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Abstract. This work aims to obtain the numerical solution for one-dimensional two-phase flow in rigid porous
media. The mathematical model for the problem consists of a system of partial differential equations with a set
of algebraic relations using the pressure-pressure formulation based on L-scheme linearization. The finite volume
method (FVM) is used to discretize the system of partial differential equations in a uniform grid. The spatial
approximation is obtained by the second-order scheme (CDS) and the temporal approximation by the implicit
Euler method. Dirichlet boundary conditions are applied. Iterative methods are used to solve the resulting system
of algebraic equations. A study on L-scheme was carried out to establish a rule and value of L that guarantees the
convergence of this linearization method. The results obtained for the numerical problem are compared with those
of a problem with the same characteristics in the literature that uses the pressure-saturation formulation.
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1 Introduction

Numerical simulations of flows in porous media are famous Engineering problems. Many have been investi-
gated, for instance, in the extraction of oil and natural gas, Hydrology, soil and rock mechanics. In this sense, it is
important to understand the flow of fluids in porous media by means of a mathematical model. There are several
numerical formulations in the literature to obtain the solution of two-phase flow in rigid porous media based on the
pressure-saturation formulation, Bastian [1], Illiano [2], Celia and Binning [3]. However, in this work we use the
pressure-pressure formulation, Ataie-Ashtiani and Raeesi-Ardekani [4], Celia and Binning [3], thus the variables
of interest are the pressures in each of the two phases. Since the system is non-linear, we used the L-scheme
linearization method, and posteriorly, we use the coupled Gauss-Seidel method, Gaspar et al. [5], to solve each
system that resulted from the linearization. The goals of this work is to study the pressure-pressure formulation, in
order to compare its performance with pressure-saturation formulation and study the L-scheme method.

2 Mathematical and numerical models

The governing equations of two-phase flow in rigid porous media are modeled by a system of differential
partial equations that can be written as

∂(ραθα)

∂t
+∇ · (ραqα) = Fα, in Ω× T , (1)
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where Ω ⊂ R+, T = (0, T ) is a given interval of time, with T being the final time and α = w, n are the phases of
the fluid (w is the wetting and n is the non-wetting). We also have that ρα is the density, θα = φSα where φ is the
porosity and Sα is the saturation, qα is the vector of the volumetric flow and Fα is the source term, all from phase
α. The volumetric flow is given by Darcy’s law adapted for multiphase, which is written as

qα = −krα
µα

K(∇pα − ραg), (2)

where K is the intrinsic permeability tensor, krα is the relative permeability in the porous media, which is consi-
dered as a function of saturation Sα, pα is the pressure, µα is the viscosity, all from phase α and g is the vector

of gravitational acceleration. The quantity λα =
krα
µα

is called mobility, that is, the ratio of relative permeability

function to the phase viscosity, Bastian [1]. The system of equations given by eq. (1) and eq. (2) is complemented
by the algebraic relations Sw + Sn = 1 and pn − pw = pc. These relations imply that the sum of the saturation of
the phases must be equal to 1 and that the capillary pressure pc is defined as the difference between the pressures
pn and pw. Additionally, from the relation Sw + Sn = 1 we have that θw + θn = φ.

Considering an incompressible fluid and disregarding gravity, the system of equations can be simplified as

∂(θα)

∂t
− λα∇ · (K∇pα) =

Fα
ρα
. (3)

Our physical domain will be a segment of lenght L and parallel to the x axis. The governing equations are
subject to the Dirichlet type boundary condition, thus pα(0, t) and pα(L, t), t > 0, are prescribed value, where
L represents the domain size. To complete the mathematical formulation, an initial condition must also be given,
thus pα(x, 0) = p0α where p0α is a prescribed value of the variable pressure. We discretized the spatial domain
using the finite volume method (FVM), Maliska [6], Ferziger and Perić [7] and central difference scheme (CDS),
Fortuna [8]. For the temporal discretization, we used the implicit Euler method, Fortuna [8], Burden and Faires
[9]. We denoted n as the time level, m as the number of iterations, τ = T

Nt
where Nt is the number of time steps,

and h = L
Nx

where L represents the domain size and Nx is the number of volumes in the space. With the temporal
discretization, in the wetting phase, eq. (3) can be written as

Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ
− ∂

∂x
[Kn+1,m

w

∂

∂x
(δpn+1,m+1

w )]

=
∂

∂x
[Kn+1,m

w

∂

∂x
(pn+1,m
w )] + Fn+1

w − θn+1,m
w − θnw

τ
, (4)

and in the non-wetting phase as

Cn+1,m
w

δpn+1,m+1
n − δpn+1,m+1

w

τ
− ∂

∂x
[Kn+1,m

n

∂

∂x
(δpn+1,m+1

n )]

=
∂

∂x
[Kn+1,m

n

∂

∂x
(pn+1,m
n )] + Fn+1

n − θn+1,m
n − θnn

τ
, (5)

where Cn+1,m
w = ∂θw

∂pc
, Kn+1,m

α = Kkrα
µα

and δpn+1,m+1
α = pn+1,m+1

α − pn+1,m+1
α .

Considering a uniform grid, we obtain the following system of equations after the spatial discretization

(aw)i[δp
n+1,m+1
w ]i + (aw)i+1[δpn+1,m+1

w ]i+1 + (aw)i−1[δpn+1,m+1
w ]i−1 + bi[δp

n+1,m+1
n ]i = (Fw)i, (6)

(an)i[δp
n+1,m+1
n ]i + (an)i+1[δpn+1,m+1

n ]i+1 + (an)i−1[δpn+1,m+1
n ]i−1 + bi[δp

n+1,m+1
w ]i = (Fn)i, (7)
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where

(aα)i = −[Cn+1,m
w ]i +

τ

h2
([Kn+1,m

α ]i+ 1
2

+ [Kn+1,m
α ]i− 1

2
),

(aα)i+1 = − τ

h2
[Kn+1,m

α ]i+ 1
2
,

(aα)i−1 = − τ

h2
[Kn+1,m

α ]i− 1
2
,

(b)i = [Cn+1,m
w ]i,

(Fα)i =
τ

h2
[Kn+1,m

α ]i+ 1
2
[pn+1,m
α ]i+1 −

τ

h2
([Kn+1,m

α ]i+ 1
2

+ [Kn+1,m
α ]i− 1

2
)[pn+1,m

α ]i +

τ

h2
[Kn+1,m

α ]i− 1
2
[pn+1,m
α ]i−1 + τFα − [θn+1,m

α ]i + [θnα]i.

We used L-scheme in the numerical experiments. This linearization defines that L ≥ |Cw|, Illiano [2], Radu
et al. [10]. The linear system resulting from the linearization of the equations above is solved by the coupled
Gauss-Seidel method, Gaspar et al. [5].

3 Numerical results

3.1 Code verification

For our tests, we used the problem proposed by Illiano [2]. In that work, Illiano considers the pressure-
saturation formulation p–Sw, where p = pw+pn

2 and proposes the analytical solution f(x, t) = p(x, t) =
Sw(x, t) = xt(1 − x) defined in the domain D = [0, 1] × [0, 1], with initial and boundary conditions f(x, 0) =
f(0, t) = f(1, t) = 0.

In this current work, we used the pressure-pressure formulation pw–pn, thus, it was necessary to make ad-
justments to use pw and pn instead of p. By using the definitions of capillary pressure pc = pw–pn and p we obtain
pw = p − 1

2pc, pn = p + 1
2pc, where pc(Sw) = 1 − 1

2S
2
w. Since θα = φSα, we have that θw = φ

√
2− 2pc and

θn = φ− θw, implying that Cw = ∂θw
∂pc

= − φ√
2−2pc

, pc 6= 1. These expressions are used to find the source terms

Fw = −1

2
ρw[2φ(x− 1)x+Kλwt(6tx

2 − 6tx+ t− 4)], (8)

Fn =
1

2
ρn[2φ(x− 1)x+Kλnt(6tx

2 − 6tx+ t− 4)]. (9)

To verify our results, we compared our solutions with the results obtained by Illiano [2] for the saturation
Sw. In this verification, data from Table 1 was used. According to Illiano this data was used to obtain easier
computations and can be unrealistic but that is not our concern, since we are trying to verify that our code works,
thus we are not interested in a simulation of a realistic physical problem.

Figure 1 and Fig. 2 confirm that the results found are in accordance with those presented by Illiano [2].

Table 1. Data used in the verification

λw λn K φ ρw ρn

1 2 1 1 1 2

3.2 Analysis of the L-scheme

A study on the L-scheme was carried out using the problem from the previous section in order to establish a
suitable rule and values of L that help the convergence of this linearization method. In Fig. 3 and Fig. 4, Nx = 10
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Solving 1D two-phase flow problems

Figure 1. Numerical and analytical solution for saturation for τ = h = 0.1

Figure 2. Numerical and analytical solution for saturation for τ = h = 0.025

and Nx = 20 respectively, we have |Cw| versus x, where Cw = ∂θw
∂pc

. Data from Table 1 was also used in this
verification. It is possible to notice that the maximum value of the derivatives |Cw| is at the first time step (nt = 1)
and at the first spatial volume. For this reason, we made a geometric adjustment using the set of data from Table
2, which are values of max|Cw| located at the first spatial volume at the first time step as a function of the number
of volumes Nx in the grid. Table 2 shows the data to be adjusted.

The best-fitting curve to data was y(Nx) = 2.3314(Nx)1.9658 (see Fig. 5). By using a different value of Nx
we can predict themax|Cw| and therefore, find the value of L to be used in the linearization scheme. For example,
for Nx = 30, we obtain y(30) = 1867.84. We can affirm that this rule is robust as it meets the convergence
criterion of the L-scheme, Illiano [2], Radu et al. [10]. Further studies are needed in order to make the rule more
efficient.
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Figure 3. Maximum value of the derivatives |Cw| with Nx = Nt = 10 at each time step nt

Figure 4. Maximum value of the derivatives |Cw| with Nx = Nt = 20 at each time step nt

Based on the information in Fig. 3 and Fig. 4, we can create a new rule by establishing a vector of the
values of L where each Li is the max|Cw| at the time step nti . Thus, we will have a vector with the values
L = (L1, L2, ..., LNt), where Nt is the total number of time steps. For example, for the grid size Nx = 10, this
vector would be L = (217.22; 113.20; 79.51; 63.22; 53.77; 47.64; 43.35; 40.16; 37.66; 35.62). One can notice that
the components of this vector have an asymptotic behavior, starting at a large value of L, to posteriorly decrease
and tend to a certain value (this behavior is also seen at the first volume in Fig. 3). For this reason, we will use the
value of max|Cw| at each time step, which is the value max|Cw| computed at the first spatial volume.

Table 3 shows the column itmedL (Adjusted), which displays the average number of linearizations, con-
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Table 2. max|Cw| at the first spatial volume at the first time step as a function of Nx

Nx max|Cw|

10 217.22

20 833.98

40 3267.35

80 12934.04

Figure 5. Maximum value of the derivatives |Cw|

sidering every time step and using the geometrical adjustment of the data from Table 2. Column itmedL (L) is
also shown, displaying the average number of linearizations achieved by using the L vector. The table highlights
that the method proposed by the new rule to choose L (by using L) noticeably reduces the average number of
linearizations performed, thus proven to be more efficient.

Table 3. Average number of linearization according to the rules proposed

Nx itmedL (Adjusted) itmedL (L)

10 195.10 80.90

20 610.96 178.05

40 1936.65 392.65

80 5974.46 1169.72

4 Conclusions

Numerical simulations of flows in porous media have been investigated. In this sense, it is important to
understand the flow of fluids in porous media by means of a mathematical model. This work presented a model for
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the simulation of two-phase flow in rigid porous media that uses the L-scheme for linearization and the pressure-
pressure formulation. The results our code achieved were verified and are in accordance with those proposed by
Illiano [2]. After the verifying the code we carried out a study on L-scheme showing how to choose a value of L.
A new way to choose a suitable value of L that is more efficient and guarantees the convergence of the method was
also proposed.
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