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Abstract. The focus of this work is analyzing the behavior of the following parameters: the 

iteration error, the processing time (CPU time) and the convergence factors for two problems 

of Computational Fluid Dynamics (CFD): the two-dimensional linear heat diffusion problem, 

governed by a Poisson-like equation, with Dirichlet's boundary conditions, and it is solved by 

using the Geometric Multigrid Method associated to the following extrapolation methods: 

Aitken, Empiric, Mitin, Epsilon (scalar and topological), Rho (scalar and topological), 

Multiple Aitken Extrapolations and Multiple Mitin Extrapolations; and the square lid-driven 

cavity, governed by Burgers’ equations, with Dirichlet's boundary conditions, solved by using 

the Geometric Multigrid associated to the Topological Epsilon Extrapolation Method during 

the Multigrid cycles. According to numerical results, it was observed: the reduction of the 

magnitude of iteration error, the reduction of non-dimensional residual based on the initial 

estimate and the reduction of the convergence factor, with a CPU time compatible to the pure 

Multigrid Method for both problems. 
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1  INTRODUCTION 

Systems of algebraic equations with the form Au = f, where A is the matrix of 

coefficients, f is the vector of independent terms and u is the vector of unknowns, are 

commonly obtained in the discretization process of a mathematical model in the 

Computational Fluid Dynamics (CFD). The solution of such systems is usually obtained by 

the use of iterative methods, which although are faster than direct methods, frequently present 

slow convergence for higher-order matrix problems. The acceleration of the convergence for 

iterative processes can be achieved by two distinct ways: by modifying the iterative process or 

by changing the sequence which converges slowly by another one with better convergence 

properties (Brezinski and Zaglia, 2008). 

In last decades, an alternative of unambiguous efficiency in the acceleration of iterative 

methods is the Multigrid Method (Briggs et al., 2000 and Trottenberg et al., 2001). Its 

philosophy is based on the employment of grids of different sizes, which are covered during 

the iterative process. Another methodology which aims the acceleration of the convergence 

for iterative methods is to associate them to Extrapolation Methods, whose focus is to change 

a sequence of vectors in another one with faster convergence features. 

There are other techniques to speed-up of the Multigrid Method in literature. Among 

several works, Shen et al. (2000) can be cited. In such work, ideal pre-conditioners to the 

Multigrid Method are used, based on the interchange of lines in the Gauss-Seidel smoothing 

process using Chebyshev-collocation for second order elliptical equations. Other authors 

work with parallelization using GPUs in the solution of problems associated to the Multigrid 

Method, as can be seen in Liu et al. (2015). In Zhang et al. (2010) the Pseudospectral 

Chebyshev Method is used with the Multigrid Method to solve the primitive variables of the 

Navier-Stokes Equations. 

In the current work, Extrapolation Methods were associated to the Multigrid Method, in 

order to accelerate the convergence process and reduce the iteration error. Such formulation is 

attractive since there is no works focusing on it. 

Next sections of the current work are organized as follows. Theoretical and 

computational features of the Multigrid and Extrapolation Methods are presented in Section 2. 

Mathematical and numerical models of adopted test problems are shown in Section 3. 

Numerical results and associated discussions are provided in Section 4. And the closure of 

this work is done in Section 5, with the most important remarks. 

2  NUMERICAL METHODS 

2.1 Multigrid method 

The use of the Multigrid Method is related to the smoothing properties of error by 

classical iteration methods: it is faster in initial iterations for oscillatory components, while for 

smooth components a large number of iterations is required and these classical methods lose 

efficiency. In this way, the Multigrid Method deals with a sequence of coarse auxiliary grids 

(with a lower quantity of nodal points) in which the error components are quickly smoothed, 

to later return to the original grid. Information is transferred between two grids by operators, 

called restriction operators (in this case, information is transferred from a fine grid to the next 

coarser one), generically represented by  HhI  and defined as 
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   hH

h

H vIv   (1) 

 

or prolongation operators (in this case, information is transferred from a coarse grid to the 

next finer one), generically represented by  hHI  and defined as 

 

   Hh

H

h vIv   (2) 

 

The restriction operator employed in the current work was the full weighting 

interpolation (Briggs et al., 2000 and Trottenberg et al., 2001), while the prolongation 

operator was the bilinear interpolation (Briggs et al., 2000, Trottenberg et al., 2001 and 

Hackbush 1985), both commonly found in Multigrid literature.  

V-cycle was also used in this work by its efficiency (Briggs et al., 2000, Trottenberg et 

al., 2001 and Hackbush 1985). To solve the Poisson-type equation, which is a linear problem, 

the Correction Scheme (CS) was used; such scheme transfers only the residual value to the 

coarser grids (Briggs et al., 2000, Trottenberg et al., 2001 and Hackbush 1985). For the 

Burgers’ equations, which are a system of non-linear equations, the Full Approximation 

Scheme (FAS) was used; in such scheme both the residual value and the approximation for 

solution are transferred to coarser grids (Trottenberg et al., 2001).  

The coarsening ratio, for the two-dimensional problem, by using uniform grids, is defined 

as hHr  , where h is related to the spacing of the fine grid, h , and H is the spacing size of 

the immediately coarser grid, H . In the current work, the standard coarsening ratio, 2r , 

was employed (Briggs et al., 2000). 

The algorithms for CS and FAS schemes with V-cycle for several grid levels, until the 

achievement of a stop criterion or a chosen maximum number of cycles, can be found in 

Briggs et al. (2000), Trottenberg et al. (2001) and Hackbush (1985). Such authors also present 

the recursive versions for these schemes, which are generally the most used ones. 

2.2 Extrapolation Methods 

The purpose of Extrapolation Methods is to change a sequel with slow convergence in 

another one with better convergence properties. Such extrapolators can be classified as scalar 

and vector ones, according to the way information is dealt. 

Mitin (1985) considers a iterative process in a Hilbert space, where the vectors 

1 2   kC , C ,...,C ,...,C are obtained in steps during the process. The vector k kC C    is 

defined. In general:  1k kF   , where F is the operator which defines the iterative 

process. In such work, an expression, which will support the formulae to the three first 

extrapolators of the current work, is defined: 
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For the subsequent iterations, with 1k  , 1 1 2 2 3 3 , C , C C       and for all j-th 

components satisfying the relation described by Eq. (3), the following expression can be 

written: 

 

 
2

1 3 2

3 2 12

Aitken


  
 

    
, (4) 

 

which is the formula used to the Aitken extrapolation (Burden and Faires, 2005) 

Based on the Empiric Estimator Martins and Marchi (2008) proposed: 

 

 
 
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2 3 12

Empírico


 
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, (5) 

 

which is a relation with the same properties of the Aitken extrapolator. 

Considering now the subsequent iterations with 1k  , 1 1C ,   2 2 ,C    3 3 ,C    

4 4 ,C    5 5C    and all the j-th components satisfying the relation described by Eq. (3), the 

following expression is written: 

 

 
2

1 5 3

5 3 12

Mitin


  
 

    
, (6) 

 

which is a formula used to the Mitin extrapolation (Mitin, 1985). 

Other two extrapolation methods presented in literature are the Epsilon and Rho 

algorithms, which present a formal similarity, but significantly differ in their capability to 

accelerate the convergence. The properties of Epsilon and Rho algorithms are, in a certain 

manner, complementary. 

The importance of studying the Epsilon algorithm is based on its potential to be applied 

on the acceleration of convergence of iterative solution for discretized differential equations. 

However, all algorithms present their domain of validity. The Epsilon algorithm, for example, 

fails to logarithmically convergent sequences (which converge very slowly) and it cannot 

achieve the fixed point of generators of sequences which diverge very fast. The Epsilon 

algorithm generally fails to such sequences and Delahaye (1988) and Delahaye and Germain-

Bonne (1982) demonstrated that there is no universal accelerator to logarithmically 

convergent sequences (Graves-Morris et al., 2000). The Rho algorithm does not accelerate 

linear convergent sequences, but it is powerful to logarithmically convergent sequences 

(Graves-Morris et al., 2000 and Gao et al., 2010). 

The Rho and Epsilon Extrapolation Methods can be generalized to the vector case, i. e., 

involving vector operations. In addition, such approach can be recursively applied and then it 
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is known as topological formulation (Brezinski and Zaglia, 2008); it is also used in the current 

work.  

With the aim of using a scalar extrapolator to a vector sequence it must be applied 

simultaneously to each vector component. Nonetheless a disadvantage of using such 

technique is the fact that the connection among the components are neglected, in other words, 

the components are treated as independent scalars. Attention must also be paid to the vector 

characteristics, since vectors arise from the iterative process and components can assume 

different orders of convergence, when independently analyzed. In this case, numerical 

instabilities are not discharged (for some components). 

In these cases the vector approach is recommended; however, it does not imply in a 

higher level of complexity. As example, to generalize the Scalar Epsilon Extrapolator to 

vector case, the inverse of a vector is needed to be defined. A possibility considered by Wynn 

(1962) is the use of inverse defined by 

 

 
1

2

z
z

z

  , RNz . (7) 

 

Therefore, for vector sequences, the vector Epsilon extrapolator is defined by 
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Another generalization of Scalar Epsilon Extrapolation for vector sequences is proposed 

in Brezinski and Zaglia (2008). It is a recursive form of vector Epsilon algorithm, in which 

the evaluation of vector inverses is not needed: the called Topological Epsilon Algorithm 

(TEA), whose formula is given recursively by: 
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being y an arbitrary vector, orthogonal to the j-th component of residual value generalized 

between  k , j ne S  and  1k , j ne S  and 
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the inner product of two vectors   and  , where iα  and iβ  are the components of   and   

vectors, respectively, and p is the number of components of vectors.  

The difference operator   acts on the superscript n and  

 

  ( )
2
n
k k ne S s   ,  (11) 

 

and 

 

 
 

( )
2 1 ,  , 0 1n

k

k n

y
k n , ,...

y,e S
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
. (12) 

 

Beyond the cited extrapolators, repeated extrapolations (Burden and Faires, 2005) 

(extrapolation of already extrapolated data) were also done for the Aitken and Mitin methods. 

For the Repeated Aitken Extrapolation (RAE), for example, the five last obtained 

solutions by the Multigrid Method  0,50,40,30,20,1 ,,,,   are used, where mg ,  represents the 

gth-solution and mth-extrapolation level. For the first solution level, in which none 

extrapolation was done  0m , extrapolations are evaluated by using:  0,30,20,1 ,,  , 

 0,40,30,2 ,,   and  0,50,40,3 ,,  , which generates, respectively, 1,3 , 1,4  and 1,5 , where m = 

1 represents the first extrapolation level; as an example, 1,31,3  Aitken
 in equation 

 

 
0,10,20,3

2

0,20,30,1

1,3
2 







Aitken

. (13) 

 

After that, these three extrapolated solutions  1,51,41,3 ,,   are used to evaluate a new 

extrapolation, generating the second extrapolation level solution 2,5 . Figure 1 shows a scheme 

of the Repeated Aitken Extrapolation for two levels. 

The procedure for the Repeated Mitin Extrapolation (RME) is analogous to the 

previously presented one; taking into account for RME at least nine different solutions are 

necessary to evaluate two extrapolation levels. 

3  MATHEMATICAL AND NUMERICAL MODELS 

3.1 Mathematical method 

The aim of this work is to show how the use of extrapolators associated to the Multigrid 

Method can act on the iteration error and the iterative processing time. To do such a thing, 

two problems were chosen, a simpler one (Poisson-type equation), and a more complex one 
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(Burgers’ equations). The first problem was chosen to particularly analyze the effects of the 

cited methodology, allowing the detection of which extrapolator presents the best results. In 

the sequence, such extrapolator was used to the second problem, a non-linear system of 

equations, to analyze its behavior. 

 

Figure 1. Schematic representation of Multiple Aitken Extrapolation with two levels. 

 

Thereby, in this work the steady linear two-dimensional heat transfer problem, described 

by a Poisson-type equation for a unity-square domain, was solved 

 

   ,1,0,,
2

2

2

2


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
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yxyxS

y

T

x

T
 (14) 

 

with Dirichlet's boundary conditions,         01,,10,,0  xTyTxTyT , source term 

 

           222222 1611612, xxyyyxyxS  , (15) 

 

and analytical solution obtained by the method of manufactured solutions, presented by 

Tannehill et al. (1997) as 

 

     2442, xyyxyxT  . (16) 

 

Afterwards, the advection-diffusion problem, governed by the Burgers equations, which 

is a non-linear partial differential equations, was solved. Such equations are a simplified form 

of the Navier-Stokes equations, reduced to the Linear Momentum Equations, since the 

pressure field is prescribed and the mass conservation equation is not needed. The model 

considered in this work presents the analytical solution and the pressure field given by Shih  

et al. (1989) and are presented in the sequence. Considering constant properties, Cartesian 
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coordinates and steady state, the Burgers’ equations in conservative form are given by 

Tannehill (1997) 

 

 
2 2 2

2 2

( ) 1
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(17) 
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where p is the static pressure, u and v are the velocity components in x and y directions, 

respectively, Re is the number of Reynolds, evaluated by Re / cU l   where U  and l are 

the velocity and the length of reference, /c d    is the cinematic viscosity, where 
d  is 

the dynamic viscosity and  is density. In this work, the simulations were done for Re = 1000. 

The source term  ( , ,Re)S x y and the pressure field p, given by Shih  et al., (1989), are 

respectively 
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and 
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The Dirichlet boundary conditions are: 
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The analytical solution, obtained by the manufactured solutions technic (Roy, 2005), is 

given by 

 

 4 3 2 3( , ) 8( 2 )(4 2 )u x y x x x y y     (22) 

and 

 

 3 2 4 2( , ) 8( 4 6 2 )( )v x y x x x y y       (23) 

 

In this work, the Burgers’ equations are solved in a closed region and the problem is 

known as the square lid-driven cavity problem. In this case, the fluid moves from left to right 

in the upper lid with the velocity distribution in x-direction given by Eq. (22), while the other 

boundaries present null velocities (non-slip condition). 

3.2 Numerical model 

The first numerical model was obtained by the discretization of the Poisson-type equation 

by the use of the Finite Difference Method (FDM) (Tannehill, 1997), with Central Difference 

Scheme (CDS). The discretization of the Burgers’ equations was done by the use of the Finite 

Volume Method (FVM) (Maliska, 2004), with structured grids, uniform for each direction. In 

this proceeding, diffusive terms were approximated by CDS; on the other hand, the advective 

terms were approximated by CDS with deferred correction. The Dirichlet boundary 

conditions were applied by the use of ghost cells. Such technique, beyond its easy application 

and the fact of respecting the conservation principia to all domain (Maliska, 2004), favors the 

implementation of restriction and prolongation procedures of the Multigrid Method. For both 

models, it was used uniform square grids with yx NNN   nodes, generating a grid with nodal 

spacing  11  xx Nh  and  11  yy Nh , where Nx and Ny are the quantity of nodes of the 

fine grid in x- and y- coordinate directions, respectively. In current work, uniform grids are 

used, i.e., yx NN   and hhh yx  . 

Gauss-Seidel Red-Black (GS-RB) (Wynn, 1965) was used as smoother, what benefits the 

parallel computation but also presents good results for serial programming (Zhang, 1996). 

The convergence criterion used to interrupt the iteration steps is the l2-norm of residual by the 

l2-norm of residual at initial guess, given by: 
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where Rit is the residual of current iteration and R0 is the residual at initial guess. Null vector 

was used as initial guess for all variables of interest and the number of nodes for the coarsest 

grid was equal to 3 in each direction; for all simulations, the Multigrid Method was applied 

from the finest grid to the coarsest possible one. For both problems, the number of inner 

iterations was 321  vv , where 1v  and 2v  are, respectively, the number of pre- and post-

smoothing iterations. For the Burgers’ equations, the Full Multigrid (FMG) was used; such 

method is based on the idea that a good initial guess can considerably reduce the processing 

time, since the solution of a problem with good initial guess requires few iterations in the fine 

grids. In such way, in FMG, to obtain a good initial guess the solution is interpolated from the 

coarse grid to the finer one. Because of this, errors are efficiently smoothed, which guarantees 

an optimum convergence rate. According to Trottenberg et al. (2001) such properties make 

the FMG the most efficient version of Multigrid and Zhang (1996) and Thekale et al. (2010) 

consider the FMG the preferred method to accelerate the Multigrid. 

4  NUMERICAL RESULTS 

For the Poisson-type equation, nine cases, resulting from the combination of values 

related to the sizing of finest grid  40974097,10251025,129129  NNN  and the 

stopping criterion  15106 10,10,10  , were studied. Extrapolations were inserted in two 

different phases, in order to evaluate their performance: in the end of iterative process and 

during the iterative process. 

4.1 Use of extrapolations in the end of the Multigrid 

For this methodology, each case was solved in three distinct ways: 

(a) using only the Multigrid Method, until the achievement of the stopping criterion (MG); 

(b) using the Multigrid Method with an additional V-cycle, in relation to the number of 

iteration steps necessary to achieve the stopping criterion (MG + 1 ITE); 

(c) using the Multigrid Method until the achievement of the stopping criterion, associated to 

the extrapolation of the last numerical results (MG + Extrapolator). 

The analyzed parameters in the current work were: the processing time or CPU time 

(tCPU), in seconds [s]; the highest value of memory usage (M), in Megabytes [MB]; the norm 

of residual by the norm at initial guess  
2

R ; empirical average convergence factor  )(ˆ kq  

(Tannehill, 1997); infinity norm of iteration error  
nE ; and Euclidian-norm of iteration 

error  
2nE . Iteration error is evaluated by the difference between the numerical solution at 

n-iteration and the solution obtained when the iterative procedure is done until the 

achievement of the round-off error. Table 1 present numerical results for 10251025N  and 

tolerance of 10-15. Other numerical results are omitted since they presented analogous 

behavior. 
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Table 1. Results for studied parameters. Extrapolations in the end of the Multigrid. 

Methodology tCPU [s] M [MB] 
2

R  
)(kq  

)(ˆ kq   
nE  

2nE  

MG 21.871 119.640 6.272x10-16 4.238x10-2 4.149x10-2 3.672x10-17 1.816x10-17 

MG + 1 ITE 23.775 119.636 2.663x10-17 4.246x10-2 4.157x10-2 1.553x10-18 7.749x10-19 

MG + Aitken 119.076 218.468 3.145x10-14 5.014x10+1 7.495x10-2 4.118x10-18 7.301x10-20 

MG + Empirical 119.076 218.468 3.145x10-14 5.014x10+1 7.495x10-2 4.118x10-18 7.301x10-20 

MG + Mitin 119.029 251.360 8.701x10-14 1.387x10+2 8.158x10-2 9.630x10-18 3.349x10-19 

MG + Scalar Epsilon 29.874 251.556 3.044x10-11 4.854x10+4 1.329x10-1 5.152x10-15 7.111x10-18 

MG + Scalar Rho 29.921 251.564 4.511x10-12 7.193x10+3 1.133x10-1 2.066x10-14 1.000x10-14 

MG + Topological Epsilon 121.525 399.444 1.648x10-19 2.628x10-4 2.721x10-2 1.213x10-21 5.165x10-22 

MG + Topological Rho 31.169 399.656 3.498x10-13 5.577x10+2 9.161x10-2 2.066x10-14 9.998x10-15 

MG + Repeated Aitken 

Extrapolation 
29.952 251.576 4.716x10-12 7.519x10+3 1.137x10-1 7.045x10-16 1.856x10-18 

MG + Repeated Mitin 

Extrapolation 
30.405 317.368 4.702x10-10 7.497x10+5 1.669x10-1 6.402x10-14 1.098x10-16 

 

For this case the use of the Topological Epsilon Extrapolator was the methodology with 

the best results for the residual norm, the convergence factors and the iteration error norms. 

So it can be concluded that the Topological Epsilon was the most efficient for most 

parameters. Otherwise, related to the CPU time and memory requirements, the values 

observed for the Topological Epsilon Extrapolator were higher, compared to all other 

extrapolation schemes. The storage of numerical solutions and the extra numerical 

computations for the extrapolations increase both the memory and the CPU time 

requirements, when compared to the single use of a Multigrid cycle. The results for all other 

cases presented analogous behavior. 

4.2 Use of extrapolations during the Multigrid cycles 

In this approach, the Topological Epsilon Extrapolator was employed during the 

Multigrid cycles, i.e., for each group of five iterations, numerical solutions were combined 

with the extrapolator to generate a new solution vector. Such vector serves as an initial 

estimate for the next Multigrid cycle. Completing a new group of five iterations, a new 

extrapolation is done and so on, until the achievement of a determined stopping criterion. This 

study was also made for the Burgers’ equations. 

Table 2 presents results for N = 4097x4097 with tolerance of 10-15 for the Poisson-type 

equation and results for N = 1025x1025 with tolerance of 10-12 for Burgers’ equations for u 

and v (velocity components). Results concerned to other cases are omitted since they present 

similar behavior. In cited table, only Multigrid (MG) and Topological Epsilon Extrapolator 

during the Multigrid (MG + Topological Epsilon) are compared. 
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Table 2. Results for studied parameters. Extrapolations during the Multigrid cycles. 

Poisson-type Equation 

Methodology tCPU [s] M [MB] 
2

R  
)(ˆ kq  

nE  
2nE  

Pure MG 

Pure MG 

351.579 1.844 6.270x10-16 4.148x10-2 3.673x10-17 1.818x10-17 
 

MG +  

Topological 

Epsilon 
364.699 3.946 2.320x10-16 1.831x10-2 1.912x10-18 8.251x10-19 

 

Burgers’ Equations 

Methodology 
tCPU 

[s] 

M 

[MB] 

u v 

2
R  

)(ˆ kq  
nE  

2nE  
2

R  
)(ˆ kq  

nE  
2nE  

Pure MG 3.25 290.1 1.38x10-13 2.68x10-3 3.39x10-12 6.69x10-13 2.24x10-10 1.17x10-3 1.54x10-12 6.32x10-13 

MG + 

Topological 
Epsilon 

3.349 596.1 5.94x10-14 6.24x10-3 2.94x10-13 1.33x10-13 7.20x10-11 2.04x10-2 9.65x10-14 1.27x10-14 

 

Taking into account this case, it can be noticed a slight increase of CPU time when 

results are compared to pure Multigrid (i.e., Multigrid without the use of any extrapolation 

method) for both Poisson-type and Burgers’ equations problems. For the non-dimensional 

norm of residual, the use of the extrapolator showed to be more efficient than the pure 

Multigrid for both problems; the same behavior is observed to the average convergence rate. 

When the iteration error is analyzed, its magnitude is reduced of about 95% for the Poisson-

like equation and 98% for Burgers’ equations. 

Figure 2 presents the behavior of l2-norm of residual (in logarithmic scale) as function of 

the number of iterations for the Poisson-type equation.  

According to Fig. 2, until the 5th iteration, the residual reduces similarly for both 

methodologies. However, since in the 6th iteration occurs the first extrapolation, the norm of 

residual for the methodology of Multigrid with extrapolations presents a smaller magnitude 

than the use of the pure Multigrid (about 200 times smaller). It motivates the achievement of 

the stopping criterion in the 9th iteration for the MG + Topological Epsilon while for the pure 

Multigrid 11 iterations are needed. The results for all other cases presented analogous 

behavior. 

In order to achieve more accurate results of CPU time, additional tests were made with N 

varying from 3333  to 81938193  and tolerance of 10-20 for the Poisson-type equation and 

with N varying from 55  to 10251025  and tolerance of 10-12 for Burgers’ equations. In 

such tests, it was realized that the use of extrapolations is more advantageous for higher 

values of N, since it reduces the CPU time compared to the pure Multigrid. Such affirmation 

is based on the evaluation of the speed-up of the pure Multigrid in relation to the MG + 

Topological Epsilon. The speed-up ( pS ) is defined as the ratio of CPU time of two algorithms 

(Galante, 2006): 
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Figure 2. Behavior of ||R||2 as function of the number of iterations for N = 4097x4097 

 

 
 
 Balgorithm

Aalgorithm

CPU

CPU
p

t

t
S  , (25) 

 

Table 3 presents the speed-up of pure Multigrid (algorithm A) in relation to MG + 

Topological Epsilon (algorithm B) for a tolerance of 10-20  to the Poisson-type equation and a 

tolerance of 10-12 to the Burgers’ equations. 

Table 3. Speed-up of the pure Multigrid in relation to the MG + Topological Epsilon; ε = 10–20 for the 

Poisson-type Equation and ε = 10–12 for the Burgers’ equations. 

N  PoissonS p  )(BurgersS p  

5x5 - 1.000 

9x9 - 1.000 

17x17 - 0.500 

33x33 0.966 0.500 

65x65 0.929 0.714 

129x129 0.908 0.769 

257x257 0.930 0.900 

513x513 0.938 0.958 

1025x1025 1.013 0.970 

2049x2049 1.011 - 

4097x4097 1.011 - 

8193x8193 1.011 - 

Based on Tab. 4, it is observed that for 10251025N , or larger, the values of speed-up 

are higher than the unity, indicating that MG + Topological Epsilon is faster than the pure 

Multigrid. Besides, a curve fitting by total least squares was made: 
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   p

CPU NcNt  , (26) 

 

where p describes the complexity of the algorithm, c is a coefficient dependent on both the 

chosen method and the solver and N is the number of unknowns of the system. Results for 

both the Poisson and Burgers’ equations are presented in Tab. 4. 

 

Table 4. Values of p and c of Eq. (26), for both algorithms of studied methodologies. 

Metodology 
Poisson Burgers 

c p c p 

Pure MG 0.0755 1.03258 1.3547x10-6 1.05962  

MG + Topological Epsilon 0.0850 1.02957 3.599x10-6 0.99137  

 

According to Tab. 5, both methodologies, pure Multigrid and MG + Topological Epsilon, 

are nearly equivalent. The advantage of the latter methodology is the fact that it accelerates 

the Multigrid method with the increase of the number of unknowns of the problem. 

From Fig. 3, the RAM memory requirement increases with the use of extrapolators; the 

relative increment, however, presents an asymptotic behavior, which indicates that such 

methodology can be applied to problems with refined grids. 

 

Figure 3. Relative increment of RAM memory requirement as function of the number of unknowns of the 

problems. 
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5  CONCLUSION 

Based on the results presented in this work: 

1) The use of extrapolators in the end of the Multigrid, for the Poisson-type equation, 

increases the CPU time in relation to an additional Multigrid cycle. 

2) The RAM memory requirement is higher when an extrapolator is employed; however, the 

increasing is asymptotic with the growth of problem size. 

3) The use of the Topological Epsilon Extrapolator, both in the end of and during the 

Multigrid cycles, was the methodology which reduced more considerably the non-

dimensional residual norm, the convergence factors and the magnitude of iteration error for 

the Poisson-type equation. 

4) The use of the Topological Epsilon Extrapolator during the Multigrid cycles reduced 

considerably the non-dimensional residual norm, the convergence factors and the magnitude 

of iteration error for the Burgers’ equations. 

5) The CPU time for extrapolations during the Multigrid cycles is nearly equal to the obtained 

for the pure Multigrid; otherwise, the methodology of using an extrapolator is slightly faster 

for more refined grids (when the number of unknowns increases). 
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