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Abstract. This work aimed to study a methodology that integrates rainfall estimates gathered by satellite, radar and 

rain gauge measurements by solving numerically a Poisson equation. It has been found that by introducing rain gauge 

measurements as additional conditions on the domain, which is a requirement of this methodology, the multigrid 

method does not converge, a problem associated with small-scale singularities that are invisible on coarser grids, such 

as “small islands”. In order to study this problem, we used the finite difference method (FDM) and a second-order 

accuracy Central Differencing Scheme (CDS) for the discretization of mathematical models. Gauss-Seidel method was 

used as solver. For all studied cases, numerical solutions were obtained by applying geometric multigrid method 

(GMG) with the following characteristics: correction scheme (CS), full-weighted restriction operator, prolongation by 

bilinear interpolation and the use of the maximum number of levels. The "small islands" problem was solved by 

imposing additional conditions on the domain, in an appropriate way, in all meshes used by the multigrid method. The 

results are considered positive because the multigrid method converges to the numerical solution of Poisson’s 

Equation. 
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1. INTRODUCTION 

 

In this work, we studied a methodology that integrates rainfall estimates gathered by satellite, radar and rain gauge 

measurements. Data blending technique was developed by Reynolds (1988) for temperature, and adapted by Xie and 

Arkin (1996) for rainfall, and it was used to integrate satellite rainfall estimates with rain gauge data. Vila et al. (2009), 

also used the methodology of Xie and Arkin (1996) to integrate satellite estimates with rain gauge measurements. 

The methodology for blending rain estimates from Xie and Arkin (1996) basically consists in solving a Poisson 

equation with Dirichlet boundary conditions and source term given by the satellite, as well as enriching the domain with 

rainfall data measured by rain gauges. We adapted this methodology to integrate satellite estimates, as performed by 

Xie and Arkin (1996) and Vila et al. (2009), as well as radar estimates. For execution purposes, it is required:  

1) Application of the methodology every 1 hour (in the future, 15 minutes). 

2) Support for an arbitrary number of rain gauges, radars and satellites. 

3) Solution of a Poisson equation for each radar and satellite involved in the integration. 

4) Grid resolution of up to 4097 4097
 
points (also called mesh elements or pixels in the context of radars and 

satellites). 

5) Regular and uniform grids (in all directions). 

Thus, the need of a numerical method capable of solving Poisson’s Equation within the operational interval of 

currently one hour is evident. 
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The discretization process of the domain and of the differential equations of the mathematical model, in this work, 

Poisson’s equation, results in a system of equations of the kind, Au b , where A is the coefficients matrix, b  is the 

independent terms vector and u
 
the unknowns vector.  

Many computational techniques are studied aimed at solving the system Au b
 
with the lowest computational 

cost (CPU time) and the closest solution to the analytical solution. Small linear systems (of the size of 210
 
elements) 

are solved fairly well by direct methods, such as Gauss elimination, but in practical applications they are not 

recommended due to the high inversion cost of the A matrix (Golub and Van Loan, 1989). For large linear systems, 

iterative methods are more suitable (Burden and Faires, 2008), since they have computational cost of the order of 

2( 2)O N , considerably lower than the cost of the order of 3( )O N  of the direct methods, where N is the number of the 

unknowns. 

The multigrid method belongs to the family of iterative methods used to solve efficiently partial differential 

equations and aims to accelerate the convergence of the iterative method in which it is applied (Tannehill et al., 1997). 

Multigrid methods are one of the most effective techniques used in the solution of elliptic equations, such as 

Poisson’s equation (Briggs et al., 2000; Trottenberg et al., 2001), because the number of arithmetic operations that must 

be performed to achieve the discretization error level is proportional to the number of unknowns of the system of 

equations to be solved. 

 

2. BLENDING METHODOLOGY  

 

The methodology of Reynolds (1988), adapted by Xie and Arkin (1996) to the context of rainfall, integrates satellite 

estimates (and radar in this work) and rain gauge measurements by assuming that the spatial distribution, or the “shape” 

of the blended analysis, B, satisfies Poisson’s equation 

 

2B f  (1) 

 

where the source term f  in Eq. (1) is determined with 

 

2f F  (2) 

 

in which F represents radar or satellite estimates. In pixels where rain gauge measurements are available, the value of 

field B is equaled to the value of the rain gauges. 

If rain gauge measurements are not available in the same pixels, the boundary conditions are given by the values of 

F. 

The blending algorithm consists in: 

1) Calculating the source term, Eq. (2), for each radar and satellite involved in the blending.  

2) Equating B field values for each pixel that contains data measured by rain gauges. 

3) Solve numerically Eq. (1) for each member (radars and satellites) using the calculated field B as initial guess for 

the next member considered. 

Fig. 1 shows the area for which Eq. (1) is being solved. The circles represent the area covered by four S-Band 

Weather Radars, two from IPMet/Unesp in São Paulo State and two from Simepar in Paraná State. The red lines 

represent the territorial boundary of the states of Mato Grosso do Sul, São Paulo, Paraná and Santa Catarina whereas the 

black dots represent the distribution of rain gauges available for study.  

 

3. MATHEMATICAL AND NUMERICAL MODELS 

 

The domain discretization, each radar (circle) shown in the Fig.1 as well as the intersection area of all radars, was 

performed using uniform grids in all directions (latitude and longitude). For each pixel (or grid point) on the grid, Eqs. 

(1) and (2) were discretized with the finite difference method (FDM) employing central difference scheme (CDS), 

which consists in replacing the Laplacian of Eqs. (1) and (2) by algebraic expressions of the form 

  

2 2
1, , 1, , 1 , , 12

2 2 2 2

2 2i j i j i j i j i j i j

lon latlat lon h h
 (3) 
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Figure 1. Area of study 

 

where lat and lon represent the geographic coordinates of latitude and longitude, respectively. The variable  

represents B or F and in which lon lath h h  was used. Replacing the Eq. (3) in the Eq. (1)  

 

2
, 1, 1, , 1 , 1 ,4 i j i j i j i j i j i jB B B B B h f  (4) 

 

The source term ,i jf  must be previously obtained with 

 

, 1, 1, , 1 , 1
, 2

4 i j i j i j i j i j
i j

F F F F F
f

h
 (5) 

 

The Eq. (4) results in a linear system of the kind Au b  that will be solved with the geometric multigrid method 

whose main feature is to employ a hierarchy of grids aiming to accelerate the convergence of the numerical solution.  

The main idea of the multigrid method consists in applying recursively the two-grid correction scheme: 

a) Smooth h h hA u b  (with an iterative method) to obtain hv
 
(an approximation of hu ); 

b) Compute the residual with h h h hAr b v ; 

c) Transfer (restrict) the residual hr  to the coarser grid to obtain Hr ; 

d) Smooth H H HA e r  (residual equation) to obtain He ; 

e) Transfer (interpolate) the error He back to the finer grid to obtain he ; 

f) Using the definition of error correct hu  with h h hu v e . 

The superscripts h and H have been used to indicate, respectively, the fine and coarse grids on which the vectors are 

defined. 

In order to increase the multigrid method performance, many grid levels must be used (Tannehill et al., 1997). Pinto 

and Marchi (2007) as well as Oliveira (2010) suggest using all available levels. The order in which the grids are visited 

is called multigrid cycle. There are many types of multigrid cycles such as V-Cycle, W-Cycle, among others (Briggs et 

al., 2000; Trottenberg et al., 2001). We used exclusively V-Cycle, since W-Cycle is 50% more expensive regarding the 

number of operations involved (Hirsch, 1988). Fig.2 shows an example of a V-Cycle. 

  

3.1 Multigrid details and test case 

 

Eq. (4) is solved with geometric multigrid method with the following characteristics: correction scheme (CS), full-

weighted restriction operator, prolongation by bilinear interpolation, use of the maximum number of levels and  
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Figure 2. V-Cycle 

 

standard coarsening ratio 2r  (Briggs et al., 2000; Trottenberg et al., 2001). Gauss-Seidel method was used as 

solver. Three smoothing steps were performed on both pre-smoothing (before the residual restriction) and post-

smoothing (after the interpolation of the error) (Oliveira, 2010). The stopping criteria used to interrupt the iterative 

process is the 2l -norm of the residual divided by the 2l -norm of the residual in the initial guess (Briggs et al., 2000; 

Trottenberg et al., 2001) represented by 2 0 2nr r  as it is less than 1010 . In all the simulations, the multigrid 

method departed from the finest mesh and went towards the coarsest mesh possible (Pinto and Marchi, 2007; Oliveira, 

2010). 

In order to verify the validity of the implemented multigrid method, a two-dimensional heat conduction problem 

governed by the following differential equation was solved:  

 
2 2

2 2 2 2 2 2
2 2

2 (1 6 ) (1 ) (1 6 ) (1 )
T T

x y y y x x
x y

 (6) 

 

where x and y are the coordinate directions and T is the temperature. The boundary conditions of Dirichlet are given by  

 

(0, ) ( ,0) 0

(1, ) ( ,1) 0

T y T x

T y T x
 (7) 

 

such as the analytical solution of Eq. (6) is given by (Oliveira, 2000) 

 

2 4 4 2, ( )( )T x y x x y y  (8) 

 

3.2 The “small islands” problem 

 

It has been found that by introducing rain gauge measurements as additional conditions on the domain, which is a 

requirement of the studied methodology, the multigrid method does not converge, a problem associated with small-scale 

singularities that are invisible on coarser grids, such as “small islands” (Brandt, 1998).  

Similarly to the problem of "small islands", cases in which the domain presents "holes" are observed in 

cosmological simulations (Teyssier, 2002). In these cases, grid coarsening results in a situation in which the boundary 

conditions on the domain cannot be represented in coarser grids (Guillet and Teyssier, 2011). 

Brandt (1998) suggests as a possible solution to the “small islands” problem: 

a) Enlarging the singularity on the coarser grid. 

b) Modifying the interior coarse-grid equation near the singularity. 

c) Recombining iterants. If the coarse grid equations are not modified, the convergence is slow, but only for a few 

very special components. Thus, slowness can be eliminated by recombining iterants (Brandt and Mikulinsky, 

1995). 

Johanse and Colella (1998) suggest stopping the residual restriction process when the "small islands" problem 

begins to affect the convergence of the multigrid. 
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McCorquodale et al. (2001), suggest modifying the Laplacian in the coarse grid so that the singularities are properly 

considered. 

We used a methodology to solve the "small islands" problem that consists in applying step 2) of the blending 

algorithm in step d) of the two-grid correction scheme: for each solved residual equationAe r  we verified if there 

are "near" rain gauges ("near" means "inside" of the grid element), and if so, the value of the pixel ,i je  is nulled.  

 

4. RESULTS 

 

Fig. 3 shows the 2l -norm of the residual in the nth V-Cycle divided by the 2l -norm in the initial guess, 

2 0 2nr r , for the operational cases without proper treatment of the "small islands" problem. The disposition of 

the “small islands” in the domain can be observed in the Fig. 1 represented by the black dots.  

 

 
 

Figure 3. Increase in the residual for cases with “small islands” 

 

Fig. 3 shows that the multigrid method does not converge due to the presence of "small islands". In order to verify 

the validity of the multigrid method, the implemented program was applied to the test case described in section 3.1. Fig. 

4 (a) depicts the results.  

 

 
 

Figure 4. Decrease in the residual for test case (a) and operational cases (b) with “small islands” 
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Fig. 4 (a) shows that the implemented multigrid method presents fast convergence and achieves the specified 

tolerance, 1010 , in just a few cycles; furthermore, results are presented for grids of sizes that vary from 257 257 to 

4097 4097  pixels. One can notice that the convergence rate of the multigrid method, for this ideal case, does not 

depend on the size of the grid. After the iterative process, 10
2 0 2 10nr r , the biggest absolute difference, in 

the whole domain, between the numerical and analytical solution was computed to be less than 93 10 . 

Fig 4. (b) presents the results of the convergence of the multigrid method for the operational cases with the treatment 

of the "small islands" problems described in the section 3.2. Since there is no analytical solution for these cases, the 

numerical solution of the multigrid method was compared with the solution obtained with Gauss-Seidel method. As it 

can be seen in Fig. 4 (b), the convergence of the multigrid method showed dependence on the size of the problem, a 

phenomenon also observed by Guillet and Teyssier (2011), Day et al. (1998) and Popinet (2003). 

Notice that some of the "small islands" shown in Fig. 1 may be unavailable and/or new "small islands" can be added 

during the initial processing of the rain gauge data. If the arrangement of "small islands" shown in Fig. 1 is changed, the 

convergence of the multigrid method (with the treatment described in the section 3.2) may be different from the results 

presented in Figure 4 (b). 

Considering the methodology described in section 3.2, it is expected that the multigrid method exhibits 

convergence: a) ideal (Fig. 4 (a)) in case of non available rain gauges b) equal to the convergence of the used solver 

(Gauss-Seidel) in cases in which each grid element has a near rain gauge ( 0e
 
for all the residual equations, which 

implies that additional grids are not used). 

As a result of the methodology presented in section 3.2, we expect some of the coarser grids not be used ( 0e
 
for 

the residual equation) in the correction process. If this happens, the multigrid method will not be using all the available 

grid levels. Fig. 5 shows the decrease in the residual for the test case with a 4097 4097  pixel grid and for the 

multigrid method using different numbers of grid levels. 

 

 
 

Figure 5. Decrease in the residual for different grid levels for the test case with 4097 4097N  

 

Fig. 5 shows the importance (fastest decrease in the residual) of using all the available grid levels (12 for the 

standard coarsening of a grid with 4097 4097  pixels) and that, when less grid levels are used, more multigrid V 

cycles are needed to achieve the specified tolerance ( 1010 ). 

Notice in Fig. 5 that by introducing rain gauge measurements as additional conditions on the domain and applying 

the treatment described in section 3.2, the convergence of the multigrid method is affected in a complex way: the first 4 

V cycles show the fast convergence expected from the use of all the available grid levels, but the convergence slows 

down on the following V cycles. It could be said that after 10 V cycles, grid levels 10, 11 and 12 stop to contribute to 

the numerical solution of the problem.  

Fig. 6 depics the accumulated rainfall during 24 hours on June 14, 2015 as well as the rainfall estimates gathered by 

radar and satellite. The scale of Fig. 6 is 0-100 mm / 24h. For comparison reasons, the rainfall measured by rain gauges 

was interpolated using natural neighbor algorithm (natgrid) for the study area (Fig. 1). 
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Figure 6. Map of rainfall (in mm/24h)   

 

In Fig. 6, Siprec refers to the rainfall field resulting from the application of the Blending Methodology discussed in 

Section 2. The Siprec rainfall field characteristics will be discussed in a future work.  

Although being only for illustrative purposes, Fig. 6 presents some of the challenges associated with blending radar, 

satellite and rain gauge data: radar and satellite have spatial representation but account only for rainfall estimates and 

differ over the intensity and positioning of rainfall. Rain gauges have no spatial representation; however, they represent 

actual measurements of rainfall. 

 

5. CONCLUSION 

  

In this work, we studied a methodology used to integrate rainfall estimates gathered by satellite, radar and rain 

gauge measurements, in which the imposition of constraints on the domain results in the non-convergence of the 

standard multigrid method. A solution capable to restore partially the convergence was presented. The undesirable 

relation of dependency between the convergence of the method and the size of the used grid is being studied and will be 

addressed in a future work. 
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