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Abstract. Among the problems of Computational Fluid Dynamics (CFD), the one that deserves
attention is finding satisfactory solutions for the Navier-Stokes equations, which in this work
they represent a case of two-dimensional laminar flow of a time-dependent incompressible fluid.
Given the difficulty to obtain the analytical solutions, to use iterative computational methods is
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a feasible option. In this work it was decided to solve them iteratively through the projection
method. Nevertheless, the approximations obtained during the iterations can converge very
slowly, thus consuming an undesired computational time. Therefore, it becomes useful to use the
multigrid method to solve these systems of equations originated from the discretized problem,
which is a powerful convergence accelerator and has low computational cost. Further gain can
be achieved by applying solution extrapolation techniques, which can be used after the multigrid
cycles or adapted to intercalate these cycles. This work will first analyze the application of
extrapolators in the post-multigrid case. The extrapolator that obtained the best performance
was used in the second stage of this work, which consists in applying it between the cycles of
the multigrid method. In the end, concluding which extrapolator is most effective when used
associated with multigrid method.

Keywords: Multigrid Method, Extrapolation Methods, Navier-Stokes, Convergence Accelera-
tion, Computational Fluid Dynamics (CFD)
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1 INTRODUCTION

The engineering problems requires even faster and most efficient solving methods. One of
the challenging areas is Computational Fluid Dynamics, due to the nature of the problems. As
an example, there are the Navier-Stokes equations, whose analytical solutions are known for a
few cases, due to the fact that they are nonlinear partial differential equations (PDEs), an area
where mathematics is not sufficiently developed (Fortuna, 2000).

To solve numerically the problem, the finite volume method (FVM) will be used, which
partitions a two-dimensional domain {(x, y) ∈ R2 : 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly} in struc-
tured meshes with N = NxNy, in wich Nx and Ny are the number of volumes in coordinated
directions x and y, and L represents the length of the domain. These volumes can be ordered
lexicographically. Thus, for example, a mesh with Nx = Ny = 6 is according to Fig. 1.

Figure 1: Lexicographical ordering

A feature of the discretization of PDEs through the finite volume method is that a linear
systems of the type

Au = f (1)

is obtained, in wich A is the coefficient matrix, f is a vector of independent terms and u, an
unknown vector. The Eq. (1) can be solved by direct methods such as Gauss elimination, or
iterative, such as Jacobi’s method or Gauss-Seidel method. It is worth mentioning that this last
class has a lower computational cost than the direct methods for large-sized systems (Burden
and Faires, 2008).
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There is also an improved way to solve the Eq. (1), using the multigrid method. This
method uses a set of meshes in wich the iterations are performed on different layers from the
higher level of refinement (which is the original discretization of the problem) to less refined
levels, through operators who perform transfer of information between them (Briggs et al.,
2000).

An example of the use of these meshes can be seen in the Fig 2.

Figure 2: Meshes generation process (adapted from http://www.mgnet.org/mgnet/tutorials/xwb/mg.html)

In order to improve the convergence of the multigrid method, we can also use extrapolation
techniques or convergence acceleration associated with iterative methods (Brezinski, 1974),
thus obtaining numerical solutions with less computational effort. For exemple, in Anunciação
et al. (2016), it is shown that an extrapolation iteration is more efficient than a multigrid cycle
and it reduces the operations number when applied to the Burgers equations, thus justifying its
use.

2 MATHEMATICAL MODEL
The Navier-Stokes equations can be written in many ways depending on the properties of

the fluid and the flow (Fortuna, 2000). It was chosen to represent it in a similar way from
Kim and Moin (1985), in order to facilitate the adaptation and understanding of the algorithms
used. Therefore, it will handled with two-dimensional laminar flow of an incompressible fluid
dictated by

∇ · u = 0, (2)

∂u

∂t
+ u · ∇u = −∂p

∂x
+

1

Re
∇2u, (3)

∂v

∂t
+ u · ∇v = −∂p

∂y
+

1

Re
∇2v, (4)
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being x and y the spatial coordinates; t the temporal coordinate; u and v the coordinates of the
velocity vector in the directions x and y; p, the fluid pressure; Re, the Reynolds number; ∇u,
the gradient of u;∇ · u, the divergence of u and ∇2, the laplacian operator. To complete,

Re =
ρ vmD

µ
, (5)

with ρ being the fluid specific mass; µ, its dynamic viscosity; vm, its average speed and D, the
tube diameter.

This work solves the Taylor-Green vortex problem (Green and Taylor, 1937), whose do-
main is given by

{(x, y) ∈ R2 : −π ≤ x ≤ π and − π ≤ y ≤ π}. (6)

The analytical solutions are:

u = −(cosx · sin y)e−2(t+T i), (7)
v = (sin x · cos y)e−2(t+T i),

p = −1

4
(cos 2x+ sin 2y)e−4(t+T i),

where Ti is the initial time and t = k∆t, where k it’s the time step. In this work, Ti = 0. The
analytical solutions generate the initial and boundary conditions of the problem. The reason
for knowing an analytical solution in this work is to compare it with the obtained numerical
solution and then validate the method used.

3 NUMERICAL MODEL

3.1 Projection Methods

The projection method used in this work was described in Timmermans et al. (1996), and
it is showed below:

First step:

(3ut − 4un + un−1)

2ht
= β1g1(un) + β0g0(un−1) + ν∇2ut +∇P n, (8)

ut|∂Ω = bn, (9)

where ut is the auxiliary speed field, un the velocity field in the time step n, ht is the temporal
refinement, P n is the pressure in the time step n, bn the boundary conditions in the time step
n, β is constant and βg represents the convective terms u · ∇u. The choices of β1 and β0 imply
whether the convective terms will be treated explicitly or implicitly. In this work, β1 = −3/2
and β0 = 1/2 (Bell et al., 1989).

Second step:

∇2φn+1 =
3

2ht
∇ · ut (10)

un+1 = ut − 2ht
3
∇φn+1 (11)

P n+1 = P n + φn+1 − ν∇ · ut (12)
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where φ is the pressure correction term and ν = 1/Re. This version of the projection
method has boundary conditions in the pressure given by

∂nP
n+1|∂Ω = −ν(∇×∇× un+1) · n|∂Ω, (13)

which are consistent boundary conditions for it. The algorithm given by steps one and two is
known (Guermond and Shen, 2001, 2004) as incremental correction in pressure in rotational
form. Guermond and Shen (2004) show that the incremental version in rotational form is of
second order for velocities in the L2, L1 and L∞ norms. For the pressure, the scheme is of
second order in the L2 and L1 norms, and of order 3/2 in the L∞ norm.

The use of the projection method has advantages when compared to other methods, such
as the SIMPLE method. The resulting equations avoid coupling in the speed variables and
they are treated separately, reducing the complexity of the algorithm (Griffith, 2009). For a
generalization of projection methods see Guermond et al. (2006).

3.2 Discretization

This work presents staggered grid, of the type Harlow and Welch (1965), also found in
Maliska (1995). The velocities are found on the faces and the pressure in the centers of the
volumes, thus avoiding pressure instabilities (Shih et al., 1989).

Again in Fig. 1, the volumes with dashed lines represent the dummy volumes and do not
belong to the physical domain of the problem. The boundary conditions for the variable u
are prescribed in the west and east contours, using linear extrapolation in the north and south
contours. In an analogous way, the variable v in the north and south contours, with linear
extrapolation in the other two directions.

The mass conservation equation, Eq. (2), can be rewritten as:∮
S

u · ndS = 0, (14)

where n represents the time step.

The equation of linear momentum conservation in the direction x (QML-x), Eq. (3), is:

∂

∂t

∫
V

udV = −
∮
S

uu · ndS −
∮
S

pnxdS +
1

Re

∮
S

∇u · ndS, (15)

and the equation of linear momentum conservation in the direction y (QML-y), Eq. 4:

∂

∂t

∫
V

vdV = −
∮
S

vu · ndS −
∮
S

pnydS +
1

Re

∮
S

∇v · ndS. (16)

where nx and ny are normal vectors in x and y directions, respectively.

The Equations (14) to (16) can be discretized using staggered grid by calculating the inte-
grals on the control volumes shown in Fig. 3. For simplicity, it is assumed that hx = hy = h
(square mesh). The temporal discretization depends on the projection method used and can be
seen in detail in Guermond et al. (2006).
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(a) Volume centered on v (b) Volume centered on P (c) Volume centered on u

Figure 3: Control Volumes

The Equation (14) is discretized using a volume centered in P, according to Fig. 3(b):∮
S

u · ndS ≈ un+1
i+1/2,j − u

n+1
i−1/2,j + vn+1

i,j+1/2 − v
n+1
i,j−1/2 = 0. (17)

The terms of the pressures are discretized using the volumes shown in Figs. 3(a) and 3(c)
in the following way:∮

S

pnxdS ≈ (pi+1,j − pi,j)h, (18)∮
S

pnydS ≈ (pi,j+1 − pi,j)h.

With the control volumes shown in Figs. 3(a) and 3(c) the diffusive terms can be discretized
by ∮

S

∇u · ndS ≈ uni+3/2,j + uni−1/2,j + uni+1/2,j+1 + uni+1/2,j−1 − 4uni+1/2,j, (19)∮
S

∇v · ndS ≈ vni,j+3/2 + vni,j−1/2 + vni+1,j+1/2 + vni−1,j+1/2 − 4vni,j+1/2. (20)

The advective terms are discretized with the volumes centered on the components of the
speeds according to the Figs. 3(a) and 3(c):∮

S

uu · ndS ≈
(
(u2)ni+1,j − (u2)ni,j + (uv)ni+1/2,j+1/2 − (uv)ni+1/2,j−1/2

)
h, (21)∮

S

vu · ndS ≈
(
(v2)ni,j+1 − (v2)ni,j + (uv)ni+1/2,j+1/2 − (uv)ni−1/2,j+1/2

)
h, (22)

With Eqs. (21) and (22), examples of approximations for velocity components can be
written as

(u2)ni,j =

(
1

2
(uni+1/2,j + uni−1/2,j)

)2

, (23)

(v2)ni,j =

(
1

2
(vni,j+1/2 + vni,j−1/2)

)2

, (24)
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(uv)ni+1/2,j+1/2 =

(
1

2
(uni+1/2,j + uni+1/2,j+1)

)(
1

2
(vni,j+1/2 + vni+1,j+1/2)

)
. (25)

To guarantee the stability of the solutions, the time step ht must respect the criterion
(Maliska, 1995):

ht <
1

2Re

h2
xh

2
y

h2
x + h2

y

. (26)

In general, projection methods cause the boundary conditions on the pressure to be of the
Neumann type. In order to guarantee the existence and uniqueness of the solution, should have
(Briggs et al., 2000):∫

Ω

∇2φn+1 =

∫
Ω

3

2ht
∇ · ut = 0. (27)

More details on projection methods can be found at Neundorf et al. (2016) and Guermond
et al. (2006).

3.3 Multigrid Method

The basic solvers, such as the Jacobi method or the Gauss-Seidel method, have the property
of rapidly reducing the high frequency modes of error, leaving only the soft modes. In addition,
soft modes become more oscillating in coarsener meshes. Thus, it is possible to use a strategy
that takes advantage of these two behaviors, which in this work is done with the multigrid
method (Briggs et al., 2000).

The multigrid method is applied to systems of equations of type Eq. (1), with a discretized
domain Ωh. To start it, simply apply an iterative solver, also called smoother, such as Jacobi-
weighted or Gauss-Seidel, but only a reduced number of iterations. After this, the residue can
be calculated , given by:

rh = fh − Ahvh (28)

in wich vh is the approximation of u obtained in the mesh Ωh and h is the distance between two
subsequent points of the domain (Briggs et al., 2000).

After carrying out the above procedure, the residue is transferred to the subsequently
coarsener mesh using a restriction operator. The coarsening ratio of the mesh will be equal
to 2. Thus, obtaining the system:

A2he2h = r2h , in Ω2h, (29)

being e the error to be estimated.

After obtaining an approximation of the error in the mesh Ω2h, it begins the process of
correction of the approximation v. First we use an operator that transfers the error to the a more
refined mesh (prolongation operator), then we perform the following operation:

vh ← vh + e2h. (30)
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Finally, we apply again the chosen solver in the approximation vh obtained. More details
about restriction and prolongation operators are found in Wesseling (1995), Villar (2007) and
Trottenberg et al. (2000).

This procedure can be performed using other coarser meshes. Each time we return to the
refined mesh with the correction, we have what we call a V-cycle, as shown in Fig. 4.

Figure 4: One cycle V Diagram applied in 5 meshes. S = smoothing, R = restriction, P = prolongation
(Neundorf, 2016).

The number of times to perform V-cycles must be set by a user fixed quantity or by param-
eters that involve the convergence of the solution that involve the convergence of the solution.

3.4 Extrapolation Methods

In order to accelerate the convergence of iterative methods, extrapolation techniques can
be used, which are based on transformations of sequences. That is, if one sequence converges
slowly, it is possible to transform it into another, as long as the original limit is maintained, and
this new sequence may converge faster than the first.

An example of a sequence transformation (Tn) of real or complex numbers converging to
s, according to Brezinski and Zaglia (2013), is:

Tn =
Sn + Sn+1

2
, n = 0, 1, 2, ..., (31)

or

Tn =
SnSn+2 + S2

n+1

Sn+2 − 2Sn+1 + Sn

, n = 0, 1, 2, ..., (32)

where Tn is the new generated sequence, also called extrapolator.

This paper presents seven extrapolators, being five of the scalar type and two of the vector
type. Whereas C1, C2, ..., Ck, ..., C∞ are obtained through an iterative process and φ1 = C1(k),
φ2 = C2(k), φi = Ci(k) are the scalars for all k-th components of the vectors Ci, then the
following extrapolators are defined:

φAitken
∞ =

φ1φ3 − φ2
2

φ3 − 2φ2 + φ1

, (33)
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Aitken extrapolator (Burden and Faires, 2008).

Based on the Empirical Estimator proposed in Martins and Marchi (2008),

φEmpirical
∞ = φ3 +

(φ3 − φ2)2

2φ2 − φ3 − φ1

, (34)

and

φMitin
∞ =

φ1φ5 − φ2
3

φ5 − 2φ3 + φ1

, (35)

which is the formula used in Mitin extrapolation (Mitin, 1985).

The other two extrapolators used in this work, Epsilon and Rho, have a formal similarity
between them, but they differ on convergence capabilities. The Epsilon algorithm is a powerful
accelerator of iterative methods that solve discrete differential equations but for sequences that
converge logically, it fails (Delahaye and Germain-Bonne, 1982; Delahaye, 2012). Conversely,
Rho algorithm does not accelerate sequences with linear convergence, but is very efficient for
logarithmically convergent sequences (Gao et al., 2010; Graves-Morris et al., 2000).

For a sequence (Sn), the Epsilon Scalar algorithm is given by (Brezinski, 1974):

ε
(n)
−1 = 0, ε

(n)
0 = Sn, n = 0, 1, ..., (36)

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε(n)

k

, n, k = 0, 1, ..., (37)

for denominators other than zero. The superscript of ε̃ represents the element and, the subscript,
the iteration. Very simillar, the Rho Scalar algorithm is given by (Wynn, 1956):

ρ
(n)
−1 = 0, ρ

(n)
0 = Sn, n = 0, 1, ..., (38)

ρ
(n)
k+1 = ρ

(n+1)
k−1 +

k + 1

ρ
(n+1)
k − ρ(n)

k

, n, k = 0, 1, .... (39)

Both algorithms, Epsilon and Rho, have scalar and topological orientations. While the first
preserves characteristics of each component of the vector individually, a second one treats to
take into account the properties of the vector as a whole, and those two variations are analyzed
in this work. Epsilon Topological algorithm (Tan, 1987) can be seen below:

ε̃
(n)
−1 = 0, n = 0, 1, ..., (40)

ε̃
(n)
0 = Sn, n = 0, 1, ..., (41)

ε̃
(n)
2k+1 = ε̃

(n+1)
2k−1 +

y

< y, ε̃
(n+1)
2k − ε̃(n)

2k >
, k, n = 0, 1, ..., (42)

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε̃
(n+1)
2k − ε̃(n)

2k

< ε̃
(n+1)
2k+1 − ε̃

(n)
2k+1, ε̃

(n+1)
2k − ε̃(n)

2k >
, k, n = 0, 1, ..., (43)
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where, as Sn are elements of E, so y is an arbitrary vector such that y ∈ E∗ (the algebric dual
space of E) (Brezinski and Redivo-Zaglia, 2014) and the operator < ., . > represents an inner
product. Also the Topological Rho algorithm can be given by (Osada, 1991):

ρ̃
(n)
−1 = 0, n = 0, 1, ..., (44)

ρ̃
(n)
0 = Sn, n = 0, 1, ..., (45)

ρ̃
(n)
2k+1 = ρ̃

(n+1)
2k−1 +

(2k + 1)y

< y, ρ̃
(n+1)
2k − ρ̃(n)

2k >
, k, n = 0, 1, ..., (46)

ρ̃
(n)
2k+2 = ρ̃

(n+1)
2k +

(2k + 2)ρ̃
(n+2)
2k − ρ̃(n+1)

2k

< ρ̃
(n+2)
2k − ρ̃(n+1)

2k , ρ̃
(n+1)
2k+1 − ρ̃

(n)
2k+1 >

, k, n = 0, 1, .... (47)

Details of the Epsilon extrapolator are found in Wynn (1956) and Brezinski (1974), and of
the Rho extrapolator in Brezinski and Zaglia (2013). Applications of extrapolators are seen in
Anunciação (2013).

4 RESULTS

The extrapolation methods of this work were applied to the speed variables u and v for
each time step t. It is possible to divide the experiment into two stages. In the first one, the
extrapolator was executed after the cycles of the multigrid method and, in the second one,
between their cycles. Meshes were used with N = 128 × 128, N = 512 × 512 and N =
1024 × 1024, and stop criteria ε equals to 10−6, 10−8 and 10−10. It is expected that the use of
extrapolators applied in the Navier-Stokes equations will be as advantageous as applied in the
Burgers equations, as shown in Anunciação et al. (2016).

4.1 Implementation Data

The multigrid method of this work performs V-cycles, with mesh coarsening ratio equal to
2 (standard coarsening), until it reaches the coarsest mesh (Briggs et al., 2000). The associated
solver is the Gauss-Seidel red-black, with pre and post-smoothing numbers equal to 3 (Oliveira,
2010).

At each step of time velocities and pressure are solved numerically. The stop criterion used
in the iterative method is the dimensionless Euclidean-norm of the residue by Euclidean-norm
of the residue in the initial guess (Briggs et al., 2000; Trottenberg et al., 2000):

‖R‖2 =
‖Rit‖2

‖R0‖2

, (48)

where Rit represents the residue of the current iteration. When the Eq. (48) reaches values less
than a ε tolerance, the process is terminated.

The algorithms were implemented in the Fortran 2003 language with double precision. The
tests were performed in a computer with Intel processor of 2.50 GHz x 4, 4GB of RAM and
64-bit Windows operating system.
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4.2 Use of post multigrid extrapolators
At this stage, the multigrid method was executed until it reached an established tolerance

ε. Then, one of these two paths were taken:

• was performed a new cycle of multigrid, called "MG + 1 ITE";

• it was applied an extrapolation method, called "MG + Extrapolator".

Table 1 shows how many approximations are used for each extrapolator.

Table 1: Number of solutions used for extrapolations

Extrapolator Number of solutions

MG + Aitken 3

MG + Empirical 3

MG + Mitin 5

MG + Scalar Epsilon 5

MG + Scalar Rho 5

MG + Topological Epsilon 5

MG + Topological Rho 5

The results were measured with the following parameters: processing time or CPU time
(tcpu), in seconds [s]; the memory peak (M ) reached during the execution of the algorithm, in
Megabytes [MB]; the dimensionless residual based on the initial guess (‖R‖2), given by Eq.
(48); the mean empirical convergence factor (q̂(k)), defined by (Trottenberg et al., 2000):

q̂(k) = k

√
‖Rit‖2

‖R0‖2

, (49)

where k represents the k-th iteration. Values of q̂(k) considered good are close to zero (Briggs
et al., 2000; Burden and Faires, 2008). Finally, infinite-norms are also measured (‖En‖∞) and
Euclidian-norms (‖En‖2) of variables u, v and p, with En (also called iteration errors) being
the difference obtained between the approximation in the n-th step of time and the analytical
solution.

Table 2 contains the results obtained in a mesh with N = 512 × 512, tolerance ε = 10−8

and steps of time t = 10.

Measurements q̂(k) e ‖R‖2 for the variable v were made at each instant of time, and can be
seen in Figs. 5 and 6.

It is worth emphasizing that the parameters q̂(k) and ‖R‖2, when measured to u, presented
results practically equals as in Figs. 5 and 6.

With the tests carried out, it is noted that the Epsilon Topological extrapolator is better than
the others in infinite norm parameters and Euclidean-norm of the iteration error of the variables
u and v, empirical mean convergence factor and norm of the residue. The memory used is
higher than the other methods, and this is justified by the number of auxiliary vectors used in
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Table 2: Extrapolations in the end of Multigrid

Methodology tcpu [s] M [MB] ‖En‖∞ (u) ‖En‖2 (u) ‖En‖∞ (v) ‖En‖2 (v) ‖En‖∞ (p) ‖En‖2 (p)

MG + 1 ITE 60.2 101.464 5,982E-10 8,229E-08 5,967E-10 8,228E-08 4,493E-07 1,054E-04

MG + Aitken 52.5 116.204 7,225E-06 1,626E-05 7,434E-06 1,506E-05 8,552E-03 1,106E-02

MG + Empirical 55.8 116.200 9,733E-09 2,083E-06 9,732E-09 2,083E-06 6,924E-07 1,122E-04

MG + Mitin 51.1 116.232 2,592E-07 1,363E-06 2,642E-07 1,354E-06 5,617E-04 9,646E-04

MG + Scalar Epsilon 60.2 116.240 1,529E-09 7,492E-08 1,369E-09 7,490E-08 4,459E-07 1,055E-04

MG + Scalar Rho 58.3 116.220 1,746E-06 3,747E-04 1,746E-06 3,747E-04 4,086E-05 5,086E-03

MG + Topological Epsilon 59.5 134.684 5,961E-10 7,465E-08 5,961E-10 7,465E-08 4,460E-07 1,055E-04

MG + Topological Rho 58.6 134.676 1,746E-06 3,748E-04 1,746E-06 3,748E-04 4,069E-05 5,066E-03

Figure 5: The mean empirical convergence factor for each step of time

Figure 6: ‖R‖2 for each step of time
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the extrapolation. The norms of the variable p reach values close to the best results of these
columns. All this leads to conclude that the Topological Epsilon has the potential to accelerate
the convergence of the presented problem in a significant way.

4.3 Extrapolators use between cycles

In this section the Topological Epsilon extrapolator was applied between the multigrid cy-
cles. This occurs as follows: given the initial guess for the problem, five cycles of the multigrid
are performed, enough for extrapolation, which is then fulfilled. Subsequently, five multigrid
cycles and a new extrapolation are performed, and further, until the stopping criterion is reached.

Table 3 shows the comparison between the pure multigrid method (multigrid without the
use of the extrapolator, MG) and the multigrid using Topological Epsilon extrapolator (MG +
Topological Epsilon). The mesh used has N = 1024× 1024, stopping criterion ε = 10−10 and
time steps t = 10.

Table 3: Extrapolation between the multigrid cycles

Methodology tcpu [s] M [MB] ‖En‖∞ (u) ‖En‖2 (u) ‖En‖∞ (v) ‖En‖2 (v) ‖En‖∞ (p) ‖En‖2 (p)

MG 273.2 378.816 7,444E-11 7,443E-11 1,193E-07 3,171E-08 3,171E-08 5,376E-05

MG + Topological Epsilon 271.1 504.124 3,922E-11 3,916E-11 1,178E-07 9,674E-09 9,675E-09 5,370E-05

Figure 7 shows the measurements q̂(k) e ‖R‖2 for the variable v at each instant of time. The
variable u has similar results to the Fig. 7.

Figure 7: q̂(k) and ‖R‖2 at each instant of time

It is possible to note that the Topological Epsilon extrapolator has great advantages over
the pure multigrid method, overcoming in almost all the questions and losing only for the mem-
ory. It is also necessary to add the information that pure multigrid, all iterative calls reached
convergence after nine cycles. However, with the extrapolator, considering the extrapolation as
being also a cycle, the convergence was reached with only eight. All this allows us to conclude
that the applied topological Epsilon extrapolation between cycles is very advantageous and can
overcome the use of pure multigrid method.
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5 CONCLUSION

With the results obtained in this work, it is observed that between seven methods of extrap-
olation analyzed, the Topological Epsilon is what stands out to solve the problem involving the
proposed two-dimensional laminar flow of a time-dependent incompressible fluid, modeled by
Navier-Stokes equations. It is also noted that it is the only one to have great advantages over the
use of pure multigrid, even surpassing it in different applications, especially in the application
between cycles.

In order to deal with the high memory usage of the Topological Epsilon, it is worth men-
tioning that an optimization in the algorithm can contribute to improve the performance, since
the effort during the implementation of the extrapolator was given with another bias.

The next work should be in the sense of exploring variants of the Topological Epsilon
application, optimizing memory usage and cover new applications for this extrapolator.
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