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ABSTRACT

In this article, we improve the order of precision of the two-dimensional Poisson equation by combining extrap-
olation techniques with high order schemes. The high order solutions obtained traditionally generate non-sparse
matrices and the calculation time is very high.We can obtain sparsematrices by applying compact schemes. In this
article, we compare compact and exponential finite difference schemes of fourth order. The numerical solutions
are calculated in quadruple precision (Real * 16 or extended precision) in FORTRAN language, and iteratively
obtained until reaching the round-off errormagnitude around 1.0E−32. This procedure is performed to ensure that
there is no iteration error. The Repeated Richardson Extrapolation (RRE) method combines numerical solutions
in different grids, determining higher orders of accuracy. The main contribution of this work is based on a process
that initializes with fourth order solutions combining with RRE in order to find solutions of sixth, eighth, and tenth
order of precision. The multigrid Full Approximation Scheme (FAS) is also applied to accelerate the convergence
and obtain the numerical solutions on the fine grids.
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1 Introduction

One of the main goals of researchers is to obtain improved numerical methods capable of
solving problems that hinder technological progress, as well as those related to Engineering. In
particular, one of these problems is characterized by the determination of the numerical solution
of the Navier-Stokes (NS) equations, which require a large computational effort when determining
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the numerical solution of the continuity equation, represented by the Poisson equation. The
simplified two-dimensional Poisson equation is given by

∂2u
∂x2

+ ∂2u
∂y2

=−f , in �, (1)

along with boundary conditions relating to the � domain of the problem. Some studies, including
Poisson equation, present solutions using compact fourth and sixth order methods with direct
methods to solve the system of equations [1]. In addition, they have found results including
higher order of accuracy on non-uniform grids to determine critical grids that violate [2] stability
conditions. In [3] the Eq. (1) was solved numerically by combining the standard multigrid method
and Repeated Richardson Extrapolations (RRE), where solutions of sixth order of accuracy were
obtained. In the work of [4] an unconventional compact nine points form was introduced, named
as Exponential Difference Scheme based on the Finite Difference Method (FDM).

This work includes higher order methods for discretizing Eq. (1) based on FDM [5]. These
methods belong to a group of higher order schemes, where the combination of FDM approxima-
tions results in new methods that consider a larger number of neighboring points. They are: the
Compact Finite Difference Scheme of fourth order (Compact− 4) [3]; and the Exponential Finite
Difference Scheme of fourth order (Exponential − 4) [4]. In addition, the higher order methods
in conjunction with the standard multigrid Full Approximation Scheme (FAS) [6] provide faster
convergence to the numerical solution. One can also determine significantly better results when
applying a fourth order of accuracy scheme with nine points, due to the decreased discretization
error. To determine numerical solutions with higher order of accuracy, the post-processing method
known as RRE can be used [7–9].

The main goal of this work is to obtain successive accurate solutions for Eq. (1) in an
efficient way without increasing the computational time. For this, we use RRE that combines nine
numerical solutions using quadruple precision (Real ∗ 16 or extended precision) in order to obtain
tenth order precision solutions. The grids have a refinement ratio q= 2 from 9×9 to 2049×2049.
The numerical solutions included in the present work were obtained using FORTRAN language.

This work is subdivided as follows: In Section 2 we present the proposed mathematical and
numerical model; In Section 3 the applied fourth order methods; In Section 4 we describe the
RRE method used to obtain the tenth order of accuracy of the numerical solution; In Section 5
we show the standard multigrid method; In Section 6 the numerical tests and results, and, in
Section 7 the conclusions of the work.

2 Mathematical and Numerical Models

The main goal is to solve the two-dimensional Poisson equation, represented by (1), and to
achieve tenth order of accuracy numerical solutions. For this, the first step is to find the best
fourth order scheme applying the standad FAS, and from that apply the RRE. Therefore, there is
no problem in taking a simple domain with a discretization in simple grids, because the standard
multigrid could be applied in non-orthogonal grids or unstructured grids [7]. As the RRE is a
post-processing [10], its application is independent of how data were collected.

This section describes the model of the equation, its domain, boundary conditions and
analytical solution that will be used by means of comparison and verification.
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Given the equation

∂2u
∂x2

+ ∂2u
∂y2

=−f , in �= (0, 1)× (0, 1), (2)

with boundary conditions obtained by the analytical solution, the unit square domain was dis-
cretized applying uniform grids with h:= 1/(Nx− 1) and k:= 1/(Ny− 1), for x and y directions,
respectively. Here, Nx and Ny represent the number of grid points in coordinate directions x and
y, respectively. Therefore, these grid points are defined by (xi, yj), where xi:= ih and yj:= jk, for
0≤ i≤Nx− 1 and 0≤ j≤Ny− 1.

Considering an uniform grid by direction with elements size h and k for each of the coordi-
nate directions x and y, respectively. The approximations for the partial derivarives are given by
Central Difference Scheme of second order (CDS− 2) [5].

∂2u
∂x2

| i, j =
Ui−1, j− 2Ui, j+Ui+1, j

h2
− h2

12
∂4u
∂x4

| i, j−
h4

360
∂6u
∂x6

| i, j+O(h6) (3)

and

∂2u
∂y2

| i, j =
Ui, j−1− 2Ui, j +Ui, j+1

k2
− k2

12
∂4u
∂y4

| i, j−
k4

360
∂6u
∂y6

| i, j+O(k6). (4)

Replacing Eqs. (3) and (4) in Eq. (1) the equation is obtained from which the estimate Eq. (5)
is derived

Ui−1, j− 2Ui, j +Ui+1, j

h2
+ Ui, j−1− 2Ui, j+Ui, j+1

k2
=−fi, j. (5)

The approximations given by Eqs. (3) and (4) result in the asymptotic order pL = 2 and true
orders pm = 2, 4, 6, . . . in Eq. (5) [11]. We describe how to increase the order of this discretization
method for two known high order methods in the next section.

3 High Order Methods for Poisson Equation

3.1 Compact Finite Difference Scheme
Given Eq. (1), where U is the solution of Eq. (5) through a second order approximation.

Therefore, in order to determine approximations for fourth order derivatives and obtain the known
compact fourth order method, it is necessary to expand the following terms:

∂4u
∂x4

| i, j =−∂2f
∂x2

| i, j−
∂4u

∂x2∂y2
| i, j , (6)

and

∂4u
∂y4

| i, j =−∂2f
∂y2

| i, j−
∂4u

∂x2∂y2
| i, j . (7)

Then, replacing Eqs. (6) and (7) in Eqs. (3) and (4), respectively. Furthermore, considering a
CDS− 2 approximation for the second order partial derivative of f (x, y), we have
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∂2u
∂x2

| i, j =
Ui−1, j− 2Ui, j +Ui+1, j

h2
+ 1

12
(fi−1, j − 2fi, j+ fi+1, j)

+ h2

12
∂4u

∂x2∂y2
| i, j−

h4

144
∂4u
∂x4

| i, j+O(h4), (8)

and

∂2u
∂y2

| i, j =
Ui, j−1 − 2Ui, j+Ui, j+1

k2
+ 1

12
(fi, j−1− 2fi, j+ fi, j+1)

+ k2

12
∂4u

∂x2∂y2
| i, j−

k4

144
∂4u
∂y4

| i, j+O(k4). (9)

For ∂4u/(∂x2∂y2) | i, j, the approximation is

∂4u
∂x2∂y2

| i, j =
4Ui, j

h2k2
− 2

(
Ui−1, j +Ui+1, j+Ui, j−1 +Ui, j−1

h2k2

)

+ Ui−1, j−1+Ui−1, j+1 +Ui+1, j−1+Ui+1, j+1

h2k2
+O(h2, k2). (10)

Next, Eq. (10) is replaced in Eqs. (8) and (9). After that, summing up both resulting equations
leads to

Ui−1, j− 2Ui, j+Ui+1, j

h2
+ Ui, j−1 − 2Ui,j +Ui, j+1

k2

+
(
h2+ k2

12

)[
4Ui, j

h2k2
− 2

(
Ui−1, j +Ui+1, j+Ui, j−1 +Ui, j+1

h2k2

)

+ Ui−1, j−1+Ui−1, j+1 +Ui+1, j−1+Ui+1, j+1

h2k2

]

= 1
12

(fi−1, j+ fi+1, j − 8fi, j+ fi,j−1 + fi, j+1). (11)

Later, considering k= h and rearranging Eq. (11), we have

Ui, j = 3
10

[
Fi, j+ 2

3

(
Ui+1, j+Ui−1, j +Ui, j−1 +Ui, j+1

)

+ 1
6

(
Ui+1, j+1+Ui−1, j+1+Ui+1, j−1 +Ui−1, j−1

)]
h2, (12)

where

Fi, j:= 1
12

(fi−1, j + fi+1, j− 8fi, j + fi, j−1+ fi, j+1). (13)
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According to [12], the local truncation error is given by

τi, j =− h4

360

(
∂6u
∂x6

+ ∂6u
∂y6

)
(i, j)

+O(h6). (14)

Finally, by Eq. (14) it is possible to stablish the asymptotic, pL = 4, and true orders, pm =
4, 6, 8, . . ., respectively.

After some algebraic manipulations, the stencil model is

10
3h2

⎡
⎢⎣
0 0 0

0 1 0

0 0 0

⎤
⎥⎦
h

− 2
3h2

⎡
⎢⎣
0 1 0

1 0 1

0 1 0

⎤
⎥⎦
h

− 1
6h2

⎡
⎢⎣
1 0 1

0 0 0

1 0 1

⎤
⎥⎦
h

= 1
12

⎡
⎢⎣
0 1 0

1 −8 1

0 1 0

⎤
⎥⎦
h

. (15)

Therefore, Eq. (15) is the stencil of the approximation by Compact−4 for the two-dimensional
Poisson equation in an unit square domain applying uniform grid elements based on approxima-
tions of [3,13,14].

3.2 Exponential Finite Difference Scheme
According to [4,15,16], the approximation Exponential−4 is accomplished from the following

formulation:

∂2u
∂x2

+ ∂2u
∂y2

= f (x, y)eφ(h). (16)

Then, assuming that k = h, by substituting the approximations from Eq. (11) on the left of
the equality in Eq. (16), we get

ao

(
Ui−1, j+Ui+1, j +Ui, j−1+Ui, j+1

h2

)

+ a1

(
Ui−1, j−1 +Ui−1, j+1+Ui+1, j−1 +Ui+1, j+1

h2

)
+ a2Ui, j

= b0 fi,je
φ(h), (17)

where

φ(h)= h2∇2fi, j
12fi, j

. (18)

Furthermore, the laplacian of Eq. (18) can be approximated, according to [5], by CDS − 2.
Thus, it results in

h2∇2fi, j = fi−1, j+ fi+1, j − 4fi, j+ fi, j−1 + fi, j+1, (19)

then,

φ(h)= fi−1, j + fi+1, j− 4fi, j + fi, j−1+ fi, j+1

12fi, j
. (20)
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According to [4], the constants are a0 = 4, a1 = 1, a2 = −20 and b0 = 6. Therefore, Eq. (17)
can be rewrite as

4
(
Ui−1, j+Ui+1, j − 4Ui, j+Ui, j−1 +Ui, j+1

h2

)

+
(
Ui−1, j−1+Ui−1, j+1 +Ui+1, j−1+Ui+1, j+1

h2

)
− 20Ui, j

= 6fi, jeφ(h). (21)

The local truncation error is given by [4] as

τi, j = h6

240

[
4

(
∂6u
∂x6

+ 5
∂6u

∂x4y2
+ 5

∂6u
∂x2y4

+ ∂6u
∂y6

)

− 5

(
∂2u

∂x2
+ ∂2u

∂y2

)−1(
∂4u
∂x4

+ 2
∂4u

∂x2y2
+ ∂4u

∂y4

)2
⎤
⎦

(i, j)

+O(h8). (22)

Consequently, also according to [4], combining Eqs. (21) and (22) specifies the asymptotic,
pL = 4, and true orders, pm = 4, 6, 8, . . ., respectively.

The stencil of the approximation for the Poisson equation is given by

20
h2

⎡
⎢⎣
0 0 0

0 1 0

0 0 0

⎤
⎥⎦
h

− 4
h2

⎡
⎢⎣
0 1 0

1 0 1

0 1 0

⎤
⎥⎦
h

− 1
h2

⎡
⎢⎣
1 0 1

0 0 0

1 0 1

⎤
⎥⎦
h

=−6eφ(h)

⎡
⎢⎣
0 0 0

0 1 0

0 0 0

⎤
⎥⎦
h

, (23)

where

eφ(h) = exp

⎛
⎜⎝ 1
12

⎡
⎢⎣
0 1 0

1 −4 1

0 1 0

⎤
⎥⎦
h

/

⎡
⎢⎣
0 0 0

0 1 0

0 0 0

⎤
⎥⎦
h

⎞
⎟⎠ . (24)

Therefore, Eqs. (23) and (24) stablish the approximation for Exponential − 4 for the two-
dimensional Poisson equation with uniform grid elements based on the approximations of [4].

Both for Eqs. (12) and (13) of Compact Scheme (with stencil given by Eqs. (15) and (21) of
Exponential Scheme (with stencils given by Eqs. (23) and (24)), a system of the type AU = f is
generated. This is a linear system with a sparse and large matrix, where iterative methods are the
most suitable [5].

In the present work, we chose the nine points Gauss-Seidel solver (method for solving the
linear system) in a lexicographic order for both discretizations in order to generate numerical solu-
tions of such linear equations systems, whose matrices of coefficients are 9-diagonal diagonal given
by algebraic manipulation of Eqs. (12) and (13) for Compact Scheme and algebraic manipulation
of Eq. (21) for Exponential Scheme.

This Gauss-Seidel will be used as a smoother in the geometric multigrid method to determine
the numerical solutions of the linear systems (see Section 4).
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4 Repeated Richardson Extrapolation

For numerical analysis, Richardson Extrapolation (RE) [5] is an efficient technique of acceler-
ating terms of a sequence that can be applied to reduce the discretization error of nodal numerical
solutions. According to the Eq. (25), when combining two nodal solutions whith a refinement
ratio q and order of accuracy p of the numerical method it is possible to determine φ∞, which
is an estimate for the analytical solution.

Then, we have the equation

φ∞ = φ2+ φ2−φ1

qp − 1
+E(φ∞), (25)

where φ2 and φ1 are solutions at the fine and coarse grid, respectively.

By applying RE repeatedly, we obtain the technique known as Repeated Richardson Extrapo-
lation (RRE) [7,8,10,17]. The RRE is a post-processing technique used to decrease the discretiza-
tion error of numerical solutions without increasing the number of terms in the finite difference
equation obtained by the Taylor series, it depends only on the collected data. The RRE combines
different grid solutions and for each extrapolation, the obtained solution presents a much smaller
discretization error. This magnitude obeys the true orders in the finite difference equation used to
approximate the derivatives of the differential equation. For this case, models of centered fourth
orders were used based on CDS − 2 approximations, thus, the true orders are pm = {4, 6, 8, . . .}
[17,18]. The expression for RRE is given by

φg,m= φg,m−1+
φg,m−1−φg−1,m−1

qpm−1 − 1
, (26)

where φ is the numerical solution for the variable of interest (see Section 6), g is the grid where
the numerical solution was obtained, m is the number of Repeated Richardson Extrapolations, pm
are the true orders for the equation of the discretization error and q= hg−1/hg is the refinement
ratio. In this work we use q= 2.

It is possible to approximate the asymptotic order of accuracy of each numerical method
by the effective and apparent orders [11], respectively. The basis for the approximation is the
numerical error (difference between analytical and numerical solutions) or by estimating the error
of the numerical solution. The effective order (based on the numerical error) is given by [18].

pE =
log

( |�−φhg−1
|

|�−φhg |

)
log(q)

, (27)

where � is the analytical solution and φ is the numerical solution of the variable of interest. In
addition, hg−1 and hg represent the course and fine grids, respectively.

The apparent order (based on its estimation of the numerical solution error) is represented
by [18]

pU =
log

( |φhg−1
−φhg−2

|
|φhg−φhg−1

|

)
log(q)

, (28)
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where q is the refinement ratio, φ is the numerical solution of the variable of interest and hg−2,
hg−1 and hg represents the coarse grid, intermediate and fine, respectively.

To execute the RRE, pm = pE or pm = pU can be used in Eq. (26), which are the orders of
accuracy of the numerical scheme, calculated according to Eqs. (27) and (28), respectively. The
accuracy orders pE and pU are equivalent for the RRE. However, in order to use pE , the analytical
solution must be known. In addition, to calculate pU , three nodal solutions are needed, while to
calculate pE only two nodal solutions are sufficient. To show how the RRE is calculated, pm = pU
is chosen, because in this case it is not necessary to know the analytical solution of the differential
equation, and this makes the technique more robust.

The Algorithm 1 describes the steps to implement the RRE using pU , but can be easily
adapted to use pE. In Fig. 1, the representation of one nodal numerical solution for the same
point is shown in different grids and levels of extrapolation, where φg=G=9,m=4 is the solution
of high order of accuracy associated with the g= 9 grid (note that there are only nine grids in
the representation, so g=G= 9) after four Richardson extrapolations (m= 4) that are featured in
the Fig. 1. It is important to note that at level m= 0 there is no extrapolation in the numerical
solutions. The solution φ9,4 represents the output of Algorithm 1 for φ1...9,0, G= 9 and q= 2 as
input data.

Algorithm 1: Repeated Richardson Extrapolation (RRE)
Input: solutions φ1...G,0, number of grids (G) and refinement ratio (q)
Output φ with high order
1 Inicialization: φ1,0 = φ1,φ2,0 = φ2,φ3,0 = φ3, . . . ,φG,0 = φG
2 for g= 3, . . . ,G do
3 for m= 0, . . . , [integer part (g− 1)/2] do
4 if m<= [integer part (g− 3)/2] then

5 (pU)g,m =
log

( |φg−1,m−φg−2,m|
|φg,m−φg−1,m|

)
log(q)

6 end
7 if m>= 1 then

8 φg,m= φg,m−1+
φg,m−1−φg−1,m−1

q(pU)g,m−1 − 1
9 end
10 end
11 end
12 end
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Figure 1: Schematic representation of RRE for g= 9 and m= 4

5 Multigrid Method (MG)

In general, the decrease in the discretization error is associated with the grid size, in other
words, as much as the grid is refined, lower is the discretization error. However, highly refined
grids result in large scale linear equation systems, which requires very high computational effort
to achieve a numerical solution. Given that, in order to minimize the computational time used
with highly refined grids, we adopted the multigrid method, which accelerates the convergence of
standard methods using coarser grids as a support base.

Some classical iterative methods can reduce very quickly oscillatory modes errors of the finest
grid leaving only smooth modes, where the method loses the effectiveness. Later, one should trans-
fer information to the coarser grids (using restriction operators), where the smooth modes become
more oscillatory, and then, the method becomes more effective. When reaching the possible or
desired coarser grid, one should return with the information to the original finest grid of the
problem (using prolongation operators). It speeds up the convergence of the method [6,19,20].

Depending on the type of information that is transferred between grids, one can use the
Correction Scheme (CS) where only the residual is transferred, or the Full Approximation Scheme
(FAS), where both residual and solution are transferred. In the present work, we chose the FAS
method [6,19]. A cycle is the way that different grids are traversed. There are different types of
cycles, for example, V-, W-, F-cycle [21,22] and we choose to appply the V-cycle because its lower
computational coast [6,19]. The V-cycle is defined as V(ν1, ν2), where ν1 and ν2 are the numbers of
pre and post-smoothing the multigrid cycle, in other words, the number of smoothing in restriction
and prolongation process, respectively. Coarsening ratio (re) is the ratio of the distance between
the consecutive points of the grid from de fine grid (h) and the coarse grid (H). In this work, we
use re= 2, i.e., H = 2h [6,19].

In the present work, we adopt the standard geometric multigrid [23,24], that is usually recom-
mended to orthogonal structured and non-orthogonal structured grids. However, for unstructured
grids, the algebric multigrid can be applied [7,25,26].
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The process of restriction (transfer information from the fine grid to the coarser grid) is
carried out by the full weighting operator, defined by [6,19]

I2hh vh(x, y)=
1
16

⎡
⎢⎣
1 2 1

2 4 2

1 2 1

⎤
⎥⎦
2h

h

. (29)

The process of prolongation (transfer information from the coarse grid to the finer grid) is
carried out by the bilinear interpolation operator, defined by [6,19]

Ih2hvh(x, y)=
1
2

⎤
⎥⎦
0 1 0

1 0 1

0 1 0

⎡
⎢⎣
h

2h

. (30)

6 Numerical Results

Approximations of AU = f were calculated in FORTRAN using quadruple precision, where
AN×N is the matrix of coefficients, UN×1 is the vector of variables whose solution represents the
temperature and fN×1 = f (xi, yj)= fi, j is the source term in lexicographic order, given by f (x, y)=
−cos(x+ y)+ cos(x− y). The boundary conditions obtained by the analytical solution u(x, y) =
cos(x)cos(y). In addition, Rit = f −AUit is the defect of every each iteration (it).

The variables of interests are: the infinity norm (l∞) of the error based on the temperature
Ui, j, the apparent and effective orders of the error based on the temperature at the midpoint,
U(1/2, 1/2), also, its defect |R(1/2)|. By that, one can analyze the decreasing in the module of the
defect in the central point (|R(1/2)|) vs. the number of V-cycles (V(2, 1)) by its dimensionless form
represented by |Rit|/|R0|. To assure that the numerical solution admit only discretization errors,
the absolute value of rit ≈ 1× 10−32 was calculated until it achieves its machine round-off error
for the grids N = 9× 9, 17× 17, 33× 33, . . . , 4097× 4097. The numerical solutions for problems
are obtained using computational programs written by the authors in Fortran 95 and using the
Microsoft® Visual Studio® 2008 compiler v. 9.0.21022.8 RTM with quadruple precision and are
run on a computer with a 3.40 GHz Intel® Core™ i7-6700 processor with 16 GB of RAM hosting
64-bit Windows® 10.

The multigrid method FAS uses V-cycles, V(ν1, ν2) = V(2, 1) with the maximum possible
value of levels of grids. Operator of restrictions and prolongations are defined by Eqs. (29)
and (30).

Our main contribution is, first, to find the best fourth order method, and then, combine it
with the RRE. In this case, using the multigrid method in order to solve the problem in refined
grids. Therefore, the CDS − 2 is used only for purpose of comparison and verification of the
computational code.

6.1 Verification of Truncation Error
Considering all the grids studied in this work, for keeping the same standard, we chose grids

with N = 2049 × 2049 e N = 4097 × 4097 to represent all the ones adopted. It is possible to
observe in Fig. 2 (for N = 2049× 2049 e N = 4097× 4097) that iteration errors for the CDS− 2,
Compact− 4 e Exponential− 4 methods decrease approximately one order of magnitude for every
V(2, 1)-cycle. Moreover, for both fourth order methods, the numbers of cycles were lower than
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30 to reach the round-off error, while the second order method needed a slightly more than 35
V(2, 1)-cycles.
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Figure 2: Iteration error vs. number of V-cycle for (a) 2049× 2049 and (b) 4097× 4097

Fig. 3 represents the effective order of the infinity norm (l∞) based on the error of the
variable U(xi, yj). The Fig. 4 represents the effective order of the numerical solution error at the
midpoint and Fig. 5 represents the apparent order of the numerical solution error at the midpoint.
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Figure 3: Effective order pE of accuracy based on l∞ of error
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Figure 4: Effective order pE of accuracy in approximating U(1/2, 1/2)
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Figure 5: Apparent order pU of accuracy in approximating U(1/2, 1/2)

One can observe in these figures that even for pE as for pU , also for any other variable of
interest that was studied in this paper, the second order method and the fourth order methods
converge to their asymptotic orders predicted in Sections 2 and 3.

6.2 Analysis of Convergence
In order to analyze the results when approximating U(1/2, 1/2), one can verify the amount

of V-cycles needed to obtain solutions that respect the stop criteria of 1E− 10. Tab. 1 shows the
comparison between the number of cycles V(2, 1) that each method requires to obtain solutions.
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Table 1: Number of cycles V(2, 1) to reach the tolerance 1E-10

N CDS− 2 Compact− 4 Exponential− 4

9× 9 9 7 7
17× 17 11 9 9
33× 33 10 9 9
65× 65 10 9 9
129× 129 10 9 9
257× 257 10 9 9
513× 513 10 9 9
1025× 1025 10 9 9
2049× 2049 10 9 9
4097× 4097 10 9 9

As one can see in Tab. 1, both the Compact− 4 and the Exponential− 4 methods obtained
exactly the same amount of V-cycles. However, a slightly less number of cycles than for the
CDS− 2, which indicates that fourth orders methods have a slightly better convergence factor.

Tab. 2 shows another analysis only for fourth order methods, considering time computational
needed to obtain the same numerical solutions.

Table 2: CPU time(s) for fourth order methods

N Compact− 4 Exponential− 4

33 × 33 1.56250000E−02 3.12500000E−02
65 × 65 1.09375000E−01 9.37500000E−02
129 × 129 4.06250000E−01 4.06250000E−01
257 × 257 1.60937500E+00 1.64062500E+00
513 × 513 6.53125000E+00 6.60937500E+00
1025 × 1025 2.65937500E+01 2.69843750E+01
2049 × 2049 1.07312500E+02 1.08656250E+02
4097 × 4097 4.75390625E+02 4.12890625E+02

As one can see by Tab. 2, for both methods of fourth order hold very similar computational
time. Therefore, it is not possible yet to determine which one is the more efficient.

Given that, Tab. 3 shows the complexity order of the Compact − 4 and Exponential − 4
methods using multigrid FAS through a geometric curve fitting [5], represented by equation
tcpu(N) = cNp. It is known that, according to [6,19], theoretically the p factor must be close to
the unit.

Table 3: Coefficient for the geometric curve fitting

Method c p

Compact− 4 1.45367E− 5 1.04153
Exponential− 4 2.54838E− 5 0.99878
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Finally, after applying the curve fitting it is possible to verify that the Exponential−4 method
obtained a more adequate complexity factor when obtaining the numerical solutions for the vari-
able of interest U(1/2, 1/2), which we defined before in this paper. Note that the Exponential− 4
method is not part of the classical compact schemes, so we believe that it is possible to extend
its application to obtain numerical solutions for more complex equations, such as the Poisson
equations with non-constant or anisotropic coefficients.

6.3 Effect of the Number of Extrapolations
The results present in Tab. 3 show that the complexity factor p of the Exponential − 4

method is closer to unity, agreeing with the literature [6]. Therefore, from now on we choose the
Exponential − 4 method to determine the numerical solutions for the variable U(1/2, 1/2) and
generate new extrapolated solutions with sixth, eighth and tenth orders of accuracy. In order to
do repeated extrapolations using the RRE, the analytical solution was not used, for instance, all
the approximations were based on the apparent order pU . For that, one can remember that the
true orders of the Exponential−4 method are pm = 4, 6, 8, . . ., and asymptotic order [17,18] given
by pL = 4.

It is possible to observe through Fig. 6 the behavior of the true and apparent orders in the
numerical solutions: without performing any extrapolations (m= 0, p0 and Ug, 0). When generating
the first (m= 1, p1 and Ug, 1), second (m= 2, p2 and Ug, 2), third (m= 3, p3 and Ug, 2) and fourth
(m= 4, p4 and Ug, 4) Richardson extrapolations.
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Figure 6: Repeated Richardson extrapolation for U(1/2, 1/2)

Observing Fig. 6, we concluded that numerical solutions are found with several precision
orders.

The main contribution of this article is to show the possiblity to obtain a new higher accuracy
solution without the require to generate a new approximation involving many neighbor points.
For this, we start with high-order solution and then apply the post-processing RRE method. This
would imply in a large-scale linear systems, so that a computational limitation would happen.
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In the Fig. 6 we can observe the influence of the round-off error on the discretization error,
which degenerated the orders. Note that the Ug, 4 solution is affected by this type of error.
With this, we believe that only solutions of tenth order Ug, 3 can be considered, excluding the
degenerated part.

7 Conclusions

In the present paper, our results were based on a comparison between Compact − 4 and
Exponential− 4 methods with the goal of finding the best efficiency of the fourth order methods
when decreasing the discretization error. In addition, without increasing the computational time
when solving linear systems of large scale resulting of the discretization of the two-dimensional
Poisson equation.

The fourth order methods achieved similar results when considering the number of V(2, 1)
cycles when reaching the convergence, which indicates that they have a very close convergence
factor.

From the curve fitting complexity analysis, the Exponential − 4 method obtained a better
factor (smaller and closer to the unit) when compared to the Compact−4 method. However, both
factors are close to the theoretical expected in the FAS multigrid case.

Given that, using the Exponential − 4 method and combining numerical solutions for the
U(1/2, 1/2) variable in the different grids using the RRE, we obtained new solutions with sixth,
eighth and tenth orders of accuracy, as expected by the true orders.

However, it is possible to obtain solutions with superior orders by successive applications of
RRE. For that, it is only needed enough different solutions in grids g− 1 to generate m repeated
extrapolations, i.e., m= g− 1.

In practice, our contribution is related to the significant reduction of computational costs
during the execution of Engineering projects. It is common that projects are based on numerical
solutions of problems that model, for example, heat diffusion. Thus, the strategy presented in this
work allows the study of more physical phenomena, ensuring project cost reduction and high
reliability.

This work is related to the exclusive approach of the Laplacian operator. However, we believe
that extending this technique to the advection-diffusion operator, for example, is not difficult.
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