was initially studied by Lelarasmee et al. (1982) as a method of practical solution in the
context of integrated circuit simulation. Its convergence was described by Miekkala and Nevanlinna (1997). The combi-
nation of the WR method with multigrid techniques was first studied by Lubich and Ostermann (1987) and Van Lent and
Vandewalle (2002). This method consists in solving a set of ordinary differential equations (ODE), that is, for every point
of the space discretization one time ODE is solved.

This paper is organized as follows. Section (2) describes the problem to be solved and introduces the TS and WR
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methods. In Section (3) the TS and WR methods are combined with multigrid, using Crank-Nicolson (CN) as smoother.
We also propose a new method of smoothing, the Modified Crank-Nicolson (MCN). Section (4) presents a study on the
validation of computer codes developed in Fortran 90. In section (5) we conduct a study of the parameters that reduce
CPU time (tCPU ) for each method solution and smoother. With this study, one can compare the TS and WR methods
with smoothers CN and MCN, admitting the best parameters to perform the simulations with the lowest tCPU for each
case studied. Section (6) presents the conclusions.

2. MATHEMATICAL AND NUMERICAL MODELS

The mathematical model describes a linear two-dimensional problem of heat conduction in time-dependent regime
governed by Fourier’s equation

u̇ = uxx + uyy + f, (1)

where u and f are functions of the variables (x, y, t), with (x, y) ∈ [0, 1], t ∈ [0, tf ] where tf represents the final time,
u̇ = ∂u

∂t represents the time derivative of u, uxx and uyy represent the second spatial derivative of u as a function of x and
y, respectively. In order to solve this problem, we defined the initial and boundary conditions as in Incropera et al. (2008),
thus

u(x, y, 0) = sin(πx) sin(πy), (2)

and

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0. (3)

The source term is given by

f(x, y, t) = π2 sin(πx) sin(πy)e−π
2t, (4)

and the analytical solution is

u(x, y, t) = sin(πx) sin(πy)e−π
2t. (5)

In the discretization of spatial variables we used the finite-difference method in structured quadrangular meshes with
central approximation of second order accuracy. To approximate the time variables we used the Crank-Nicolson method,
also of second order accuracy (Tannehill et al., 1997; Burden and Faires, 2003),

uxx + uyy = Lui,j =
ui−1,j − 2ui,j + ui+1,j

(∆x)2
+

ui,j−1 − 2ui,j + ui,j+1

(∆y)2
, (6)

where L is a second order differential operator and the sub-indices (i, j) are related to the spatial variable in the position
(x, y). In this case (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1) are related to the west, east, south and north points of the
position (i, j), respectively. ∆x = 1

Nx−1 and ∆y = 1
Ny−1 represent the distance between successive nodes, whereas Nx

and Ny represent the number of nodes (or points) in the directions x and y, respectively.
Replacing the Eq. (6) in Eq. (1) one can achieve a stiff system of ODEs, as is typical for discretized parabolic

equations. Since the use of explicit methods leads to severe restrictions on the size of the step time, only implicit methods
are considered (Van Lent, 2006). Thus, for the approximation of the time variable, we used the Crank-Nicolson method
as described in Vargas (2013). So, the Eq. (1) becomes

uki,j − uk−1
i,j

∆t
=

1

2

[
Luki,j + fk

]
+

1

2

[
Luk−1

i,j + fk−1
]
, (7)

where k indicates the current time, k − 1 indicates the previous time, and ∆t =
tf
Nt

, the time step, in which Nt expresses
the number of steps in the time until reaching the desired final time, tf .

By combining Eqs. (7), (6) and (1), one can achieve a linear system with Nx × Ny × Nt unknowns that may be
solved by using Gauss-Seidel and Crank-Nicolson smoothers in space and time, respectively, along with the TS and WR
methods.

2.1 Time Stepping method (TS)

Some studies have focused on algorithms which treat the parabolic equation as a sequence of elliptic equations at each
time step; this method is called Time Stepping method (Choptuik, 2008; Van Lent, 2006). As from Eq. (7), we have

uki,j =
∆t

2

(
Luki,j + fk

)
+ Sk−1, (8)
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where

Sk−1 =
∆t

2

[
Luk−1

i,j + fk−1
]

+ uk−1
i,j . (9)

The approximations uki,j are obtained by solving the above system for each time step k in order. Thus, we can use exactly
the same methods as for stationary problems and the structure of the systems at each time step. The same happens with
the corresponding discretized elliptic equation.

By using the lexicographical order (Burden and Faires, 2003) to update the values in space and applying the splitting
L = L+ + L−, of the Gauss-Seidel method, we have

uk,(ν)
i,j =

∆t

2

(
L+uk,(ν)

i,j + L−uk,(ν−1)
i,j + fk,(ν)

i,j

)
+ Sk−1, (10)

where (ν) indicates values in the current iteration and (ν − 1) indicates values in the previous iteration.
Note that in Eq. (10) the loop over the time steps k forms the outer loop and for each time step k there is an inner loop

for the iterations (ν); this characterizes the Time Stepping method, as in Fig. 1(a).

2.2 Waveform Relaxation method (WR)

We can apply a splitting method L = L+ + L− directly to a system of ODEs given in the Eq. (1), resulting in

u̇(ν) = L+uk,(ν)
i,j + L−uk,(ν−1)

i,j + fk,(ν)
i,j , (11)

where the iterations of u(ν) are functions of the time. Thus, the WR method consists of discretizing the equation in space
and approximating the solution in the direction of the time variable by means of some method to solve the ODEs. By
using the Crank-Nicolson method to discretize the Eq. (11), it becomes identical to the Eq. (10). In that sense, Van Lent
(2006) states that in the WR case, the outer loop is over the iterations and for each iteration (ν) there is an inner loop over
the time steps k, as seen in Fig. 1(b).

Figures 1(a) and 1(b) obtained from Van Lent (2006) show the difference between the TS and WR methods. In TS,
Fig. 1(a), all spatial unknowns for a time step are smoothed simultaneously until reaching some stopping criteria; this
is repeated for all time steps until the final time. In WR, Fig. 1(b), all the values for one spatial grid point are updated
simultaneously in the time direction; this is repeated for all spatial points until reaching some stopping criteria.

(a) Time Stepping method (b) Waveform Relaxation method

Figure 1. Update procedure of the unknowns in Time Stepping e Waveform Relaxation methods (Van Lent, 2006).

3. MULTIGRID METHOD

The system of algebraic equations represented by the systems of Equations (10) or (11) are solved with the geometric
multigrid method, as described by Wesseling (1992), by using Correction Scheme (CS). We used a V-cycle with standard
coarsening ratio, q = 2, in spatial directions (Van Lent and Vandewalle, 2002). The restriction processes used are injection
(Inj), half weighting (HW) and full weighting (FW). The prolongation is done by bilinear interpolation (Trottenberg et al.,
2001).

3.1 Multigrid with the Crank-Nicolson method (CN)

The following algorithm, adapted from Van Lent and Vandewalle (2002), describes how each V-cycle occurs for the
TS and WR methods. The algorithm computes a new iteration u(ν) starting from a previous iteration u(ν−1).
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• v← u(ν−1)

• pre-smoothing using CN: do (ν1) times {v′ ← v, solve vki,j = ∆t
2

(
Lvki,j + fk

)
+ Sk−1}

– calculate defect: d← 1
2

(
Lvki,j + fk

)
+ 1

2

(
Lvk−1

i,j + fk−1
)
− vki,j−vk−1

i,j

∆t

– solve for coarse grid correction of the residual equation using the Crank-Nicolson method:

eki,j =
∆t

2

[
Leki,j + Rdk

]
+

∆t

2

[
Lek−1

i,j + Rdk−1
]

+ ek−1
i,j (12)

– correct: v← v + P e

• post-smoothing using CN: do (ν2) times {v′ ← v, solve vki,j = ∆t
2

(
Lvki,j + fk

)
+ Sk−1}

• u(ν) ← v

where R is a restriction operator, P is an prolongation operator and · indicates that the variable is restricted in the coarse
grid.

For the TS method with multigrid, we followed the methodology described in Fig. 1(a), that is, in each fixed time k, i
and j are varied to apply the algorithm of the multigrid and to conduct a V-cycle. This process is performed until reaching
the desired approximation to the solution in the respective time k. The procedure must be repeated until tf . In the WR
method with multigrid, we followed the methodology described in Fig. 1(b), that is, successively in each node (i, j) of
the spatial discretization, we smooth across the time domain and apply the multigrid algorithm to conduct a V-cycle. This
process is repeated until reaching the desired final solution.

3.2 Multigrid with Modified Crank-Nicolson method (MCN)

The multigrid method with modified Crank-Nicolson method (MCN) consists in smoothing Eq. (10) in the finer grids
with the Crank-Nicolson method (CN), and using a modification for smoothing residual equations in other grids (coarser).
For this, it is necessary to substitute

eki,j = ek−1
i,j +

∆t

2

[
Leki,j

]
+

∆t

2

[
Lek−1

i,j

]
+ Rdk (13)

in Eq. (12) of the algorithm in section 3.1. Note that the residues are used only in the current time step and not do the
arithmetic average of its value in the current time step and earlier, for the smoothing of the residual equation.

4. VERIFICATION OF THE SOLUTIONS

In order to verify the numerical solutions, according to Marchi (2001), we used the Richardson estimator based on

the apparent order of the numerical error, pU =
log

(
φ2−φ3
φ1−φ2

)
log(q) and on the effective order, pE =

log
(
E(φ2)

E(φ1)

)
log(q) , where φ1, φ2

and φ3 indicate the solution of the variable of interest in the fine, coarse and extra-coarse grids, respectively. Variable q
indicates the coarsening ratio between the grid levels related to φ1, φ2 and φ3. VariableE indicates numerical error, which
is the numerical error (round-off error, truncation error, iteration error and programming error) of the variable related to
the computation, φ.

The problem to be solved is given in Eq. (1), which after discretization becomes Eq. (10). The initial and boundaries
conditions and source term, are given by Eqs.(2), (3) and (4), respectively. The spatial domain is a unitary square, so
(x, y) ⊂ [0, 1]× [0, 1], and the final time used is tf = 0.1 s. The discretizations of Nx×Ny×Nt are 5×5×5, 9×9×9,
17× 17× 17 until 513× 513× 513, corresponding to a coarsening ratio q = 2. In each simulation, the iterative process
is interrupted when the machine error is achieved; in other words, iteration errors are minimized, prevailing basically the
discretization errors. The variables analyzed at the final time are: temperature at the average point, u(0.5, 0.5, tf ), average
temperature, u(x, y, tf ), and the infinity norm of the numerical error, ||E||∞.

Algorithms were compiled using Intel R© Fortran R© 2003 release version 11.1 compiler, with quadruple precision, a
Console Application project. The simulations occurred in a Workstation with 2 Intel Xeon X5690 (6 core) processors, 3.5
GHz clock speed, 2.4 TB HD and 192 GB RAM.

Table 1 presents the values of h = 1
(Nx−1) = 1

(Ny−1) =
tf
Nt

= ∆t used in each numerical simulation (with mutigrid)
and the respective results of pU , pE , assuming the infinity norm of the numerical error, ||E||∞, as the variable of interest.
For this, we considered the TS method with CN smoother (TS-CN), the TS method with MCN smoother (TS-MCN),
the WR method with CN smoother (WR-CN) and the WR method with MCN smoother (WR-MCN). Values of the
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Table 1. Apparent order (pU ) and effective order (pE) when there is grid refinement (h) for the variable of interest, ||E||∞.

h
TS-CN e WR-CN TS-MCN e WR-MCN
pU pE pU pE

0.1250 2.669141 —- 2.669141 —-
0.0625 2.162556 2.787051 2.162556 2.787051
0.0313 2.041061 2.199479 2.041061 2.199479
0.0156 2.010300 2.051075 2.010300 2.051075
0.0078 2.002577 2.012859 2.002577 2.012859
0.0039 2.000644 2.003221 2.000644 2.003221
0.0020 2.000161 2.000805 2.000161 2.000805
0.0010 2.000040 2.000201 2.000040 2.000201

other variables of interest and numerical simulations without the use of multigrid (singlegrid), are similar to Tab. 1 and,
therefore, they will not be exposed here.

Based on the results depicted in Tab. 1, it is possible to verify that with grid refinement, the effective and apparent
order tend to the value of the asymptotic order pL = 2.0, which is the order of the CDS and CN method (spatial and
time discretization, respectively). These numerical tests show the coherency between numerical and analytical results,
demonstrating the validity of the code. Note that the alteration in the algorithm presented in section 3.2 (MCN) maintain
the order of the CN method.

5. RESULTS

In this section we considered the TS-CN, TS-MCN, WR-CN and WR-MCN cases. Spatial discretizations are 5 × 5,
9×9 until 513×513 and the final time is tf = 0.1 s. The number of presmoothing is equal to the number of postsmoothing,
namely, ν = ν1 = ν2. Stopping criteria adopted for the iterative process is ||r||2 < 10−7, where r is the defect vector
in the current iteration. The grid coarsening ratio of the multigrid method is q = 2, applied only in spatial directions
and used in both directions (Van Lent and Vandewalle, 2002). In all cases we used the bilinear interpolation prolongation
(Trottenberg et al., 2001).

5.1 Analysis of the variable Nt

The first parameter studied is the relationship between Nx = Ny and Nt. We conducted several tests with different
Nt values in each fixed Nx = Ny value. In these tests, besides the predefined parameters, we adopted the number of
inner iterations as ν = 1, restriction by injection (Inj) and the number of grid levels l = Lmax, where Lmax indicates the
maximum number of possible grids, for instance, Nx = Ny = 33× 33, where 33× 33, 17× 17, 9× 9, 5× 5, 3× 3, or
else Lmax = 5.

We verified that for all the cases of spatial discretization studied, tCPU is smaller when Nt is reduced, however,
numerical errors values might increase or decrease when Nt values vary. Therefore, we opted for assuming that the
optimum value for each discretization level is the value that provides the smallest value of the infinity norm of the error
(||E||∞). Table 2 shows values used in the spatial discretization and the respectiveNt that reduces the values of numerical
errors associated to the iterative process.

Table 2. Relationship between Nx = Ny e Nt that optimize numerical errors.

Nx = Ny 9 17 33 65 129 257 513
Nt 3 5 8 15 29 58 115

5.2 Comparison of the CN and MCN smoother

To compare the solvers, CN and MCN, using the TS and WR methods, we used the average convergence factor (ρm)
with the residual norm and tCPU (Briggs et al., 2000; Janssen, 1997). Therefore, we made simulations considering
restriction by injection, as well as prolongation by bilinear interpolation, number of grids in the multigrid method, l =
Lmax, V (1, 1) cycle and Nt given by Tab. 2. The results are shown in Tab. 3. This table shows that with the spatial
refinement, the value of ρm(r) increases to CN method (ρm(r) → 1), thus the multigrid method loses its efficiency and
tCPU drastically increase. However, MCN is more efficient than CN method, because besides solving problems with
a smaller tCPU , the ratio of average convergence remains constant, which is one of the main features of the multigrid
method (Wesseling, 1992; Briggs et al., 2000; Trottenberg et al., 2001).
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Table 3. Comparison between CN and MCN smoothers for TS and WR methods using multigrid.

Nx = Ny
TS WR

CN MCN CN MCN
ρm tCPU ρm tCPU ρm tCPU ρm tCPU

9 0.229 0.00 0.063 0.00 0.268 0.02 0.096 0.02
17 0.402 0.02 0.085 0.00 0.495 0.06 0.159 0.03
33 0.567 0.22 0.097 0.06 0.680 0.73 0.171 0.16
65 0.679 2.53 0.094 0.50 0.828 12.57 0.174 1.48

129 0.764 29.53 0.088 4.07 0.914 223.43 0.174 12.00
257 0.827 347.33 0.091 34.88 0.963 5445.54 0.172 107.59
513 0.875 4032.09 0.087 269.41 0.987 119668.80 0.169 913.26

Results from Tab. 4 show that the CN smoother lose efficiency when mesh is refined. When comparing smoothers,
we verified that the MCN smoother has a tCPU smaller than the CN smoother for the TS and WR methods, indicating a
better efficiency of the MCN smoother than the CN smoother.

Table 4 describes the acceleration factor, or speed up (S), which in this case represents the ratio between the tCPU of
CN and MCN smoothers, for TS and WR methods in simulations involving the results described in Tab. 3. This results
indicate how much faster the MCN smoother is than the CN smoother for TS and WR methods, at different levels of
spatial mesh discretization. For example, in the WR method with spatial discretization given by Nx = Ny = 513, the
speed up is 131, 04, which means that the MCN smoother is 131.04 times faster than the CN smoother.

Table 4. Speed up (S) between CN e MCN smoothers for TS and WR methods.

Nx 33 65 129 257 513

S =
tCPU (TS−CN)

tCPU (TS−MCN)
3.50 5.06 7.26 9.96 14.97

S =
tCPU (WR−CN)

tCPU (WR−MCN)
4.70 8.48 18.62 50.61 131.04

5.3 Parameter optimization and comparison of the methods

In order to verify the parameters of the multigrid method that minimize tCPU , we considered values of Nx = Ny and
its respective Nt as described in Tab. 2. For this simulations, in each value of Nx, Ny and Nt, we varied the number of
presmoothing and postsmoothing ν = ν1 = ν2, considering ν = 1, ν = 2 ou ν = 3, the number of grids used in the
multigrid process, where l = Lmax, Lmax − 1, Lmax − 2, Lmax − 3 and the restriction process, as the injection (Inj), half
weighting (HW) and full weighting (FW). The optimum values for these parameters are depicted in Tab. 5.

Table 5. Optimum parameters for restriction, number of grids used in the multigrid (l) and number of presmoothing and
postsmoothing (ν) for methods TS and WR and considering MCN as the smoother.

restriction number of grids used in the multigrid number of inner iterations
Inj Lmax 2

Table 5 describe the optimum parameters for all levels of spatial discretization. One can observe that for all cases,
the parameters that return tCPU minimum are the restriction by injection (Inj) and the grid level number Lmax and the
optimum number of inner iteration is ν = 2.

Now we evaluate herein the effect of the number of unknowns in relation to tCPU , with the TS-CN, TS-MCN, WR-CN
and WR-MCN methods and with the optimum parameters suggested in Tab. 5.

Figure 2 shows tCPU as a function of the number of unknowns in each numerical simulation performed. As stopping
criteria of the iterative process, we used ||r||2 < 10−7. When comparing methods, one can verify that TS presents a
smaller tCPU than WR.

In order to determine the order of the algorithms complexity, we made a geometric adjust type tcpu(N) = c · Np,
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Figure 2. Comparison of tCPU with parameters described in Tab. 2 and Tab. 5, for the TS and WR method, with CN and
MCN smoothers.

where N represents the number of unknowns of the problem to be solved, p represents the order of the algorithm (slope
in log log scale) and c is a constant that depends on the method. The closer the exponent p is to the unit, the better the
performance of the multigrid method, that is ideal when p = 1 (Trottenberg et al., 2001), thus, CPU time increases linearly
to the size of the problem. Tab. 6 depicts the values of c and p obtained by geometric adjust of the slopes described in
Fig. 2.

Table 6. Coefficients c e p of tcpu(N) = c ·Np.

Method TS-MCN WR-MCN
c 5,73215E-6 1,57979E-5
p 1,02059 1,03287

Based on the values in Tab. 6, we concluded that TS presents an order of complexity smaller than WR, what indicates
a superiority of the TS method in relation to the WR method for solving this type of problem.

6. CONCLUSION

In this work, the two-dimensional Fourier equation with initial and boundary conditions was solved using the multigrid
method with CS scheme and V-cycle. Discretization of spatial variables was performed with the finite-difference method
(FDM), in quadrangular structured grids with central differencing scheme (CDS) approximation. We used lexicographic
point-wise Gauss-Seidel solver. The discretization of the time variables occurred by means of the Crank-Nicolson and
Modified Crank-Nicolson methods (a version proposed herein). The order of updating of the unknowns in the iterative
process was determined by Time Stepping (TS) and Waveform Relaxation (WR) methods.

We verified the parameter combination that makes the multigrid method more efficient. Assuming tf = 0.1 s, optimun
Nt is given in Tab. 2, and the other parameters of the multigrid are exposed in Tab. 5.

The discovery of the optimum parameters made it possible to compare TS and WR methods along with the CN and
MCN smoothers with minimum tCPU for each case. With the aid of a geometric adjust, we were able to analyze the order
of complexity of the TS-CN, TS-MCN, WR-CN and WR-MCN methods and conclude that the TS method is more efficient
than the WR method. The superiority of the MCN smoother over the CN smoother was verified with the computation of
speed up. However, we found that when the spatial mesh is refined, tCPU greatly increases, probably because the optimal
relation between Nx = Ny and Nt given in Tab. 2 is lost during the coarsening process of the meshes. This will be topic
of further study.

7. ACKNOWLEDGEMENTS

The authors would like to acknowledge the infrastructural support provided by the Laboratory of Numerical Exper-
imentation (LENA) of the Department of Mechanical Engineering (DEMEC) of Federal University of Paraná (UFPR).
The first author is supported by State University of Centro-Oeste (UNICENTRO) and by CAPES (Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior, Brazil) scholarship.



S. R. Franco, M. A. V. Pinto, A. P. S. Vargas
Comparison of Efficiency Between the Time Stepping and Waveform Relaxation Methods for Two-Dimensional Fourier Equation

8. REFERENCES

Briggs, W.L., Henson, V.E. and McCormick, S.F., 2000. A Multigrid Tutorial. SIAM, Philadelphia, 2nd edition.
Burden, R.L. and Faires, J.D., 2003. Análise Numérica. Pioneira Thomson Learning, São Paulo.
Choptuik, M.W., 2008. “Using multigrid to solve time dependent pdes”. 4 Feb. 2008 <http://wwwsfb.tpi.uni-

jena.de/VideoSeminar/Files/20080204-choptuik.pdf>.
Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, T.L., 2008. Fundamentos de Transferência de Calor e Massa.

LTC, Rio de Janeiro, 6th edition.
Janssen, J., 1997. Acceleration of Waveform Relaxation Methods for Linear Ordinary and Partial Differential Equations.

Ph.D. thesis, Katholieke Universiteit Leuven, Heverlee, Belgium.
Lelarasmee, E., Ruehli, A.E. and Vincentelli, S.A.L., 1982. “The waveform relaxation method for time domain analysis

of large scale integrated circuits theory and apllications”. IEEE Trans. Comput. Aided Design Integr. Circ. Systems, ,
No. 1, pp. 131–145.

Lubich, C. and Ostermann, A., 1987. “Multigrid dynamic iteration for parabolic equations”. BIT, Vol. 27, No. 2, p.
216–234.

Marchi, C.H., 2001. Verificação de soluções numéricas unidimensionais em dinâmica dos fluidos. Ph.D. thesis, Univer-
sidade Federal de Santa Catarina, Florianópolis.

Miekkala, U. and Nevanlinna, O., 1997. “Convergence of dynamic iteration methods for initial value problems”. SIAM J.
Sci. Statist. Comput., Vol. 8, p. 459–482.

Stüben, K., 2001. “A review of algebraic multigrid”. Journal of Computational and Applied Mathematics, , No. 128, pp.
281–309.

Tannehill, J.C., Anderson, D.A. and Pletcher, R.H., 1997. Computational Fluid Mechanics and Heat Transfer. Taylor &
Francis, Philadelphia.

Trottenberg, U., Oosterlee, C. and Schüller, A., 2001. Multigrid. Academic Press, San Diego.
Van Lent, J., 2006. Multigrid Method for Time-Dependent Partial Differential Equations. Ph.D. thesis, Katholieke

Universiteit Leuven.
Van Lent, J. and Vandewalle, S., 2002. “Multigrid waveform relaxation for anisotropic partial differential equations”.

Numerical Algorithms, Vol. 31, pp. 361–380.
Vandewalle, S., 1993. Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner, Stuttgar.
Vargas, A.P.S., 2013. Multiextrapolação de Richardson e esquemas de 1a e 2a ordens, mistos e Crank-Nicolson sobre as

equações 2D de advencção-difusão Fourier. Ph.D. thesis, Universidade Federal do Paraná, Curitiba.
Wesseling, P., 1992. An Introduction to Multigrid Methods. John Wiley & Sons, Chichester.


